Category theory exercise sheet 4

13 October 2022

- 1. Let $F: \mathcal{C} \rightleftharpoons \mathcal{D} : G$ and $L: \mathcal{D} \rightleftharpoons \mathcal{E} : R$ be two adjunctions, i.e. $F \dashv G$ and $L \dashv R$. Prove that the composite functors $LF: \mathcal{C} \rightleftharpoons \mathcal{E} : GR$ form an adjunction, i.e. $LF \dashv GR$. Moreover, specify what are the unit and counit of this adjunction.
- 2. Let $\mathcal{C} = \mathbf{Set}$ be the category of sets. For any object $A \in \mathbf{Set}$, there are functors

$$A \times -: \mathbf{Set} \longrightarrow \mathbf{Set} \qquad \operatorname{Hom}_{\mathbf{Set}}(A, -): \mathbf{Set} \longrightarrow \mathbf{Set}$$

Show that there exists an adjunction $A \times - \dashv \operatorname{Hom}_{\operatorname{Set}}(A, -)$.

Given another object B, write explicitly who is the transpose of the identity

$$\operatorname{id}_{\operatorname{Hom}_{\operatorname{Set}}(A,B)} \in \operatorname{Hom}_{\operatorname{Set}}(\operatorname{Hom}_{\operatorname{Set}}(A,B),\operatorname{Hom}_{\operatorname{Set}}(A,B)).$$

- 3. Let C be any category, and consider the *category of presheaves on* C, namely $\mathsf{PSh}(C) := \mathsf{Fun}(C^{\mathrm{op}}, \mathbf{Set})$. Show that PSh is a Cartesian Closed Category.
- 4. (a) Prove that the disjoint union \sqcup : Set \times Set \rightarrow Set is left adjoint to the diagonal functor Δ : Set \rightarrow Set \times Set.
 - (b) We claim that \sqcup is not right adjoint to the diagonal: find sets A, B, C such that there does not exist a bijection between

 $\operatorname{Hom}_{\operatorname{\mathbf{Set}}}(A, B \sqcup C)$ and $\operatorname{Hom}_{\operatorname{\mathbf{Set}} \times \operatorname{\mathbf{Set}}}(\Delta A, (B, C)).$