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Categories, Functors, and Natural Transformations

The Formal Definition
as well as terminology

Definition (Category)

A Category C consists of

A class of objects obj(C ) = X ,Y ,Z , ...

For each pair of objects (X ,Y ), a set of morphisms
HomC (X ,Y ) = f : X → Y , g : X → Y , ...

For all X ∈ obj(C ), there exists idX : X → X ∈ HomC (X ,X )

For each triple of objects (X ,Y ,Z ), a function

◦ : HomC (X ,Y )× HomC (Y ,Z )→ HomC (X ,Z )

f × g 7→ g ◦ f
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Categories, Functors, and Natural Transformations

The Formal Definition

Definition (Category)

Which satisfy the following conditions:

Associativity: For all X ,Y ,Z ,W ∈ obj(C ), and f : X → Y ,
g : Y → Z, h : Z →W,

(h ◦ g) ◦ f = h ◦ (g ◦ f )

Identity: For all g : Y → X, and all h : X → Z, we have that

h ◦ idX = h and idX ◦ g = g
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Categories, Functors, and Natural Transformations

Terminology and an Example

Common Terminology

Will often write C (X ,Y ) for HomC (X ,Y ).

Will often write C for obj(C ).

Morphisms are often called Arrows.

Brackets are often dropped.

Example (The Category of Sets)

obj(Set) is the class of all sets.

Hom(X ,Y ) = Set of functions from X to Y

Composition is function composition.

For each X , idX is just the identity function on X .
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Categories, Functors, and Natural Transformations

Functor

Definition (Functor)

A Functor is a map between Categories C → D such that

For all X ∈ C , F (X ) ∈ D , and for all f : X → Y ,
F (f ) : F (X )→ F (Y )

For all X ∈ obj(C ),
F (1X ) = 1FX

For all morphisms f : Y → Z , g : X → Y , in C ,

F (f ◦ g) = F (f ) ◦ F (g)
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Categories, Functors, and Natural Transformations

Natural Transformation

Definition (Natural Transformation)

Given two Categories C , D , and two functors F ,G : C → D , a
Natural Transformation µ : F ⇒ G assigns to each objects X ∈ C ,
a morphism µX : F (X )→ G (X ) so that for any morphism
f : X → Y in C , the following diagram,

FX FY

GX GY

Ff

µX µY

Gf

commutes
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Monads

Formal Definition of a Monad

Definition (Monad)

A Monad on a category C is a triple (T , µ, η), consisting of

A functor T : C → C .

Two natural transformations, µ : T 2 ⇒ T and η : 1C ⇒ T
such that for all X ∈ C , the following diagrams,

T (T (T (X ))) T (T (X ))

T (T (X )) T (X )

µTX

TµX µX

µX

T (X ) T (T (X )) T (X )

T (X )

ηTX

idTX
µX

T (ηX )

idTX

commute
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Kleisli Triples (Moggi)

Kleisli Triple

Definition (Kleisli Triple over a Category C )

A triple (T , η, ∗) consisting of a function

T : obj(C )→ obj(C )

For each object A ∈ C , a morphism ηA : A→ TA, and for each
f : A→ TB, a morphism f ∗ : TA→ TB, satisfying,

η∗A = idTA

For any f : A→ TB, that f ∗ηA = f

For any f : A→ TB and g : B → TC, that g∗f ∗ = (g∗f )∗
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Kleisli Triples (Moggi)

Kleisli Category

Definition (Kleisli Category)

Given a Kleisli triple (T , η, ∗) over some Category C , the
Category CT where

obj(CT ) = obj(C )

CT (X ,Y ) = C (X ,TY )

idX (in CT ) is ηX : X → TX

Given f ∈ CT (A,B), g ∈ CT (B,C ), the composition is
g∗f : A→ TC

Note: The Kleisli Triple axioms are defined to make the Kleisli
Category a Category.
It is within the Kleisli Category that computation is modeled.
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Kleisli Triples (Moggi)

Example 1, Partiality

Consider the category Set, and two functions
f : A→ B, g : B → C . Can these be extended to “functions”
which might fail?

Example (Partiality)

TA = A t {⊥}
ηA : A→ TA is inclusion.

Given f : A→ TB, take f ∗ : TA→ TB to be
f ∗(a) = f (a), ∀a ∈ A, and f ∗(⊥) = ⊥

This defines a Kleisli Triple.
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Kleisli Triples (Moggi)

Example 2, Side-effects

Again, take the category Set, and two functions
f : A→ B, g : B → C . Can these functions be extended to take
into account the state of a machine? Fix a set of possible states S ,
then

Example (Side-effects)

TA = (A× S)S

ηA : A→ TA = (A× S)S is the map ηA(a)(s) = (a, s).

Given f : A→ TB = (B × S)S , take
f ∗ : TA→ TB = (A× S)S → (B × S)S to be, for
g ∈ (A× S)S , f ∗(g)(s) = f (π1(g(s)))(π2(g(s)))
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Kleisli Triples in Haskell

Haskell Monad Typeclass

A Haskell type is in the Monad typeclass once two functions

(>>=) :: ma→ (a→ mb)→ mb

Return :: a→ ma

The bind function, (>>=), acts as ∗, and Return is η. Here, m
can be read as a mapping from a type a to a new type. This is a
mapping from a type to a type corresponding to the notion of
computation associated to this Monad.

The connection comes from the fact that

Hom(a→ mb,ma→ mb) ∼= Hom(ma, (a→ mb)→ mb)
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Why These are the Same

The upshot is,

Theorem

There is a one-one correspondence between Kleisli triples and
monads.

Proof sketch

Given a Kleisli Triple (T , η, ∗), the corresponding functor T̂ is T
on objects, and given f : A→ B, T̂ (f ) = (ηB f )∗. The
multiplication map µA = id∗

TA.
Conversely, restricting a Monad functor T to objects, and taking
f ∗ = µB(Tf ) for f : A→ TB gives a Kleisli Triple.
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Why These are the Same

Direct Comparison

Example (Partiality)

TA = A t {⊥}
ηA : A→ TA is inclusion.

Given f : A→ TB, take f ∗ : TA→ TB to be
f ∗(a) = f (a), ∀a ∈ A, and f ∗(⊥) = ⊥

Corresponds to

Example (Partiality)

(A
f→ B)

T7→

(
⊥ → ⊥
A

f→ B

)
µA ...
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Why These are the Same

Project Summary
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