Category theory exercise sheet 4

October 2022

1 Category theory

- 1. Let **Cat** be the category of small categories and **Set** the category of sets. Consider the functor **Ob**: **Cat** \rightarrow **Set** which assigns to any small category C the set of its objects, and to a functor $F: C \rightarrow D$ the underlying function between the set of objects. We look for a left and right adjoint to **Ob**, if they exist.
 - (a) We can assign to any set X a category d(X), called the *descrete category* determined by X, whose set of objects is X and whose sets of morphisms are $\text{Hom}(X, X) = \{\text{id}_X\}$ and $\text{Hom}(X, Y) = \emptyset$ if $X \neq Y$. Prove that d(X) is indeed a category and that this assignment extends to a functor $d: \text{Set} \to \text{Cat}$.
 - (b) We can assign to any set X a category c(X), called the *convex category* determined by X, whose set of objects is X and whose sets of morphisms are always 1-point sets, i.e. Hom(X, Y) = {*} for all X, Y ∈ Set. Prove that c(X) is indeed a category and that this assignment extends to a functor c: Set → Cat.

Prove that $d \dashv \mathsf{Ob}$ and $\mathsf{Ob} \dashv c$.

2 Mathematics

- 2. Let $i: \mathbb{Z} \hookrightarrow \mathbb{R}$ be the inclusion of posets. Recall that we can regard a poset as a category. Prove that:
 - (a) i is a functor of posets;
 - (b) the ceiling and the floor function $[-], [-]: \mathbb{R} \to \mathbb{Z}$ are functors of categories¹;
 - (c) prove that [-] is a left adjoint to *i* and that |-| is a right adjoint to *i*.

¹Recall that the function $[-]: \mathbb{R} \to \mathbb{Z}$ assign to $x \in \mathbb{R}$ the smallest integer greater or equal than x, while $[-]: \mathbb{R} \to \mathbb{Z}$ assigns to $x \in \mathbb{R}$ the greatest integer smaller or equal than x.

3. Consider $\mathcal{P} \colon \mathbf{Set} \to \mathbf{Set}$ the subset functor. For any set $X \in \mathbf{Set}$, we can define the maps

$$\eta_X \colon X \longrightarrow \mathcal{P}(X)$$

and

$$\mu_x\colon \mathcal{P}(\mathcal{P}(X))\longrightarrow \mathcal{P}(X),$$

where $\eta_X(a) := \{a\}$ for any $a \in X$, and $\mu_X(B) = \bigcup_{A \in B} A$ for all $B \subseteq \mathcal{P}(X)$.

- (a) Prove that $\eta = {\eta_X}_{X \in \mathbf{Set}}$ and $\mu = {\mu_X}_{X \in \mathbf{Sets}}$ define natural transformations.
- (b) Prove that (\mathcal{P}, μ, η) is a monad on **Set**.

3 Logic

4. Let X be a set and $\Omega \coloneqq \{T, F\}$ (T stands for True, F for False). We endow Ω of the structure of a poset by declaring that $F \leq T$. Then $\Omega^X \coloneqq \mathsf{Hom}_{\mathbf{Sets}}(X, \Omega)$ is a partially ordered set, where

$$P \leq Q \iff P(x) \leq Q(x) \quad \forall x \in X.$$

Observe that if we regard an element $P \in \Omega^X$ as a proposition, then $P \leq Q$ means that P implies Q.

(a) There exist two functors $\forall_x, \exists_x \colon \Omega^X \to \Omega$, where

$$\forall_x(P) = T$$
 if and only if $P(x) = T \ \forall x \in X$

and

$$\exists_x(P) = T$$
 if and only if $\exists x \in X$ such that $P(x) = T$

(b) There exists a functor $\Delta \colon \Omega \to \Omega^X$ which sends an element of Ω to the constant function at that element.

Prove that $\exists_x \dashv \Delta$ and $\Delta \dashv \forall_x$.