Category Theory exercise sheet 1

September 8, 2022

1 Category theory

Question 1.0.1. What is a category?

1. Pull out a blank sheet of paper and write out the full definition of a category from memory. Once you have finished, check your answer and be scrutinising in your marking (did you write set where you shouldn't have? Did you only write one sided identities? Did you describe any data as a condition?)
Redo this exercise every day until you have gotten it absolutely correct three days in a row. Use the following boxes to tick off your progress.

Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday

2. A poset (P, \leq) can be regarded as a category. The objects are the elements of P and there exists a unique morphism $x \longrightarrow y$ with domain x and codomain y whenever $x \leq y$. Prove that this is a category.

2 Mathematics

Question 2.0.1. We (secretly) investigate naturality, a concept which will be defined formally later in the course.

1. Let V be a finite dimensional complex vector space and denote its dual by V^{*}. Recall that the underlying set of V^{*} is given by the set of linear functionals with domain V and codomain \mathbb{C}, that is,

$$
\begin{equation*}
V^{*}:=\{\psi: V \longrightarrow \mathbb{C} \mid \psi \text { is linear }\} \tag{1}
\end{equation*}
$$

Fix a basis $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ for V. Define the following linear functions.

$$
\begin{aligned}
v_{i}^{*}: V & \longrightarrow \mathbb{C} \\
v & \longmapsto \begin{cases}1, & v=v_{i} \\
0, & v \neq v_{i}\end{cases}
\end{aligned}
$$

Prove that \mathscr{B} is a basis for V^{*}.
2. Using part 1, prove that the function $\Phi_{V, \mathscr{B}}: V \longrightarrow V^{*}$ defined by linearity along with the following rules

$$
\begin{equation*}
\Phi_{V, \mathscr{B}}\left(v_{i}\right)=v_{i}^{*}, \quad \forall i=1, \ldots, n \tag{2}
\end{equation*}
$$

is an isomorphism.
3. For any vector $v \in V$ let $\operatorname{Ev}_{v}: V^{*} \longrightarrow \mathbb{C}$ denote the following function

$$
\begin{aligned}
\operatorname{Ev}_{v}: V^{*} & \longrightarrow \mathbb{C} \\
\psi & \longmapsto \psi(v)
\end{aligned}
$$

Prove that the following is an isomorphism.

$$
\begin{aligned}
\Psi_{V}: V & \longrightarrow V^{* *} \\
v & \operatorname{Ev}_{v}
\end{aligned}
$$

4. Let $\varphi: V \longrightarrow W$ be a morphism of finite dimensional vector spaces. Define the following linear function.

$$
\begin{aligned}
\varphi^{*}: W^{*} & \longrightarrow V^{*} \\
\psi & \longmapsto \psi \circ \varphi
\end{aligned}
$$

Prove that for any linear transformation $\varphi: V \longrightarrow W$ the following diagram commutes.

That is, prove the following equality of functions.

$$
\begin{equation*}
\psi_{W} \circ \varphi=\varphi^{* *} \circ \Psi_{V} \tag{4}
\end{equation*}
$$

5. Find a linear function $\varphi: V \longrightarrow W$ for some vector spaces V, W along with choices of bases \mathscr{B}, \mathscr{C} for V, W respectively such that the following diagram does not commute.

3 Computer Science

Question 3.0.1. A simple system.

1. Recall that a relation R on a set X is a subset of the cartesian product $X \times X$. Thus, elements of R consist of pairs $\left(x_{1}, x_{2}\right)$ of elements in X.
Recall also that a relation R is transitive if it satisfies the following property: for all $\left(x_{1}, x_{2}\right),\left(x_{3}, x_{4}\right) \in R$ if $x_{2}=x_{3}$ then $\left(x_{1}, x_{4}\right) \in R$.
If a relation R is not transitive, then we define the transitive closure $\mathrm{T}(R)$ of R to be smallest relation containing R which is transitive. For instance, if $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and R is

$$
\begin{equation*}
R:=\left\{\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)\right\} \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathrm{T}(R)=\left\{\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right),\left(x_{1}, x_{3}\right)\right\}=R \cup\left\{\left(x_{1}, x_{3}\right)\right\} \tag{7}
\end{equation*}
$$

Define the join $R_{1} \vee R_{2}$ of two relations R_{1}, R_{2} on a set X to be the transitive closure of their union.

$$
\begin{equation*}
R_{1} \vee R_{2}:=\mathrm{T}\left(R_{1} \cup R_{2}\right) \tag{8}
\end{equation*}
$$

Calculate the join of the following two relations on the implied underlying set with 6 elements.

2. Given two relations R_{1}, R_{2} on a set X we define

$$
\begin{equation*}
R_{1} \leq R_{2} \text { if and only if }\left(x_{1}, x_{2}\right) \in R_{1} \Longrightarrow\left(x_{1}, x_{2}\right) \in R_{2} \tag{9}
\end{equation*}
$$

A Hasse diagram is a lattice which shows all the relations along with their inclusions (with respect to \leq just defined). For example, the Hasse diagram of a three element set is given as follows.

Write out the Hasse diagram of the four element set $\{1,2,3,4\}$. (How many nodes in your diagram do you expect there to be?)
3. Choose any two nodes in your Hasse diagram you wrote in 1 and call them A and B. Identify $A \vee B$ on your Hasse diagram. Are the following true?

$$
\begin{equation*}
A \leq A \vee B \quad B \leq A \vee B \tag{10}
\end{equation*}
$$

Circle the nodes C for which both $A \leq C$ and $B \leq C$. Is it true that in each case $A \vee B \leq C$?

We will see later that \vee is an example of a coproduct. Another example of a coproduct is the disjoint union $X \coprod Y$ of two sets X, Y. We will see later in the course how category theory relates these two concepts.

