Assignment 2

November 2022

You may use results from exercise n to prove exercises m, with $m \ge n+1$.

- 1. Let \mathcal{C} be a category. Prove that if the identity functor $\mathrm{id}_{\mathcal{C}} \colon \mathcal{C} \to \mathcal{C}$ has a limit, then $\lim_{\mathcal{C}} \mathrm{id}_{\mathcal{C}}$ is the initial object of \mathcal{C} .
- 2. Consider a category \mathcal{C} and an object $X \in Ob(\mathcal{C})$.

Definition 0.1. The *slice category of* C *over* X C/X is the category whose objects are pairs $(A, f: A \to X)$, where A is an object of C and $f \in \text{Hom}_{\mathcal{C}}(A, X)$, and a morphism $\overline{\phi}: (A, f) \to (B, g)$ is a morphism $\phi: A \to B$ in C which makes the obvious triangle commute (i.e. such that $g \circ \phi = f$). The *slice category of* C *under* X X/C

is the category whose objects are pairs $(A, f: X \to A)$, where A is an object of \mathcal{C} and $f \in \operatorname{Hom}_{\mathcal{C}}(X, A)$, and a morphism $\overline{\phi}: (A, f) \to (B, g)$ is a morphism $\phi: A \to B$ in \mathcal{C} which makes the obvious triangle commute (i.e. such that $\phi \circ f = g$).

• Prove that $X/\mathcal{C} = (\mathcal{C}/X)^{\text{op}}$.

There exists an obvious forgetful functor

$$U\colon \mathcal{C}/X\longrightarrow \mathcal{C}$$

from the slice category of \mathcal{C} over X to \mathcal{C} , sending the couple (A, f) to A and a morphism $\overline{\phi}: (A, f) \to (B, g)$ to the underlying morphism $\phi: A \to B$ in \mathcal{C} .

- Suppose \mathcal{C}/X has cartesian products. To what do they correspond in the ambient category \mathcal{C} ?
- Prove that if C is complete, then so is C/X. Deduce that if C is cocomplete, then so is X/C.
- Determine necessary and sufficient conditions so that U has a right adjoint. Do the same for U having left adjoint.
- 3. Let \mathbf{Set}_* be the category of pointed sets, i.e. an object of \mathbf{Set}_* is a couple (X, x_0) , with $X \in \mathbf{Set}$ and $x_0 \in X$, and a morphism $\alpha \colon (X, x_0) \to (Y, y_0)$ is a map $f \colon X \to Y$ such that $f(x_0) = y_0$. Observe that there is a forgetful functor $U \colon \mathbf{Set}_* \to \mathbf{Set}$, sending (X, x_0) to X. Prove that \mathbf{Set}_* is complete and cocomplete.

- 4. We say that a category C is *locally cartesian closed* if, for any object $X \in C$, the slice category C/X is cartesian closed. Prove that if a locally cartesian closed category C has a terminal object, then C itself is cartesian closed and has all finite limits.
- 5. Let \mathcal{C} be any category, and consider the *category of presheaves on* \mathcal{C} , namely

$$\mathsf{PSh}(\mathcal{C}) \coloneqq \mathsf{Fun}(\mathcal{C}^{\mathrm{op}}, \mathbf{Set}).$$

Show that $\mathsf{PSh}(\mathcal{C})$ is a Cartesian Closed Category (you don't need to show that $\mathsf{PSh}(\mathcal{C})$ is a category).