Assignment 1

William Troiani

September 2022

1 Introduction

We define a category \mathcal{L} whose objects are the types of simply-typed lambda calculus, and whose morphisms are the terms of that calculus. The natural desiderata for such a category are that the fundamental algebraic structure of lambda calculus, function application and lambda abstraction, should be realised by categorical algebra.

We assume familiarity with simply-typed lambda calculus; some details are recalled in Appendix A or one can consult [2].

Following Church's original presentation our lambda calculus only contains function types and Φ_{\rightarrow} denotes the set of simple types. We write Λ_{σ} for the set of α-equivalence classes of lambda terms of type σ, and we write $=_{\beta \eta}$ for the equivalence relation generated by $\beta \eta$ equivalence.
Definition 1.1 (Category of lambda terms). The category \mathcal{L} has objects

$$
\mathrm{ob}(\mathcal{L})=\Phi_{\rightarrow} \cup\{\mathbf{1}\}
$$

and morphisms given for types $\sigma, \tau \in \Phi_{\rightarrow}$ by

$$
\begin{aligned}
\mathcal{L}(\sigma, \tau) & =\Lambda_{\sigma \rightarrow \tau} /=_{\beta \eta} \\
\mathcal{L}(\mathbf{1}, \sigma) & =\Lambda_{\sigma} /={ }_{\beta \eta} \\
\mathcal{L}(\sigma, \mathbf{1}) & =\{\star\} \\
\mathcal{L}(\mathbf{1}, \mathbf{1}) & =\{\star\}
\end{aligned}
$$

where \star is a new symbol. For $\sigma, \tau, \rho \in \Phi_{\rightarrow}$ the composition rule is the function

$$
\begin{align*}
\mathcal{L}(\tau, \rho) \times \mathcal{L}(\sigma, \tau) & \longrightarrow \mathcal{L}(\sigma, \rho) \tag{1.1}\\
(N, M) & \longmapsto \lambda x^{\sigma} .(N(M x)) \tag{1.2}
\end{align*}
$$

where $x \notin \mathrm{FV}(N) \cup \mathrm{FV}(M)$. We write the composite as $N \circ M$. In the remaining special cases the composite is given by the rules

$$
\begin{array}{ll}
\mathcal{L}(\tau, \rho) \times \mathcal{L}(\mathbf{1}, \tau) \longrightarrow \mathcal{L}(\mathbf{1}, \rho), & N \circ M=(N M) \\
\mathcal{L}(\mathbf{1}, \rho) \times \mathcal{L}(\mathbf{1}, \mathbf{1}) \longrightarrow \mathcal{L}(\mathbf{1}, \rho), & N \circ \star=N \\
\mathcal{L}(\mathbf{1}, \rho) \times \mathcal{L}(\sigma, \mathbf{1}) \longrightarrow \mathcal{L}(\sigma, \rho), & N \circ \star=\lambda t^{\sigma} . N \tag{1.5}
\end{array}
$$

where in the final rule $t \notin \mathrm{FV}(N)$. Notice that these functions, although their rules depend on representatives of equivalence classes, are none-the-less well defined.

For terms M, N the expression $M=N$ always means equality of terms (that is, up to α-equivalence) and we write $M={ }_{\beta \eta} N$ if we want to indicate equality up to $\beta \eta$-equivalence (for example as morphisms in the category \mathcal{L}). Since the free variable set of a lambda term is not invariant under β-reduction, some care is necessary in defining the category \mathcal{L}_{Q} below. Let \rightarrow_{β} denote multi-step β-reduction [1, Definition 1.3.3].

Lemma 1.2. If $M \rightarrow_{\beta} N$ then $\mathrm{FV}(N) \subseteq \mathrm{FV}(M)$.
Definition 1.3. Given a term M we define

$$
\mathrm{FV}_{\beta}(M)=\bigcap_{N=\beta^{M}} \mathrm{FV}(N)
$$

where the intersection is over all terms N which are β-equivalent to M.
Clearly if $M={ }_{\beta} M^{\prime}$ then $\mathrm{FV}_{\beta}(M)=\mathrm{FV}_{\beta}\left(M^{\prime}\right)$.
Lemma 1.4. Given terms $M: \sigma \rightarrow \rho$ and $N: \sigma$ we have

$$
\mathrm{FV}_{\beta}((M N)) \subseteq \mathrm{FV}_{\beta}(M) \cup \mathrm{FV}_{\beta}(N)
$$

Lemma 1.5. Given $M: \sigma \rightarrow \rho$ and $N: \tau \rightarrow \sigma$ we have

$$
\begin{equation*}
\mathrm{FV}_{\beta}(M \circ N) \subseteq \mathrm{FV}_{\beta}(M) \cup \mathrm{FV}_{\beta}(N) \tag{1.6}
\end{equation*}
$$

Given a set Q of variables we write Λ_{σ}^{Q} for the set of lambda terms M of type σ with $\mathrm{FV}(M) \subseteq Q$. Let $={ }_{\beta \eta}$ denote the induced relation on this subset of Λ_{σ}.

Lemma 1.6. For any type σ and set Q of variables the image of the injective map

$$
\begin{equation*}
\Lambda_{p}^{Q} /={ }_{\beta \eta} \longrightarrow \Lambda_{p} /=_{\beta \eta} \tag{1.7}
\end{equation*}
$$

is the set of equivalence classes of terms M with $\mathrm{FV}_{\beta}(M) \subseteq Q$.
Proof. Since the simply-typed lambda calculus is strongly normalising [1, Theorem 3.5.1] and confluent [1, Theorem 3.6.3] there is a unique normal form \widehat{M} in the β-equivalence class of M, and $\mathrm{FV}_{\beta}(M)=\mathrm{FV}(\widehat{M})$. Hence if $\mathrm{FV}_{\beta}(M) \subseteq Q$ then $\mathrm{FV}(\widehat{M}) \subseteq Q$ and so M is in the image of (1.7).

Definition 1.7. For a set of variables Q we define a subcategory $\mathcal{L}_{Q} \subseteq \mathcal{L}$ by

$$
\mathrm{ob}\left(\mathcal{L}_{Q}\right)=\mathrm{ob}(\mathcal{L})=\Phi_{\rightarrow} \cup\{\mathbf{1}\}
$$

and for types σ, ρ

$$
\begin{aligned}
& \mathcal{L}_{Q}(\sigma, \rho)=\left\{M \in \mathcal{L}(\sigma, \rho) \mid \mathrm{FV}_{\beta}(M) \subseteq Q\right\}, \\
& \mathcal{L}_{Q}(\mathbf{1}, \sigma)=\left\{M \in \mathcal{L}(\mathbf{1}, \sigma) \mid \mathrm{FV}_{\beta}(M) \subseteq Q\right\}, \\
& \mathcal{L}_{Q}(\sigma, \mathbf{1})=\mathcal{L}(\sigma, \mathbf{1})=\{\star\}, \\
& \mathcal{L}_{Q}(\mathbf{1}, \mathbf{1})=\mathcal{L}(\mathbf{1}, \mathbf{1})=\{\star\} .
\end{aligned}
$$

Note that the last two lines have the same form using the convention that $\mathrm{FV}_{\beta}(\star)=\emptyset$. We denote the inclusion functor by $I_{Q}: \mathcal{L}_{Q} \longrightarrow \mathcal{L}$. We write $\mathcal{L}_{c l}$ for \mathcal{L}_{Q} when $Q=\emptyset$ and call this the category of closed lambda terms.

We claim that the inclusion I_{Q} has a right adjoint, provided Q is cofinite, by which we mean that $Q^{c}=Y \backslash Q$ is a finite set. Our convention is to use letters $\mathfrak{p}, \mathfrak{q}, \ldots$ for ordered sets of variables, with \mathfrak{q} always denoting an ordering on the finite unordered set of variables Q^{c}. With this notation, we next define a functor

$$
\Gamma_{\mathfrak{q}}: \mathcal{L} \longrightarrow \mathcal{L}_{Q}
$$

which we will prove is right adjoint to I_{Q}, with counit a natural transformation

$$
\mathscr{U}^{\mathfrak{q}}: I_{Q} \circ \Gamma_{\mathfrak{q}} \longrightarrow 1_{\mathcal{L}} .
$$

For the rest of this section let Q be a cofinite set of variables and $\mathfrak{q}=\left(q_{1}: \tau_{1}, \ldots, t_{k}: q_{k}\right.$: τ_{k}) an ordering of the complement. While the functor $\Gamma_{\mathfrak{q}}$ and natural transformation $\mathscr{U}^{\mathfrak{q}}$ depend on the choice of ordering, by the uniqueness of adjoints they are independent of the ordering up to unique natural isomorphism.

Definition 1.8. For a type ρ we define

$$
\Gamma_{\mathfrak{q}}(\rho)=\tau_{1} \rightarrow \tau_{2} \rightarrow \cdots \rightarrow \tau_{k} \rightarrow \rho
$$

which is ρ if Q is empty. We set $\Gamma_{\mathfrak{q}}(\mathbf{1})=\mathbf{1}$. For types σ, τ we define a function

$$
\begin{equation*}
\Gamma_{\mathfrak{q}}: \mathcal{L}(\sigma, \tau) \longrightarrow \mathcal{L}_{Q}\left(\Gamma_{\mathfrak{q}} \sigma, \Gamma_{\mathfrak{q}} \tau\right) \tag{1.8}
\end{equation*}
$$

on a term $M: \sigma \rightarrow \tau$ by

$$
\begin{equation*}
\Gamma_{\mathfrak{q}}(M)=\lambda U^{\tau_{1} \rightarrow \cdots \rightarrow \tau_{k} \rightarrow \sigma} q_{1}^{\tau_{1}} \cdots q_{k}^{\tau_{k}} \cdot\left(M\left(\cdots\left(U q_{1}\right) \cdots q_{k}\right)\right) . \tag{1.9}
\end{equation*}
$$

Since it is clear by inspection that $\mathrm{FV}_{\beta}\left(\Gamma_{\mathfrak{q}} M\right) \subseteq \mathrm{FV}_{\beta}(M) \backslash Q^{c}$ we have $\Gamma_{\mathfrak{q}} M \in \mathcal{L}_{Q}$. In the special cases involving $\mathbf{1}$ we define $\Gamma_{\mathfrak{q}}$ by

$$
\begin{aligned}
& \mathcal{L}(\sigma, \mathbf{1}) \longrightarrow \mathcal{L}_{Q}\left(\Gamma_{\mathfrak{q}} \sigma, \Gamma_{\mathfrak{q}} \mathbf{1}\right)=\mathcal{L}_{Q}\left(\Gamma_{\mathfrak{q}} \sigma, \mathbf{1}\right), \star \mapsto \star \\
& \mathcal{L}(\mathbf{1}, \rho) \longrightarrow \mathcal{L}_{Q}\left(\Gamma_{\mathfrak{q}} \mathbf{1}, \Gamma_{\mathfrak{q}} \rho\right)=\mathcal{L}_{Q}\left(\mathbf{1}, \Gamma_{\mathfrak{q}} \rho\right), M \mapsto \lambda q_{1}^{\tau_{1}} \cdots q_{k}^{\tau_{k}} \cdot M \\
& \mathcal{L}(\mathbf{1}, \mathbf{1}) \longrightarrow \mathcal{L}_{Q}\left(\Gamma_{\mathfrak{q}} \mathbf{1}, \Gamma_{\mathfrak{q}} \mathbf{1}\right)=\mathcal{L}_{Q}(\mathbf{1}, \mathbf{1}) \\
& \star \mapsto \star
\end{aligned}
$$

Remark 1.9. It is important in (1.9) that we lambda abstract over the particular variables q_{i} that belong to Q^{c}. By α-equivalence the result of a lambda abstraction is independent of the variable we use if the term being lambda abstracted does not contain that variable as a free variable. However we are certainly interested in the case where M does contain the q_{i} as free variables, and in these cases $\Gamma_{\mathfrak{q}}(M)$ defined using, say, a sequence of variables $v_{1}^{\tau_{1}}, \ldots, v_{k}^{\tau_{k}}$ distinct from \mathfrak{q} would be a different morphism in \mathcal{L}.

Lemma 1.10. $\Gamma_{\mathfrak{q}}$ is a functor $\mathcal{L} \longrightarrow \mathcal{L}_{Q}$.
With the same notation as in Definition 1.8:
Definition 1.11. For a type ρ we define $\mathscr{U}_{\rho}^{\mathfrak{q}} \in \mathcal{L}\left(\Gamma_{\mathfrak{q}} \rho, \rho\right)$ by

$$
\begin{equation*}
\mathscr{U}_{\rho}^{\mathfrak{q}}=\lambda U^{\Gamma_{\mathfrak{q}} \rho} \cdot\left(\cdots\left(\left(U q_{1}\right) q_{2}\right) \cdots q_{k}\right) . \tag{1.10}
\end{equation*}
$$

Once again, it is significant that we use the sequence of variables \mathfrak{q} to form this term, and not arbitrary variables of the same type. The special case is $\mathscr{U}_{1}^{\mathfrak{q}} \in \mathcal{L}\left(\Gamma_{\mathfrak{q}} \mathbf{1}, \mathbf{1}\right)=\mathcal{L}(\mathbf{1}, \mathbf{1})$ given by $\mathscr{U}_{1}^{q}=\star$.

Proposition 1.12. Given types $\tau_{1}, \ldots, \tau_{k}, \sigma, \rho$ and a permutation $\theta \in S_{k}$, the term

$$
\begin{gathered}
P_{\theta}:\left(\tau_{1} \rightarrow \cdots \rightarrow \tau_{k} \rightarrow \rho\right) \rightarrow\left(\tau_{\theta(1)} \rightarrow \cdots \rightarrow \tau_{\theta(k)} \rightarrow \rho\right) \\
P_{\theta}=\lambda U^{\tau_{1} \rightarrow \cdots \rightarrow \tau_{k} \rightarrow \rho} v_{1}^{\tau_{\theta(1)}} v_{2}^{\tau_{\theta(2)}} \cdots v_{k}^{\tau_{\theta(k)}} \cdot\left(\cdots\left(\left(U v_{\theta^{-1}(1)}\right) v_{\theta^{-1}(2)}\right) \cdots v_{\theta^{-1}(k)}\right)
\end{gathered}
$$

is an isomorphism in \mathcal{L} between the objects

$$
\left(\tau_{1} \rightarrow \cdots \rightarrow \tau_{k} \rightarrow \rho\right) \cong\left(\tau_{\theta(1)} \rightarrow \cdots \rightarrow \tau_{\theta(k)} \rightarrow \rho\right)
$$

With the notation of the proposition:
Corollary 1.13. There is a bijection

$$
\Lambda_{\tau_{1} \rightarrow \cdots \rightarrow \tau_{k} \rightarrow \rho} /={ }_{\beta \eta} \xrightarrow{\cong} \Lambda_{\tau_{\theta(1)} \rightarrow \cdots \rightarrow \tau_{\theta(k)} \rightarrow \rho} /=_{\beta \eta} .
$$

Proof. We have, by the proposition

$$
\begin{aligned}
\Lambda_{\tau_{1} \rightarrow \cdots \rightarrow \tau_{k} \rightarrow \rho} /={ }_{\beta \eta} & =\mathcal{L}\left(\mathbf{1}, \tau_{1} \rightarrow \cdots \rightarrow \tau_{k} \rightarrow \rho\right) \\
& \cong \mathcal{L}\left(\mathbf{1}, \tau_{\theta(1)} \rightarrow \cdots \rightarrow \tau_{\theta(k)} \rightarrow \rho\right) \\
& =\Lambda_{\tau_{\theta(1)} \rightarrow \cdots \rightarrow \tau_{\theta(k)} \rightarrow \rho} /=_{\beta \eta}
\end{aligned}
$$

1.1 Structural rules and monads

As above, let $\mathcal{L}_{c l}$ denote the category of closed lambda terms. Throughout this section, $A \subseteq Y$ is finite and so in particular the inclusion $\varnothing \subseteq A$ satisfies the conditions of Theorem ?? and there is a right adjoint $\Gamma_{\mathfrak{a}}$ to the inclusion I for any ordering \mathfrak{a} of A :

$$
\begin{equation*}
\mathcal{L}_{c l} \underset{\Gamma_{\mathrm{a}}}{\stackrel{I}{\rightleftarrows}} \mathcal{L}_{A} . \tag{1.11}
\end{equation*}
$$

Definition 1.14. Denote by $T_{\mathfrak{a}}$ the composition $\Gamma_{\mathfrak{a}} \circ I$ on $\mathcal{L}_{c l}$.
In the case where $\mathfrak{a}=\{x: \alpha\}$ we define the monad $T_{\mathfrak{a}}$ to have multiplication μ given by

$$
\mu_{\sigma}=\lambda u^{\alpha \rightarrow(\alpha \rightarrow \sigma)} x^{\alpha} \cdot((u x) x):(\alpha \rightarrow(\alpha \rightarrow \sigma)) \rightarrow(\alpha \rightarrow \sigma)
$$

and unit ξ given by

$$
\xi_{\sigma}=\lambda w^{\sigma} x^{\alpha} . w: \sigma \rightarrow(\alpha \rightarrow \sigma) .
$$

Let $\mathfrak{a}, \mathfrak{b}$ be disjoint finite ordered sets of variables, and $T_{\mathfrak{a}}, T_{\mathfrak{b}}$ the associated monads on $\mathcal{L}_{c l}$. There is a distributive law between these two monads, and their composition as functors is therefore naturally equipped with the structure of a monad. For simplicity, we write down the propositions only in the case where $\mathfrak{a}=\{x: \alpha\}$ and $\mathfrak{b}=\{y: \beta\}$ are singletons.

Lemma 1.15. With the induced monad structure the composite $T_{\mathfrak{a}} T_{\mathfrak{b}}$ is isomorphic, as a monad, to $T_{\mathfrak{a}: \mathfrak{b}}$ where $\mathfrak{a}: \mathfrak{b}$ denotes concatenation of sequences.

2 Questions

Question 1 (6 marks). Prove that \mathcal{L} is a category.
Question 2 (2 marks). Prove Lemma 1.4, you may use Lemma 1.2 in your proof.
Question 3 (6 marks). Prove that $\mathscr{U}^{\mathfrak{q}}$ is a natural transformation $I_{Q} \circ \Gamma_{\mathfrak{q}} \longrightarrow 1_{\mathcal{L}}$ in the special case where $\mathfrak{q}=\{q: \tau\}$.

Question 4 (8 marks). Prove that $\Gamma_{\mathfrak{q}}$ is right adjoint to I_{Q} with counit $\mathscr{U}^{\mathfrak{q}}$ by showing that for types σ, ρ there are natural bijections

$$
\begin{align*}
& \mathcal{L}(\sigma, \rho)=\mathcal{L}\left(I_{Q}(\sigma), \rho\right) \cong \mathcal{L}_{Q}\left(\sigma, \Gamma_{\mathfrak{q}} \rho\right), \tag{2.1}\\
& \mathcal{L}(\mathbf{1}, \rho)=\mathcal{L}\left(I_{Q}(\mathbf{1}), \rho\right) \cong \mathcal{L}_{Q}\left(\mathbf{1}, \Gamma_{\mathfrak{q}} \rho\right) . \tag{2.2}
\end{align*}
$$

You can use Corollary 1.13 in your proof.
Question 5 (8 marks). Prove that the monads $T_{\mathfrak{a}}, T_{\mathfrak{b}}$ admit a distributive law

$$
\begin{gathered}
\chi: T_{\mathfrak{a}} T_{\mathfrak{b}} \longrightarrow T_{\mathfrak{b}} T_{\mathfrak{a}} \\
\chi_{\sigma}=\lambda z^{\alpha \rightarrow(\beta \rightarrow \sigma)} y^{\beta} x^{\alpha} \cdot((z x) y) .
\end{gathered}
$$

A Background on lambda calculus

Definition A.1. Let \mathscr{V} be a (countably) infinite set of variables, and let \mathscr{L} be the language consisting of \mathscr{V} along with the special symbols
λ. ()
Let \mathscr{L}^{*} be the set of words of \mathscr{L}, more precisely, an element $w \in \mathscr{L}^{*}$ is a finite sequence $\left(w_{1}, \ldots, w_{n}\right)$ where each w_{i} is in \mathscr{L}, for convenience, such an element will be written as $w_{1} \ldots w_{n}$. Now let Λ^{\prime} denote the smallest subset of \mathscr{L}^{*} such that

- if $x \in \mathscr{V}$ then $x \in \Lambda^{\prime}$,
- if $M, N \in \Lambda^{\prime}$ then $(M N) \in \Lambda^{\prime}$,
- if $x \in \mathscr{V}$ and $M \in \Lambda^{\prime}$ then $(\lambda x . M) \in \Lambda^{\prime}$
Λ^{\prime} is the set of preterms. A preterm M such that $M \in \mathscr{V}$ is a variable, if $M=\left(M_{1} M_{2}\right)$ for some preterms M_{1}, M_{2}, then M is an application, and if $M=\left(\lambda x, M^{\prime}\right)$ for some $x \in \mathscr{V}$ and $M^{\prime} \in \Lambda^{\prime}$ then M is an abstraction.

Definition A.2. Single step β-reduction \rightarrow_{β} is the smallest relation on Λ satisfying:

- the reduction axiom:
- for all variables x and λ-terms $M, M^{\prime},(\lambda x . M) M^{\prime} \rightarrow_{\beta} M\left[x:=M^{\prime}\right]$, where $M\left[x:=M^{\prime}\right]$ is the term given by replacing every free occurrence of x in M with M^{\prime},
- the following compatibility axioms:
- if $M \rightarrow_{\beta} M^{\prime}$ then $(M N) \rightarrow_{\beta}\left(M^{\prime} N\right)$ and $(N M) \rightarrow_{\beta}\left(N M^{\prime}\right)$,
- if $M \rightarrow_{\beta} M^{\prime}$ then for any variable $x, \lambda x . M \rightarrow_{\beta} \lambda x M^{\prime}$.

A subterm of the form $(\lambda x . M) M^{\prime}$ is a β-redex, and $(\lambda x . M) M^{\prime}$ single step β-reduces to M^{\prime}.

Definition A.3. Multi step β-reduction \rightarrow (or simply β-reduction) is the smallest relation on Λ satisfying

- the reduction axiom:
- if $M \rightarrow_{\beta} M^{\prime}$ then $M \rightarrow M^{\prime}$,
- reflexivity:
- if $M=M^{\prime}$ then $M \rightarrow M^{\prime}$,
- transitivity:
- if $M_{1} \rightarrow M_{2}$ and $M_{2} \rightarrow M_{3}$ then $M_{1} \rightarrow M_{3}$ If $M \rightarrow M^{\prime}$, then M multistep β-reduces to $M\left[x:=M^{\prime}\right]$.

The reflexive, symmetric closure of multistep β-reduction is β-equivalence. That is, the smallest relation containing multi step β-reduction which is reflexive and symmetric.

There is also η-expansion, which is defined similarly, we are more terse in Definition A. 4 than in Definition A. 3 .

Definition A.4. Single step η-expansion \longrightarrow_{η} is the smallest, compatible relation on Λ satisfying:

$$
\begin{equation*}
M \longrightarrow_{\eta} \lambda x . M x \tag{A.1}
\end{equation*}
$$

where x is a variable not in the free variable set of M. Multi step η-expansion is the reflexive closure of single step η-expansion. η-equivalence is the reflexive, symmetric symmetric closure of multi step η-expansion.
$\beta \eta$-equivalence is the union of η-equivalence and β-equivalence.
In the simply-typed lambda calculus [1, Chapter 3] there is an infinite set of atomic types and the set Φ_{\rightarrow} of simple types is built up from the atomic types using \rightarrow. Let Λ^{\prime} denote the set of untyped lambda calculus preterms in these variables, as defined in [1, Chapter 1]. We define a subset $\Lambda_{w t}^{\prime} \subseteq \Lambda^{\prime}$ of well-typed preterms, together with a function $t: \Lambda_{w t}^{\prime} \longrightarrow \Phi_{\rightarrow}$ by induction:

- all variables $x: \sigma$ are well-typed and $t(x)=\sigma$,
- if $M=(P Q)$ and P, Q are well-typed with $t(P)=\sigma \rightarrow \tau$ and $t(Q)=\sigma$ for some σ, τ then M is well-typed and $t(M)=\tau$,
- if $M=\lambda x . N$ with N well-typed, then M is well-typed and $T(M)=t(x) \rightarrow t(N)$.

We define $\Lambda_{\sigma}^{\prime}=\left\{M \in \Lambda_{w t}^{\prime} \mid t(M)=\sigma\right\}$ and call these preterms of type σ. Next we observe that $\Lambda_{w t}^{\prime} \subseteq \Lambda^{\prime}$ is closed under the relation of α-equivalence on Λ^{\prime}, as long as we understand α-equivalence type by type, that is, we take

$$
\lambda x \cdot M={ }_{\alpha} \lambda y \cdot M[x:=y]
$$

as long as $t(x)=t(y)$. Denoting this relation by $={ }_{\alpha}$, we may therefore define the sets of well-typed lambda terms and well-typed lambda terms of type σ, respectively:

$$
\begin{align*}
\Lambda_{w t} & =\Lambda_{w t}^{\prime} /={ }_{\alpha} \tag{A.2}\\
\Lambda_{\sigma} & =\Lambda_{\sigma}^{\prime} /={ }_{\alpha} \tag{A.3}
\end{align*}
$$

Note that $\Lambda_{w t}$ is the disjoint union over all $\sigma \in \Phi_{\rightarrow}$ of Λ_{σ}. We write $M: \sigma$ as a synonym for $[M] \in \Lambda_{\sigma}$, and call these equivalence classes terms of type σ. Since terms are, by definition, α-equivalence classes, the expression $M=N$ henceforth means $M={ }_{\alpha} N$ unless indicated otherwise. We denote the set of free variables of a term M by $\mathrm{FV}(M)$.

Definition A.5. The substitution operation on lambda terms is a family of functions

$$
\left\{\text { subst }_{\sigma}: Y_{\sigma} \times \Lambda_{\sigma} \times \Lambda_{w t} \longrightarrow \Lambda_{w t}\right\}_{\sigma \in \Phi \rightarrow}
$$

We write $M[x:=N]$ for $\operatorname{subst}_{\sigma}(x, N, M)$ and this term is defined inductively (on the structure of M) as follows:

- if M is a variable then either $M=x$ in which case $M[x:=N]=N$, or $M \neq x$ in which case $M[x:=N]=M$.
- if $M=\left(M_{1} M_{2}\right)$ then $M[x:=N]=\left(M_{1}[x:=N] M_{2}[x:=N]\right)$.
- if $M=\lambda y$. L we may assume by α-equivalence that $y \neq x$ and that y does not occur in N and set $M[x:=N]=\lambda y . L[x:=N]$.

Note that if $x \notin \mathrm{FV}(M)$ then $M[x:=N]=M$.

References

[1] M. Sørensen and P. Urzyczyn, Lectures on the Curry-Howard isomorphism, Studies in Logic and the Foundations of Mathematics Vol. 149, Elsevier New York, (2006).
[2] W. Troiani, An Introduction to the Untyped λ-Calculus and the Church-Rosser Theorem, https://williamtroiani.github.io/pdfs/ChurchRosserTheorem.pdf

