Monads in category theory and computer science

W. Troianil! D. Murfet?

!Department of Mathematics and Statistics (Masters Student in Pure
Mathematics)
University of Melbourne

?Department of Mathematics and Statistics (Lecturer)
University of Melbourne

DST Conference, 2017

W. Troiani, D. Murfet University of Melbourne

Monads in category theory and computer science

Outline

@ Initial definitions
o Categories, Functors, and Natural Transformations
@ Monads

9 Monads from the Programming Perspective
o Kileisli Triples (Moggi)
o Kleisli Triples in Haskell

© Relationships Between the Two
©® Why These are the Same

W. Troiani, D. Murfet University of Melbourne

Monads in category theory and computer science

Initial definitions
00000

Categories, Functors, and Natural Transformations

Outline

@ Initial definitions
o Categories, Functors, and Natural Transformations

. Murfet rsity of Melbourne

Monads in category theory and computer science

Initial definitions
0e0000

Categories, Functors, and Natural Transformations

The Formal Definition

as well as terminology

Definition (Category)

A Category % consists of
@ A class of objects obj(¢) = X,Y,Z, ...

@ For each pair of objects (X, Y), a set of morphisms
Homg(X,Y)=f: X =Y, g: X—=>Y,..

@ For all X € obj(%), there exists idx : X — X € Homg (X, X)
@ For each triple of objects (X, Y,Z), a function

o: Homyg(X,Y) x Homg(Y,Z) — Homy (X, 2)
fxg—gof

W. Troiani, D. Murfet University of Melbourne

Monads in category theory and computer science

Initial definitions
[e]e] lele]e]

Categories, Functors, and Natural Transformations

The Formal Definition

Definition (Category)
Which satisfy the following conditions:

@ Associativity: For all X, Y ,Z, W € obj(¢), and f : X = Y,
g:Y—~Z h:Z—=>W,

(hog)of=ho(gof)
o Identity: For all g : Y — X, and all h: X — Z, we have that

hoidX:handidXog:g

W. Troiani, D. Murfet University of Melbourne

Monads in category theory and computer science

Initial definitions
[e]e]e] le]e]

Categories, Functors, and Natural Transformations

Terminology and an Example

Common Terminology

o Will often write (X, Y) for Homy (X, Y).
e Will often write & for obj(%).
@ Morphisms are often called Arrows.

@ Brackets are often dropped.

Example (The Category of Sets)

@ obj(Set) is the class of all sets.
@ Hom(X, Y) = Set of functions from X to Y
@ Composition is function composition.

@ For each X, idx is just the identity function on X.

W. Troiani, D. Murfet University of Melbourne

Monads in category theory and computer science

Initial definitions
0000e0

Categories, Functors, and Natural Transformations

Functor

Definition (Functor)

A Functor is a map between Categories € — 2 such that
e Forall X € ¢, F(X) € 2, and for all f : X = Y,
F(f): F(X) = F(Y)
@ For all X € obj(%),
F(1x) = 1rx

@ For all morphisms f : Y - Z,g: X =Y, in%,

F(fog)=F(f)oF(g)

W. Troiani, D. Murfet University of Melbourne

Monads in category theory and computer science

Initial definitions
00000e

Categories, Functors, and Natural Transformations

Natural Transformation

Definition (Natural Transformation)

Given two Categories ¢, &, and two functors F,G : ¢ — 9, a
Natural Transformation i : F = G assigns to each objects X € €,
a morphism px : F(X) — G(X) so that for any morphism

f: X — Y in%, the following diagram,

FX 5 Fy

x| I

GXTGY

commutes

W. Troiani, D. Murfet University of Melbourne

Monads in category theory and computer science

Initial definitions

e0
Monads

Outline

@ Initial definitions

@ Monads

Murfet niversity of Melbourne

Monads in category theory and computer science

Initial definitions om the Programming Perspective nships Between the Two
oe
Monads

Formal Definition of a Monad

Definition (Monad)
A Monad on a category € is a triple (T, u,n), consisting of
@ Afunctor T : € — €.

o Two natural transformations, n: T?> = T andn: 1y = T
such that for all X € €, the following diagrams,

T(T(T(X))) 3 T(T(X)) T(X) " T(T(X))) 7(x)

T I 1
Mxl l x im l XAX

T(T(X)) == T(X) T(X)

commute

W. Troiani, D. Murfet University of Melbourne

Monads in category theory and computer science

Monads from the Programming Perspective
0000

Kleisli Triples (Moggi)

Outline

9 Monads from the Programming Perspective
o Kileisli Triples (Moggi)

. Murfet rsity of Melbourne

Monads in category theory and computer science

Monads from the Programming Perspective
(o] lele]e]

Kleisli Triples (Moggi)

Kleisli Triple

Definition (Kleisli Triple over a Category %)
A triple (T,n, -*) consisting of a function

T : 0bj(€) — obj(?)

For each object A € €, a morphism na : A— TA, and for each
f:A— TB, a morphism f* : TA — TB, satisfying,

e 1y = idTA
@ Forany f:A— TB, that f*nya=f
@ Foranyf:A— TB andg: B — TC, that g*f* = (g*f)*

W. Troiani, D. Murfet University of Melbourne

Monads in category theory and computer science

Monads from the Programming Perspective
0000

Kleisli Triples (Moggi)

Kleisli Category

Definition (Kleisli Category)

Given a Kleisli triple (T, n, _*) over some Category €, the
Category €1 where

® 0bj(¢T) = obj(%)

o ¢1(X,Y)=%(X,TY)

@ idx (in€1)isnx: X — TX

e Given f € ¢7(A,B), g € €7(B, C), the composition is
g'f:A—>TC

Note: The Kleisli Triple axioms are defined to make the Kleisli
Category a Category.
It is within the Kleisli Category that computation is modeled.

W. Troiani, D. Murfet University of Melbourne

Monads in category theory and computer science

Monads from the Programming Perspective
[eele] o]

Kleisli Triples (Moggi)

Example 1, Partiality

Consider the category Set, and two functions
f:A— B,g: B — C. Can these be extended to “functions”
which might fail?

Example (Partiality)
e TA=AU{Ll}
@ 1na: A— TA s inclusion.

o Given f : A— TB, take f*: TA — TB to be
f*(a) =f(a), Vac A and f*(L) =L

This defines a Kleisli Triple.

W. Troiani, D. Murfet University of Melbourne

Monads in category theory and computer science

Monads from the Programming Perspective
[ee]e]e]]

Kleisli Triples (Moggi)

Example 2, Side-effects

Again, take the category Set, and two functions
f:A— B,g: B — C. Can these functions be extended to take
into account the state of a machine? Fix a set of possible states S,

then

Example (Side-effects)
o TA=(AxS)°
o 7a:A— TA=(AxS)° is the map 4(a)(s) = (a,s).
o Given f: A— TB = (B x S)°, take
f¥*: TA— TB = (AxS)° = (B xS)* to be, for
g € (Ax S)°, f(g)(s) = f(m(g(s))(m2(g(s)))

W. Troiani, D. Murfet University of Melbourne

Monads in category theory and computer science

Monads from the Programming Perspective

[o)
Kleisli Triples in Haskell

Outline

9 Monads from the Programming Perspective

o Kleisli Triples in Haskell

. Murfet rsity of Melbourne

Monads in category theory and computer science

om the Programming Perspective

Haskell Monad Typeclass

A Haskell type is in the Monad typeclass once two functions
® (>>=):ma— (a— mb) — mb
@ Return :: 3 — ma

The bind function, (>>=), acts as _*, and Return is 7. Here, m
can be read as a mapping from a type a to a new type. This is a
mapping from a type to a type corresponding to the notion of
computation associated to this Monad.

The connection comes from the fact that

Hom(a — mb, ma — mb) = Hom(ma, (a — mb) — mb)

W. Troiani, D. Murfet University of Melbourne

Monads in category theory and computer science

Relationships Between the Two
[JeJele]

Why These are the Same

Outline

© Relationships Between the Two
©® Why These are the Same

. Murfet rsity of Melbourne

Monads in category theory and computer science

nships Between the Two

These are the Same

The upshot is,

There is a one-one correspondence between Kleisli triples and
monads.

Proof sketch

Given a Kleisli Triple (T,n,_*), the corresponding functor Tis T
on objects, and given f : A — B, T(f) = (ngf)*. The
multiplication map pa = id7,4.

Conversely, restricting a Monad functor T to objects, and taking
f*=pug(Tr) for f : A— TB gives a Kleisli Triple.

W. Troiani, D. Murfet University of Melbourne

Monads in category theory and computer science

Relationships Between the Two
[e]e] o]

Why These are the Same

Direct Comparison

Example (Partiality)
o TA= AL {1}
@ 1na: A— TA s inclusion.

@ Given f : A— TB, take f*: TA — TB to be
f*(a) =f(a), Vac A and f* (L) =1

Corresponds to

Example (Partiality)

f T 1 — 1
0(A—>B)l—> f
A— B

@ UA ...

W. Troiani, D. Murfet University of Melbourne

Monads in category theory and computer science

Relationships Between the Two
[e]e]e])

Why These are the Same

Project Summary

The research expected outcomes is to scope the application of type theory and develop a “higher
order monadic computation model” as a means of producing the foundational logic to address the
defects in current proof assistants. Given the limited time of this project, the focus could be in any of
the following:

* Review current proof-assistants (Cog, PVS,...) which are less well known to trustworthy
systems, with view to confirming their limitations.

* Explore the interplay of typing features, including in particular record subtyping, arbitrary
recursion, dependent types (essential for the FMME goals).

* Explore the development of higher-order monads within this type theory.

* Explore the application of these in a term logic with a fundamentally monadic notion of
computation.

The project deliverable in this year is a report on any or all of the desired research outcomes, with
recommended directions for the development of the FMME. Further identifying the most applicable
university partners and suggested approach to future research, development and investment.

ani, D. Murfet ity of Melbourne

Monads in category theory and computer science

	Initial definitions
	Categories, Functors, and Natural Transformations
	Monads

	Monads from the Programming Perspective
	Kleisli Triples (Moggi)
	Kleisli Triples in Haskell

	Relationships Between the Two
	Why These are the Same

