Category theory exercise sheet 7

19 October 2022

1. Describe explicitly pullbacks and pushouts in the category **Set** of sets.

Let X be a set, and let $A, B \subset X$. Prove that the square

is both a pullback and a pushout in the category **Set** of sets.

- 2. Let \mathbf{Set}_* be the category of pointed sets, i.e. an object of \mathbf{Set}_* is a couple (X, x_0) , with $X \in \mathbf{Set}$ and $x_0 \in X$, and a morphism $\alpha \colon (X, x_0) \to (Y, y_0)$ is a map $f \colon X \to Y$ such that $f(x_0) = y_0$. Observe that there is a forgetful functor $U \colon \mathbf{Set}_* \to \mathbf{Set}$, sending (X, x_0) to X.
 - (a) Prove that \mathbf{Set}_* has initial and final objects: who are they?
 - (b) Prove that \mathbf{Set}_* has product and coproduct, and describe them.
 - (c) Find a left adjoint for the forgetful functor $U: \mathbf{Set}_* \to \mathbf{Set}$.
- 3. Consider a functor $F: \mathcal{C} \to \mathcal{D}$. We say that F reflects limits if, for any diagram $K: I \to \mathcal{C}$ with values in \mathcal{C} , any cone over K in \mathcal{C} whose image upon applying F is a limit cone for the diagram $FK: I \to \mathcal{D}$, is a limit cone over K. Dually, we say that F reflects colimit if the same happens with cone under K.
 - (a) Spell out formally the above definitions.
 - (b) Prove that a fully faithful functor reflects any limits and colimits that are present in the domain.