
Category Theory exercise sheet 2

September 14, 2022

1 Category theory

Question 1.0.1. Consider the category C induced by the following diagram.

• ∗t (1)

We define:

F (•) = F (∗) = N
F (id•) = F (id∗) = idN

F (t) = Succ : N −→ N

where Succ is the successor function defined by Succ(n) = n + 1 for all
n ∈ N.

1. Prove that F : C −→ Set is a functor.

2. Prove that the image of F is not a category.

2 Mathematics

Question 2.0.1. Introducing: monoids and rings.

Definition 2.0.2. A monoid consists of a setM along with a multiplication
function

· : M ×M −→M

(m1,m2) 7−→ m1 ·m2

and an identity element e ∈M , subject to the following conditions:
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� ∀m1,m2,m3 ∈M, (m1 ·m2) ·m3 = m1 · (m2 ·m3).

� ∀m ∈M,m · e = e ·m = m.

Remark 2.0.3. Notice that if we also required the following axiom

∀m∃m,m ·m′ = m′ ·m = e (2)

then we would obtain exactly the definition of a group. This will help you
think about monoids.

The canonical example of a monoid is the set N of natural numbers
(including 0) with multiplication given by addition, and identity element
given by 0.

Definition 2.0.4. A ring consists of an abelian group (R,+, 0) along with
a multiplication function

· : R×R −→ R

(r1, r2) 7−→ r1 · r2

and an identity element 1 ∈ R satisfying the following properties:

� ∀r1, r2, r3 ∈ R, (r1 · r2) · r3 = r1 · (r2 · r3).

� ∀r ∈ R, 1 · r = r · 1 = r.

� ∀r1, r2, r3 ∈ R, r1 · (r2 + r3) = r1 · r2 + r1 · r2.

� ∀r1, r2, r3 ∈ R, (r1 + r2) · r3 = r1 · r3 + r2 · r3.

1. Guess the definitions of morphisms of monoids and morphisms of rings.

2. Let C be a category consisting of a single object Obj(C ) = {•}. Prove
that Hom(•, •) is a monoid with multiplication given by composition,
and identity element given by id•.

3. Consider the inclusion morphism of the integers into the rational numbers.

ι : Z � Q (3)

This is both a morphism of rings, and a morphism of groups, when
Z,Q are appropriately interpreted. Prove that:
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� ι is a monomorphism in the category of rings and in the category
of groups.

� ι is an epimorphism in the category of rings but not in the category
of groups.

This exercise shows you that the ambient category matters. The map ι
did not change, but the ambient category did, and we ended up with a
new property about it. These kinds of situations are where the power
of category theory shines.

Also, notice that ι is clearly not an isomoprhism (it is not surjective),
yet in the category of groups we have that ι is a monomorphism and
an epimorphism. Thus, it is not the case that a morphism is an
isomorphism if if it is a monomorphism and an epimorphism. However,
the converse does hold, that is, any isomorphism is a monomorphism
and an epimorphism (prove this).

3 Computer Science

The computer science question for this week is to read and appreciate the
following.

Assume we have a countably infinite collection of variable typesX, Y, Z, . . .
(just formal symbols). We consider the following type construction rules:

� If A,B are types then so is A×B.

� If A is a type then so is A∗.

� If A,B are types then so is A −→ B.

� If A(X) is a type depending on a variable X then ∀X.A(X) is a type.

In case the last dotpoint is confusing, we provide an example.

Example 3.0.1. Consider ∀X.B ×X where B is an arbitrary type and X
is a variable type. Spelling this out: we let A(X) denote B ×X (which is a
type depending on a variable), and so ∀X.A(X) = ∀X.B ×X.

We define an interpretation J·K of these types as relations.
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� We interpret each variable type X as the identity relation on some
choice of set X̂

JXK := idX̂ ⊆ X̂ × X̂ (4)

That is, for each variable X we choose a set X̂ and interpret X as the
identity relation JXK = idX̂ .

� Given interpretations JAK, JBK of types A,B respectively, define JA ×
BK ⊆ JAK× JBK to be the relation defined by(

(x, y), (x′, y′)
)
∈ JA×BK

if and only if
(x, x′) ∈ JAK and (y, y′) ∈ JBK

� Given an interpretation JAK define JA∗K ⊆
⋃∞

i=1

∏i
j=1JAK to be the

relation: (
[x1, . . . , xn], [x′1, . . . , x

′
n]
)
∈ JA∗K

if and only if for all i = 1, . . . , n:

(xi, x
′
i) ∈ JAK

� Given interpretations JAK, JBK the relation JA −→ BK ⊆ JAK × JBK
consists of pairs (f, f ′) of functions from JAK to JBK given by

(f, f ′) ∈ JA −→ BK

if and only if

(x, x′) ∈ JAK implies (fx, f ′x) ∈ JBK

� If X = idX̂ is a variable and A(X) is a type depending on X then
J∀X.A(X)K is the relation on the set of functions r which take a type
B and return a relation rB ∈ JA(B)K where A(B) is such that JA(B)K ⊆
JC1K× JC2K given by:

(r, r′) ∈ J∀X.A(X)K

if and only if
(rC , r

′
C′) ∈ JA(B)K
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Now we make the assumption of parametricity.

Proposition 3.0.2. If t is a closed term of type T then (t, t) ∈ JT K.

Proof. This is difficult (and outside the scope of the course), but the interested
reader can look at [1]

We now show an example of how a theorem about a closed terms can be
derived from knowledge of their type alone.

Let r be a closed term of type

r : ∀X.X∗ −→ X∗ (5)

By Parametricity, we have

(r, r) ∈ J∀X.X∗ −→ X∗K (6)

That is, for any relation JAK ⊆ JC1K× JC2K we have

(rC1 , rC2) ∈ JA∗ −→ A∗K (7)

This in turn means that for any pair of lists ([x1, . . . , xn], [x′1, . . . , x
′
n]) ∈ JA∗K

we have (
rC1 [x1, . . . , xn], rC2 [x

′
1, . . . , x

′
n]
)
∈ JA∗K (8)

Now we consider the case when the relation JAK is a function γ : JC1K −→
JC2K. In this setting we have

γ∗
(
rC1 [x1, . . . , xn]

)
= rC2 [x

′
1, . . . , x

′
n] (9)

where γ∗ is the extension of γ to lists. Noticing that γ(xi) = x′i for each
i = 1, . . . , n we now have

γ∗(rC1)[x1, . . . , xn] = rC2γ
∗([x1, . . . , xn]

)
(10)

That is, we have the following equality of functions.

γ∗ ◦ rC1 = rC2 ◦ γ∗ (11)

This is non-trivial and was derived purely from knowledge of the type of r.
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As an example of this, take r to be the function reverse : ∀X.X∗ −→ X∗

that reverses a list, and γ might be the function code : Char −→ Int that
converts a character to its ASCII code. Then we have

code∗(reverseChar[a, b, c]) = code∗[c, b, a]

= [99, 98, 97]

= reverseInt([97, 98, 99])

= reverseInt(code
∗[a, b, c])

that is,
code∗ ◦ reverseChar = reverseInt ◦ code∗ (12)

as predicted by the theorem.
The above is an analysis of a simple typing system using set theoretic

semantics. Taking formal systems (be them logical or computational) and
interpretting them inside abstract categories (such as the category of sets, as
done above) is a very active area of current research, and involves a lot of
category theory. The interested reader can learn more by consulting [2], [3],
[4].
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