Assignment 1

William Troiani

September 2022

Introduction 1

We define a category \mathcal{L} whose objects are the types of simply-typed lambda calculus, and whose morphisms are the terms of that calculus. The natural desiderata for such a category are that the fundamental algebraic structure of lambda calculus, function application and lambda abstraction, should be realised by categorical algebra.

We assume familiarity with simply-typed lambda calculus; some details are recalled in Appendix A or one can consult [2].

Following Church's original presentation our lambda calculus only contains function types and Φ_{\rightarrow} denotes the set of simple types. We write Λ_{σ} for the set of α -equivalence classes of lambda terms of type σ , and we write $=_{\beta\eta}$ for the equivalence relation generated by $\beta \eta$ equivalence.

Definition 1.1 (Category of lambda terms). The category \mathcal{L} has objects

$$ob(\mathcal{L}) = \Phi_{\rightarrow} \cup \{\mathbf{1}\}$$

and morphisms given for types $\sigma, \tau \in \Phi_{\rightarrow}$ by

$$\begin{split} \mathcal{L}(\sigma,\tau) &= \Lambda_{\sigma \to \tau} / =_{\beta\eta} \\ \mathcal{L}(\mathbf{1},\sigma) &= \Lambda_{\sigma} / =_{\beta\eta} \\ \mathcal{L}(\sigma,\mathbf{1}) &= \{\star\} \\ \mathcal{L}(\mathbf{1},\mathbf{1}) &= \{\star\} \,, \end{split}$$

where \star is a new symbol. For $\sigma, \tau, \rho \in \Phi_{\rightarrow}$ the composition rule is the function

 $\mathcal{L}(\tau,\rho) \times \mathcal{L}(\sigma,\tau) \longrightarrow \mathcal{L}(\sigma,\rho)$ (1.1)

(1.2)
$$(N, M) \mapsto \lambda x^{\sigma} . (N(Mx))$$

where $x \notin FV(N) \cup FV(M)$. We write the composite as $N \circ M$. In the remaining special cases the composite is given by the rules

(1.3)
$$\mathcal{L}(\tau,\rho) \times \mathcal{L}(\mathbf{1},\tau) \longrightarrow \mathcal{L}(\mathbf{1},\rho), \qquad N \circ M = (N M),$$

(1.4)
$$\mathcal{L}(\mathbf{1},\rho) \times \mathcal{L}(\mathbf{1},\mathbf{1}) \longrightarrow \mathcal{L}(\mathbf{1},\rho), \qquad N \circ \star = N,$$

$$\begin{split} \mathcal{L}(\mathbf{1},\rho) \times \mathcal{L}(\mathbf{1},\mathbf{1}) &\longrightarrow \mathcal{L}(\mathbf{1},\rho) \,, \qquad N \circ \star = N \,, \\ \mathcal{L}(\mathbf{1},\rho) \times \mathcal{L}(\sigma,\mathbf{1}) &\longrightarrow \mathcal{L}(\sigma,\rho) \,, \qquad N \circ \star = \lambda t^{\sigma} \,.\, N \,, \end{split}$$
(1.5)

where in the final rule $t \notin FV(N)$. Notice that these functions, although their rules depend on representatives of equivalence classes, are none-the-less well defined.

For terms M, N the expression M = N always means equality of terms (that is, up to α -equivalence) and we write $M =_{\beta\eta} N$ if we want to indicate equality up to $\beta\eta$ -equivalence (for example as morphisms in the category \mathcal{L}). Since the free variable set of a lambda term is not invariant under β -reduction, some care is necessary in defining the category \mathcal{L}_Q below. Let \rightarrow_{β} denote multi-step β -reduction [1, Definition 1.3.3].

Lemma 1.2. If $M \twoheadrightarrow_{\beta} N$ then $FV(N) \subseteq FV(M)$.

Definition 1.3. Given a term M we define

$$\operatorname{FV}_{\beta}(M) = \bigcap_{N=\beta M} \operatorname{FV}(N)$$

where the intersection is over all terms N which are β -equivalent to M.

Clearly if $M =_{\beta} M'$ then $FV_{\beta}(M) = FV_{\beta}(M')$.

Lemma 1.4. Given terms $M : \sigma \to \rho$ and $N : \sigma$ we have

$$\operatorname{FV}_{\beta}((MN)) \subseteq \operatorname{FV}_{\beta}(M) \cup \operatorname{FV}_{\beta}(N)$$
.

Lemma 1.5. Given $M : \sigma \to \rho$ and $N : \tau \to \sigma$ we have

(1.6)
$$\operatorname{FV}_{\beta}(M \circ N) \subseteq \operatorname{FV}_{\beta}(M) \cup \operatorname{FV}_{\beta}(N).$$

Given a set Q of variables we write Λ^Q_{σ} for the set of lambda terms M of type σ with $FV(M) \subseteq Q$. Let $=_{\beta\eta}$ denote the induced relation on this subset of Λ_{σ} .

Lemma 1.6. For any type σ and set Q of variables the image of the injective map

(1.7)
$$\Lambda_p^Q / =_{\beta\eta} \longrightarrow \Lambda_p / =_{\beta\eta}$$

is the set of equivalence classes of terms M with $FV_{\beta}(M) \subseteq Q$.

Proof. Since the simply-typed lambda calculus is strongly normalising [1, Theorem 3.5.1] and confluent [1, Theorem 3.6.3] there is a unique normal form \widehat{M} in the β -equivalence class of M, and $FV_{\beta}(M) = FV(\widehat{M})$. Hence if $FV_{\beta}(M) \subseteq Q$ then $FV(\widehat{M}) \subseteq Q$ and so M is in the image of (1.7).

Definition 1.7. For a set of variables Q we define a subcategory $\mathcal{L}_Q \subseteq \mathcal{L}$ by

$$\operatorname{ob}(\mathcal{L}_Q) = \operatorname{ob}(\mathcal{L}) = \Phi_{\rightarrow} \cup \{\mathbf{1}\}$$

and for types σ, ρ

$$\mathcal{L}_{Q}(\sigma,\rho) = \{ M \in \mathcal{L}(\sigma,\rho) \mid \mathrm{FV}_{\beta}(M) \subseteq Q \}, \\ \mathcal{L}_{Q}(\mathbf{1},\sigma) = \{ M \in \mathcal{L}(\mathbf{1},\sigma) \mid \mathrm{FV}_{\beta}(M) \subseteq Q \}, \\ \mathcal{L}_{Q}(\sigma,\mathbf{1}) = \mathcal{L}(\sigma,\mathbf{1}) = \{ \star \}, \\ \mathcal{L}_{Q}(\mathbf{1},\mathbf{1}) = \mathcal{L}(\mathbf{1},\mathbf{1}) = \{ \star \}.$$

Note that the last two lines have the same form using the convention that $FV_{\beta}(\star) = \emptyset$. We denote the inclusion functor by $I_Q : \mathcal{L}_Q \longrightarrow \mathcal{L}$. We write \mathcal{L}_{cl} for \mathcal{L}_Q when $Q = \emptyset$ and call this the category of **closed** lambda terms.

We claim that the inclusion I_Q has a right adjoint, provided Q is **cofinite**, by which we mean that $Q^c = Y \setminus Q$ is a finite set. Our convention is to use letters $\mathfrak{p}, \mathfrak{q}, \ldots$ for ordered sets of variables, with \mathfrak{q} always denoting an ordering on the finite unordered set of variables Q^c . With this notation, we next define a functor

$$\Gamma_{\mathfrak{q}}:\mathcal{L}\longrightarrow\mathcal{L}_Q$$

which we will prove is right adjoint to I_Q , with counit a natural transformation

$$\mathscr{U}^{\mathfrak{q}}: I_Q \circ \Gamma_{\mathfrak{q}} \longrightarrow 1_{\mathcal{L}}.$$

For the rest of this section let Q be a cofinite set of variables and $\mathbf{q} = (q_1 : \tau_1, \ldots, t_k : q_k : \tau_k)$ an ordering of the complement. While the functor $\Gamma_{\mathbf{q}}$ and natural transformation $\mathscr{U}^{\mathbf{q}}$ depend on the choice of ordering, by the uniqueness of adjoints they are independent of the ordering up to unique natural isomorphism.

Definition 1.8. For a type ρ we define

$$\Gamma_{\mathfrak{q}}(\rho) = \tau_1 \to \tau_2 \to \cdots \to \tau_k \to \rho$$

which is ρ if Q is empty. We set $\Gamma_{\mathfrak{q}}(\mathbf{1}) = \mathbf{1}$. For types σ, τ we define a function

(1.8)
$$\Gamma_{\mathfrak{q}}: \mathcal{L}(\sigma, \tau) \longrightarrow \mathcal{L}_{Q}(\Gamma_{\mathfrak{q}}\sigma, \Gamma_{\mathfrak{q}}\tau)$$

on a term $M: \sigma \to \tau$ by

(1.9)
$$\Gamma_{\mathfrak{q}}(M) = \lambda U^{\tau_1 \to \dots \to \tau_k \to \sigma} q_1^{\tau_1} \cdots q_k^{\tau_k} \cdot \left(M(\cdots(Uq_1) \cdots q_k) \right)$$

Since it is clear by inspection that $FV_{\beta}(\Gamma_{\mathfrak{q}}M) \subseteq FV_{\beta}(M) \setminus Q^c$ we have $\Gamma_{\mathfrak{q}}M \in \mathcal{L}_Q$. In the special cases involving **1** we define $\Gamma_{\mathfrak{q}}$ by

$$\begin{split} \mathcal{L}(\sigma, \mathbf{1}) &\longrightarrow \mathcal{L}_Q(\Gamma_{\mathfrak{q}} \sigma, \Gamma_{\mathfrak{q}} \mathbf{1}) = \mathcal{L}_Q(\Gamma_{\mathfrak{q}} \sigma, \mathbf{1}) \,, & \star \mapsto \star \\ \mathcal{L}(\mathbf{1}, \rho) &\longrightarrow \mathcal{L}_Q(\Gamma_{\mathfrak{q}} \mathbf{1}, \Gamma_{\mathfrak{q}} \rho) = \mathcal{L}_Q(\mathbf{1}, \Gamma_{\mathfrak{q}} \rho) \,, & M \mapsto \lambda q_1^{\tau_1} \cdots q_k^{\tau_k} \,. \, M \\ \mathcal{L}(\mathbf{1}, \mathbf{1}) &\longrightarrow \mathcal{L}_Q(\Gamma_{\mathfrak{q}} \mathbf{1}, \Gamma_{\mathfrak{q}} \mathbf{1}) = \mathcal{L}_Q(\mathbf{1}, \mathbf{1}) & \star \mapsto \star \,. \end{split}$$

Remark 1.9. It is important in (1.9) that we lambda abstract over the particular variables q_i that belong to Q^c . By α -equivalence the result of a lambda abstraction is independent of the variable we use *if* the term being lambda abstracted does not contain that variable as a free variable. However we are certainly interested in the case where M does contain the q_i as free variables, and in these cases $\Gamma_{\mathfrak{q}}(M)$ defined using, say, a sequence of variables $v_1^{\tau_1}, \ldots, v_k^{\tau_k}$ distinct from \mathfrak{q} would be a different morphism in \mathcal{L} .

Lemma 1.10. $\Gamma_{\mathfrak{q}}$ is a functor $\mathcal{L} \longrightarrow \mathcal{L}_Q$.

With the same notation as in Definition 1.8:

Definition 1.11. For a type ρ we define $\mathscr{U}_{\rho}^{\mathfrak{q}} \in \mathcal{L}(\Gamma_{\mathfrak{q}}\rho, \rho)$ by

(1.10)
$$\mathscr{U}_{\rho}^{\mathfrak{q}} = \lambda U^{\Gamma_{\mathfrak{q}}\rho} . \left(\cdots \left((Uq_1)q_2 \right) \cdots q_k \right)$$

Once again, it is significant that we use the sequence of variables \mathfrak{q} to form this term, and not arbitrary variables of the same type. The special case is $\mathscr{U}_1^{\mathfrak{q}} \in \mathcal{L}(\Gamma_{\mathfrak{q}}\mathbf{1},\mathbf{1}) = \mathcal{L}(\mathbf{1},\mathbf{1})$ given by $\mathscr{U}_1^{\mathfrak{q}} = \star$.

Proposition 1.12. Given types $\tau_1, \ldots, \tau_k, \sigma, \rho$ and a permutation $\theta \in S_k$, the term

$$P_{\theta} : \left(\tau_{1} \to \dots \to \tau_{k} \to \rho\right) \to \left(\tau_{\theta(1)} \to \dots \to \tau_{\theta(k)} \to \rho\right)$$
$$P_{\theta} = \lambda U^{\tau_{1} \to \dots \to \tau_{k} \to \rho} v_{1}^{\tau_{\theta(1)}} v_{2}^{\tau_{\theta(2)}} \cdots v_{k}^{\tau_{\theta(k)}} \cdot \left(\cdots \left((Uv_{\theta^{-1}(1)})v_{\theta^{-1}(2)}\right) \cdots v_{\theta^{-1}(k)}\right)$$

is an isomorphism in \mathcal{L} between the objects

$$(\tau_1 \to \cdots \to \tau_k \to \rho) \cong (\tau_{\theta(1)} \to \cdots \to \tau_{\theta(k)} \to \rho).$$

With the notation of the proposition:

Corollary 1.13. There is a bijection

$$\Lambda_{\tau_1 \to \dots \to \tau_k \to \rho} / =_{\beta \eta} \longrightarrow \Lambda_{\tau_{\theta(1)} \to \dots \to \tau_{\theta(k)} \to \rho} / =_{\beta \eta} .$$

Proof. We have, by the proposition

$$\Lambda_{\tau_1 \to \dots \to \tau_k \to \rho} / =_{\beta\eta} = \mathcal{L}(\mathbf{1}, \tau_1 \to \dots \to \tau_k \to \rho)$$

$$\cong \mathcal{L}(\mathbf{1}, \tau_{\theta(1)} \to \dots \to \tau_{\theta(k)} \to \rho)$$

$$= \Lambda_{\tau_{\theta(1)} \to \dots \to \tau_{\theta(k)} \to \rho} / =_{\beta\eta} .$$

1.1 Structural rules and monads

As above, let \mathcal{L}_{cl} denote the category of closed lambda terms. Throughout this section, $A \subseteq Y$ is finite and so in particular the inclusion $\emptyset \subseteq A$ satisfies the conditions of Theorem ?? and there is a right adjoint $\Gamma_{\mathfrak{a}}$ to the inclusion I for any ordering \mathfrak{a} of A:

(1.11)
$$\mathcal{L}_{cl} \xrightarrow{I}{\overbrace{\Gamma_{\mathfrak{a}}}} \mathcal{L}_{A}$$
.

Definition 1.14. Denote by $T_{\mathfrak{a}}$ the composition $\Gamma_{\mathfrak{a}} \circ I$ on \mathcal{L}_{cl} .

In the case where $\mathfrak{a} = \{x : \alpha\}$ we define the monad $T_{\mathfrak{a}}$ to have multiplication μ given by

$$\mu_{\sigma} = \lambda u^{\alpha \to (\alpha \to \sigma)} x^{\alpha} . ((ux)x) : (\alpha \to (\alpha \to \sigma)) \to (\alpha \to \sigma)$$

and unit ξ given by

$$\xi_{\sigma} = \lambda w^{\sigma} x^{\alpha} . w : \sigma \to (\alpha \to \sigma) .$$

Let $\mathfrak{a}, \mathfrak{b}$ be *disjoint* finite ordered sets of variables, and $T_{\mathfrak{a}}, T_{\mathfrak{b}}$ the associated monads on \mathcal{L}_{cl} . There is a distributive law between these two monads, and their composition as functors is therefore naturally equipped with the structure of a monad. For simplicity, we write down the propositions only in the case where $\mathfrak{a} = \{x : \alpha\}$ and $\mathfrak{b} = \{y : \beta\}$ are singletons.

Lemma 1.15. With the induced monad structure the composite $T_{\mathfrak{a}}T_{\mathfrak{b}}$ is isomorphic, as a monad, to $T_{\mathfrak{a}:\mathfrak{b}}$ where $\mathfrak{a}:\mathfrak{b}$ denotes concatenation of sequences.

2 Questions

Question 1 (6 marks). Prove that \mathcal{L} is a category.

Question 2 (2 marks). Prove Lemma 1.4, you may use Lemma 1.2 in your proof.

Question 3 (6 marks). Prove that $\mathscr{U}^{\mathfrak{q}}$ is a natural transformation $I_Q \circ \Gamma_{\mathfrak{q}} \longrightarrow 1_{\mathcal{L}}$ in the special case where $\mathfrak{q} = \{q : \tau\}$.

Question 4 (8 marks). Prove that $\Gamma_{\mathfrak{q}}$ is right adjoint to I_Q with counit $\mathscr{U}^{\mathfrak{q}}$ by showing that for types σ, ρ there are natural bijections

(2.1)
$$\mathcal{L}(\sigma,\rho) = \mathcal{L}(I_Q(\sigma),\rho) \cong \mathcal{L}_Q(\sigma,\Gamma_{\mathfrak{q}}\rho) +$$

(2.2) $\mathcal{L}(\mathbf{1},\rho) = \mathcal{L}(I_Q(\mathbf{1}),\rho) \cong \mathcal{L}_Q(\mathbf{1},\Gamma_{\mathfrak{q}}\rho).$

You can use Corollary 1.13 in your proof.

Question 5 (8 marks). Prove that the monads $T_{\mathfrak{a}}, T_{\mathfrak{b}}$ admit a distributive law

$$\chi : T_{\mathfrak{a}} T_{\mathfrak{b}} \longrightarrow T_{\mathfrak{b}} T_{\mathfrak{a}}$$
$$\chi_{\sigma} = \lambda z^{\alpha \to (\beta \to \sigma)} y^{\beta} x^{\alpha} . ((zx)y) .$$

A Background on lambda calculus

Definition A.1. Let \mathscr{V} be a (countably) infinite set of variables, and let \mathscr{L} be the language consisting of \mathscr{V} along with the special symbols

 λ . ()

Let \mathscr{L}^* be the set of words of \mathscr{L} , more precisely, an element $w \in \mathscr{L}^*$ is a finite sequence $(w_1, ..., w_n)$ where each w_i is in \mathscr{L} , for convenience, such an element will be written as $w_1...w_n$. Now let Λ' denote the smallest subset of \mathscr{L}^* such that

- if $x \in \mathscr{V}$ then $x \in \Lambda'$,
- if $M, N \in \Lambda'$ then $(MN) \in \Lambda'$,
- if $x \in \mathscr{V}$ and $M \in \Lambda'$ then $(\lambda x.M) \in \Lambda'$

 Λ' is the set of **preterms**. A preterm M such that $M \in \mathscr{V}$ is a **variable**, if $M = (M_1M_2)$ for some preterms M_1, M_2 , then M is an **application**, and if $M = (\lambda x, M')$ for some $x \in \mathscr{V}$ and $M' \in \Lambda'$ then M is an **abstraction**.

Definition A.2. Single step β -reduction \rightarrow_{β} is the smallest relation on Λ satisfying:

- the reduction axiom:
 - for all variables x and λ -terms $M, M', (\lambda x.M)M' \rightarrow_{\beta} M[x := M']$, where M[x := M'] is the term given by replacing every free occurrence of x in M with M',
- the following compatibility axioms:
 - if $M \rightarrow_{\beta} M'$ then $(MN) \rightarrow_{\beta} (M'N)$ and $(NM) \rightarrow_{\beta} (NM')$,
 - if $M \rightarrow_{\beta} M'$ then for any variable $x, \lambda x.M \rightarrow_{\beta} \lambda xM'$.

A subterm of the form $(\lambda x.M)M'$ is a β -redex, and $(\lambda x.M)M'$ single step β -reduces to M'.

Definition A.3. *Multi step* β *-reduction* \rightarrow (or simply β *-reduction*) is the smallest relation on Λ satisfying

• the reduction axiom:

- if $M \rightarrow_{\beta} M'$ then $M \twoheadrightarrow M'$,

- reflexivity:
 - if M = M' then $M \twoheadrightarrow M'$,

• transitivity:

- if $M_1 \twoheadrightarrow M_2$ and $M_2 \twoheadrightarrow M_3$ then $M_1 \twoheadrightarrow M_3$

If $M \twoheadrightarrow M'$, then M multistep β -reduces to M[x := M'].

The reflexive, symmetric closure of multistep β -reduction is β -equivalence. That is, the smallest relation containing multi step β -reduction which is reflexive and symmetric.

There is also η -expansion, which is defined similarly, we are more terse in Definition A.4 than in Definition A.3.

Definition A.4. Single step η -expansion \longrightarrow_{η} is the smallest, compatible relation on Λ satisfying:

(A.1)
$$M \longrightarrow_{\eta} \lambda x.Mx$$

where x is a variable not in the free variable set of M. Multi step η -expansion is the reflexive closure of single step η -expansion. η -equivalence is the reflexive, symmetric symmetric closure of multi step η -expansion.

 $\beta\eta$ -equivalence is the union of η -equivalence and β -equivalence.

In the simply-typed lambda calculus [1, Chapter 3] there is an infinite set of **atomic types** and the set Φ_{\rightarrow} of **simple types** is built up from the atomic types using \rightarrow . Let Λ' denote the set of untyped lambda calculus preterms in these variables, as defined in [1, Chapter 1]. We define a subset $\Lambda'_{wt} \subseteq \Lambda'$ of well-typed preterms, together with a function $t : \Lambda'_{wt} \longrightarrow \Phi_{\rightarrow}$ by induction:

- all variables $x : \sigma$ are well-typed and $t(x) = \sigma$,
- if M = (PQ) and P, Q are well-typed with $t(P) = \sigma \to \tau$ and $t(Q) = \sigma$ for some σ, τ then M is well-typed and $t(M) = \tau$,

• if $M = \lambda x$. N with N well-typed, then M is well-typed and $T(M) = t(x) \to t(N)$.

We define $\Lambda'_{\sigma} = \{M \in \Lambda'_{wt} | t(M) = \sigma\}$ and call these **preterms of type** σ . Next we observe that $\Lambda'_{wt} \subseteq \Lambda'$ is closed under the relation of α -equivalence on Λ' , as long as we understand α -equivalence type by type, that is, we take

$$\lambda x$$
 . $M =_lpha \lambda y$. $M[x := y]$

as long as t(x) = t(y). Denoting this relation by $=_{\alpha}$, we may therefore define the sets of well-typed lambda terms and well-typed lambda terms of type σ , respectively:

(A.2) $\Lambda_{wt} = \Lambda'_{wt} / =_{\alpha}$

(A.3)
$$\Lambda_{\sigma} = \Lambda_{\sigma}' / =_{\alpha}$$

Note that Λ_{wt} is the disjoint union over all $\sigma \in \Phi_{\rightarrow}$ of Λ_{σ} . We write $M : \sigma$ as a synonym for $[M] \in \Lambda_{\sigma}$, and call these equivalence classes **terms of type** σ . Since terms are, by definition, α -equivalence classes, the expression M = N henceforth means $M =_{\alpha} N$ unless indicated otherwise. We denote the set of free variables of a term M by FV(M). **Definition A.5.** The substitution operation on lambda terms is a family of functions

 $\left\{ \operatorname{subst}_{\sigma} : Y_{\sigma} \times \Lambda_{\sigma} \times \Lambda_{wt} \longrightarrow \Lambda_{wt} \right\}_{\sigma \in \Phi_{\rightarrow}}$

We write M[x := N] for subst_{σ}(x, N, M) and this term is defined inductively (on the structure of M) as follows:

- if M is a variable then either M = x in which case M[x := N] = N, or $M \neq x$ in which case M[x := N] = M.
- if $M = (M_1 M_2)$ then $M[x := N] = (M_1[x := N] M_2[x := N]).$
- if $M = \lambda y L$ we may assume by α -equivalence that $y \neq x$ and that y does not occur in N and set $M[x := N] = \lambda y L[x := N]$.

Note that if $x \notin FV(M)$ then M[x := N] = M.

References

- [1] M. Sørensen and P. Urzyczyn, *Lectures on the Curry-Howard isomorphism*, Studies in Logic and the Foundations of Mathematics Vol. 149, Elsevier New York, (2006).
- [2] W. Troiani, An Introduction to the Untyped λ-Calculus and the Church-Rosser Theorem, https://williamtroiani.github.io/pdfs/ChurchRosserTheorem.pdf