
Shadows of Computation, Lecture 5

Will Troiani

September 2022

1 The untyped λ-calculus

Definition 1.1. Let V be a (countably) infinite set of variables, and let L be the language
consisting of V along with the special symbols

λ . ()

Let L ∗ be the set of words of L , more precisely, an element w ∈ L ∗ is a finite sequence
(w1, ..., wn) where each wi is in L , for convenience, such an element will be written as
w1...wn. Now let Λp denote the smallest subset of L ∗ such that

� if x ∈ V then x ∈ Λp,

� if M,N ∈ Λp then (MN) ∈ Λp,

� if x ∈ V and M ∈ Λp then (λx.M) ∈ Λp

Λp is the set of preterms. A preterm M such that M ∈ V is a variable, if M = (M1M2)
for some preterms M1,M2, then M is an application, and if M = (λx,M ′) for some
x ∈ V and M ′ ∈ Λp then M is an abstraction.

In practice, it becomes unwieldy to use this notation for the preterms exactly, and so
the following notation is adopted:

Definition 1.2. � For preterms M1,M2,M3, the preterm M1M2M3 means ((M1M2)M3)),

� For variables x, y and a preterm M , the preterm λxy.M means (λx.(λy.M)).

The variables x which appear in the subpreterm M of a preterm λx.M are viewed
as “markers for substitution”, (see Remark 1.9). For this reason, a distinction is made
between the variable x and the variable y in, for example, the preterm λx.xy:

Definition 1.3. Given a preterm M , let FV(M) be the following set of variables, defined
recursively

1

� if M = x where x is a variable then FV(M) = {x},

� if M = M1M2 then FV(M) = FV(M1) ∪ FV(M2),

� if M = λx.M ′ then FV(M) = FV(M ′) \ {x}.

A variable x ∈ FV(M) is a free variable of M , a variable x which appears in M but is
not a free variable is a bound variable.

As mentioned, bound variables will be viewed as “markers for substitution”, so we
define the following equivalence relation on Λp which relates a preterm M to M ′ if M
can be obtained by replacing every bound occurrence of a variable x in M ′ with another
variable y:

Definition 1.4. For any term M , let M [x := y] be the preterm given by replacing every
bound occurrence of x in M with y. Define the following equivalence relation on Λp:
M ∼α M ′ if there exists x, y ∈ V such that M [x := y] = M ′, where no free variable of M
becomes bound in M [x := y]. In such a case, we say that M is α-equivalent to M ′.

Remark 1.5. The reason why we need to let x and y be such that no free variable of M
becomes bound in M [x := y] is so that a preterm such as λx.y does not get identified
with the preterm λy.y.

We are now in a position to define the underlying language of λ-calculus:

Definition 1.6. Let Λ = Λp/∼α be the set of λ-terms. The set of free variables of a
λ-term [M] is FV(M), which can be shown to be well defined. For convenience, M will
be written instead of [M].

Now the dynamics of the computation of λ-terms will be defined.

Definition 1.7. Single step β-reduction →β is the smallest relation on Λ satisfying:

� the reduction axiom:

– for all variables x and λ-terms M,M ′, (λx.M)M ′ →β M [x := M ′], where
M [x := M ′] is the term given by replacing every free occurrence of x in M
with M ′,

� the following compatibility axioms:

– if M →β M
′ then (MN)→β (M ′N) and (NM)→β (NM ′),

– if M →β M
′ then for any variable x, λx.M →β λxM

′.

A subterm of the form (λx.M)M ′ is a β-redex, and (λx.M)M ′ single step β-reduces
to M [x := M ′].

2

Remark 1.8. Strictly, single step β reduction should be defined on preterms and then
shown that a well defined relation is induced on terms, but this level of detail has been
omitted for the sake of clarity.

Remark 1.9. The reducition axiom shows precisely in what sense a bound variable is a
“marker for substitution”. For example, (λx.x)M →β M and (λy.y)M →β M , which is
why λx.x is identified with λy.y.

It is through single step β-reduction that computation may be performed. In fact,
λ-calculus is capable of performing natural number addition:

Example 1.10. Define the following λ-terms:

� ONE := λfx.fx,

� TWO := λfx.ffx,

� THREE := λfx.fffx,

� PLUS := λmnfx.mf(nfx)

then

PLUS ONE TWO = (λmnfx.mf(nfx))(λfx.fx)(λfx.ffx)

→β (λnfx.(λfx.fx)f(nfx))(λfx.ffx)

→β (λnfx.(λx.fx)(nfx))(λfx.ffx)

→β (λnfx.fnfx)(λfx.ffx)

→β (λfx.f(λfx.ffx)fx)

→β (λfx.f(λx.ffx)x)

→β (λfx.fffx) = THREE

where each step is obtained by substituting the right most underlined λ-term inplace of
the left most underlined variable.

Historically, is this how Church first defined computable functions.
There is also η-expansion, which is defined similarly.

Definition 1.11. Single step η-expansion −→η is the smallest, compatible relation
on Λ satisfying:

(1.1) M −→η λx.Mx

where x is a variable not in the free variable set of M . Multi step η-expansion is the
reflexive closure of single step η-expansion. η-equivalence is the reflexive, symmetric
symmetric closure of multi step η-expansion.

βη-equivalence is the union of η-equivalence and β-equivalence.

3

2 Simply typed λ-calculus

In the simply-typed lambda calculus [29, Chapter 3] there is an infinite set of atomic
types and the set Φ→ of simple types is built up from the atomic types using →. Let Λ′

denote the set of untyped lambda calculus preterms in these variables, as defined in [29,
Chapter 1]. We define a subset Λ′wt ⊆ Λ′ of well-typed preterms, together with a function
t : Λ′wt −→ Φ→ by induction:

� all variables x : σ are well-typed and t(x) = σ,

� if M = (P Q) and P,Q are well-typed with t(P) = σ → τ and t(Q) = σ for some
σ, τ then M is well-typed and t(M) = τ ,

� if M = λx .N with N well-typed, then M is well-typed and T (M) = t(x)→ t(N).

We define Λ′σ = {M ∈ Λ′wt | t(M) = σ} and call these preterms of type σ. Next we observe
that Λ′wt ⊆ Λ′ is closed under the relation of α-equivalence on Λ′, as long as we understand
α-equivalence type by type, that is, we take

λx .M =α λy .M [x := y]

as long as t(x) = t(y). Denoting this relation by =α, we may therefore define the sets of
well-typed lambda terms and well-typed lambda terms of type σ, respectively:

Λwt = Λ′wt/ =α(2.1)

Λσ = Λ′σ/ =α .(2.2)

Note that Λwt is the disjoint union over all σ ∈ Φ→ of Λσ. We write M : σ as a synonym
for [M] ∈ Λσ, and call these equivalence classes terms of type σ. Since terms are, by
definition, α-equivalence classes, the expression M = N henceforth means M =α N
unless indicated otherwise. We denote the set of free variables of a term M by FV(M).

3 The category of λ-terms

We define a category L whose objects are the types of simply-typed lambda calculus,
and whose morphisms are the terms of that calculus. The natural desiderata for such
a category are that the fundamental algebraic structure of lambda calculus, function
application and lambda abstraction, should be realised by categorical algebra.

Following Church’s original presentation our lambda calculus only contains function
types and Φ→ denotes the set of simple types. We write Λσ for the set of α-equivalence
classes of lambda terms of type σ, and we write =βη for the equivalence relation generated
by βη equivalence.

4

Definition 3.1 (Category of lambda terms). The category L has objects

ob(L) = Φ→ ∪ {1}

and morphisms given for types σ, τ ∈ Φ→ by

L(σ, τ) = Λσ→τ/=βη

L(1, σ) = Λσ/=βη

L(σ,1) = {?}
L(1,1) = {?} ,

where ? is a new symbol. For σ, τ, ρ ∈ Φ→ the composition rule is the function

L(τ, ρ)× L(σ, τ) −→ L(σ, ρ)(3.1)

(N,M) 7−→ λxσ . (N(Mx))(3.2)

where x 6∈ FV(N)∪FV(M). We write the composite as N ◦M . In the remaining special
cases the composite is given by the rules

L(τ, ρ)× L(1, τ) −→ L(1, ρ) , N ◦M = (N M) ,(3.3)

L(1, ρ)× L(1,1) −→ L(1, ρ) , N ◦ ? = N ,(3.4)

L(1, ρ)× L(σ,1) −→ L(σ, ρ) , N ◦ ? = λtσ . N ,(3.5)

where in the final rule t /∈ FV(N). Notice that these functions, although their rules
depend on representatives of equivalence classes, are none-the-less well defined.

For terms M,N the expression M = N always means equality of terms (that is, up to
α-equivalence) and we write M =βη N if we want to indicate equality up to βη-equivalence
(for example as morphisms in the category L). Since the free variable set of a lambda
term is not invariant under β-reduction, some care is necessary in defining the category
LQ below. Let �β denote multi-step β-reduction [29, Definition 1.3.3].

Lemma 3.2. If M �β N then FV(N) ⊆ FV(M).

Definition 3.3. Given a term M we define

FVβ(M) =
⋂

N=βM

FV(N)

where the intersection is over all terms N which are β-equivalent to M .

Clearly if M =β M
′ then FVβ(M) = FVβ(M ′).

Lemma 3.4. Given terms M : σ → ρ and N : σ we have

FVβ((MN)) ⊆ FVβ(M) ∪ FVβ(N) .

5

Lemma 3.5. Given M : σ → ρ and N : τ → σ we have

(3.6) FVβ(M ◦N) ⊆ FVβ(M) ∪ FVβ(N) .

Given a set Q of variables we write ΛQ
σ for the set of lambda terms M of type σ with

FV(M) ⊆ Q. Let =βη denote the induced relation on this subset of Λσ.
We prove that we have a category.
The following calculation shows that idσ ∈ L(σ, σ) is an identity at σ. Observe that

for a term M : σ → τ , we have

λtσ . (M(idσ t)) = λtσ . (M((λxσ . x)t))

=β λt . (Mt)

=η M ,

and similarly λsτ . (idτ (Ms)) =βη M . Moreover, ? is clearly an identity at 1. For
associativity there are a few cases to check:

� Consider a diagram of objects and morphisms in L of the form:

(3.7) δ ρPoo τ
Noo σ .

Moo

P ◦ (N ◦M) = λyσ . (P (N ◦M y))

= λyσ . (P ((λxσ . (N(Mx)))y))

=β λy
σ . (P (N(My)))

=β (P ◦N) ◦M .

� Consider a diagram of objects and morphisms in L of the form

(3.8) δ ρ
Poo τ

Noo 1 .Moo

P ◦ (N ◦M) = P ◦ (NM)

= (P (NM))

= (λyτ . (P (Ny))M)

= (P ◦N) ◦M .

� Consider a diagram of objects and morphisms in L of the form

(3.9) δ ρPoo 1Noo σ .?oo

(P ◦N) ◦ ? = (PN) ◦ ?
= λtσ . (PN)

= λtσ(P ((λzσ . N)t))

= P ◦ (N ◦ ?) .

6

� Consider a diagram of objects and morphisms in L of the form

(3.10) δ 1Poo τ?oo σ .Moo

(P ◦ ?) ◦M = (λtτ . P) ◦M
= λqσ . ((λtτ . P)(Mq))

= λqσ . P

= P ◦ (? ◦M) .

The other cases are trivial.

References

[1] M. Atiyah, Duality in mathematics and physics, in: lecutre notes
from Institut de Matematica de la Universitat de Barcelona (IMUB),
(2007) available at: https://fme.upc.edu/ca/arxius/butlleti-digital/

riemann/071218_conferencia_atiyah-d_article.pdf.

[2] M. Borisavljevic, K. Dosen, Z. Petric, On Permuting Cut with Contraction,
preprint arXiv:math/9911065v1.

[3] A. Church, A set of postulates for the foundation of logic, Annals of
Mathematics 33, no.2 pp.346–366 (1932).

[4] H. B. Curry and R. Feys, Combinatory logic, volume I, Studies in Logic and
the Foundations of Mathematics, North-Holland, Amsterdam, (1958).

[5] K. Došen, Deductive completeness, Bulletin of symbolic logic 2.3, pp.243–283
(1996).

[6] K. Došen, Abstraction and application in adjunction, arXiv preprint
math/0111061 (2001).

[7] R. Dyckhoff, L. Pinto, Permutability of proofs in intuitionistic sequent calculi,
Theoretical Computer Science 212, pp.141-155, (1999).

[8] J. H. Gallier, Constructive logics Part I: A tutorial on proof systems and typed
lambda-calculi, Theoretical Computer Science, 110(2) pp.249–339, (1993).

[9] G. Gentzen, Untersuchungen über das logische Schliessen, Mathematische
Zeitschrift 39 (1935) 176–210, 405–431, translation in The collected papers
of Gerhard Gentzen, edited by M. E. Szabo, 1969.

7

https://fme.upc.edu/ca/arxius/butlleti-digital/riemann/071218_conferencia_atiyah-d_article.pdf
https://fme.upc.edu/ca/arxius/butlleti-digital/riemann/071218_conferencia_atiyah-d_article.pdf

[10] J.-Y. Girard, The Blind Spot: lectures on logic, European Mathematical
Society, (2011).

[11] J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types, Cambridge Tracts
in Theoretical Computer Science 7 ,Cambridge University Press, 1989.

[12] H. Herbelin, A Lambda-Calculus structure isomorphic to a Gentzen-style
sequent calculus structure, in L. Pacholski and J. Tiuryn, editors, Computer
Science Logic, 8th workshop, CSL’94, volume 933 of Lecture Notes in Computer
Science, pp.61–75, Springer-Verlag (1995).

[13] C. Hermida and B. Jacobs, Fibrations with indeterminates: Contextual and
functional completeness for polymorphic lambda calculi, Math. Structures
Comput. Sci. 5 (1995), 501–531.

[14] A. Heyting, Intuitionism, an introduction, Studies in Logic and the
Foundations of Mathematics, North-Holland, (1956). Third edition (1971).

[15] W. A. Howard, The formulae-as-types notion of construction, in Seldin and
Hindley To H.B.Curry: essays on Combinatory logic, Lambda calculus and
Formalism, Academic press (1980).

[16] C. B. Jay, N. Ghani, The virtues of eta-expansion, J. Functional Programming
1 (1): 1–000, Cambridge University Press, (1993).

[17] S. C. Kleene, Two papers on the predicate calculus, Memoirs of the American
Mathematical Society, 10, (1952).

[18] J. Lambek, Functional completeness of cartesian categories, Annals of
Mathematical Logic 6.3-4 pp.259–292, (1974).

[19] J. Lambek and P.J. Scott, Introduction to higher-order categorical logic,
Camrbidge Studies in Advanced Mathematics, Cambridge University Press,
(1986).

[20] F.W. Lawvere, Adjointness in foundations, Dialectica 23 No. 3/4, pp.281–296,
(1969).

[21] S. Mac Lane, The Lambda Calculus and Adjoint Functors, Logic, Meaning and
Computation, Springer Netherlands, pp.181–184 (2001).

[22] G. Mints, Normal forms for sequent derivations, in: P. Odifreddi (Ed.),
Kreiseliana, A. K. Peters, Wellesley, Massachusetts, 1996, pp. 469–492; also
part of Stanford Univ. Report CSLI-94-193, November 1994.

[23] S. Negri, Varieties of linear calculi, Journal of Philosophical Logic 31, pp.569–
590, (2002).

8

[24] S. Negri and J. von Plato, Structural proof theory, Cambridge University Press,
(2008).

[25] G. Pottinger, Normalization as a homomorphic image of cut-elimination,
Annals of Mathematical Logic 12 pp.323–357, (1977).

[26] D. Prawitz, Natural deduction: a proof-theoretical study, Almqvist & Wicksell,
Stockholm (1965).

[27] D. Prawitz, Philosophical aspects of proof theory, Contemporary
philosophy: a new survey, 1, pp.235–277, Martinus Nijhoff Publishers,
The Hague/Boston/London (1981).

[28] P. Selinger, Lecture notes on the lambda calculus, preprint [arXiv:0804.3434],
(2008).

[29] M. Sørensen and P. Urzyczyn, Lectures on the Curry-Howard isomorphism,
Studies in Logic and the Foundations of Mathematics Vol. 149, Elsevier New
York, (2006).

[30] A. S. Troelstra, Marginalia on Sequent Calculi, Studia Logica 62, pp.291–303,
(1999).

[31] A .S. Troelstra and D. van Dalen, Constructivism in Mathematics, Vol. 1,
Studies in Logic and the Foundations of Mathematics, 121, Amsterdam: North-
Holland, (1988).

[32] A. S. Troelstra, H. Schwichtenberg, Basic proof theory, Cambridge University
Press, Cambridge, (1996).

[33] P. L. Wadler, Proofs are programs: 19th century logic and 21st century
computing, Manuscript (2000).

[34] A. M. Ungar, Normalization, cut-elimination and the theory of proofs, Center
for the Study of Language and Information Lecture Notes No. 28, (1992).

[35] J. Zucker, The correspondence between cut-elimination and normalization,
Annals of Mathematical Logic 7 1–112 (1974).

9

https://arxiv.org/abs/0804.3434

	The untyped -calculus
	Simply typed -calculus
	The category of -terms

