Category Theory exercise sheet 8

October 26, 2022

1 Category theory

1. Let $F: \mathscr{C} \longrightarrow \mathscr{D}$ be a functor which is left adjoint to $G: \mathscr{D} \longrightarrow$ \mathscr{C}. Consider the endofunctor $G F: \mathscr{C} \longrightarrow \mathscr{C}$ along with the natural transformations η : id $\Rightarrow G F$ and $\mu=G\left(\epsilon_{F}\right): G F G F \Rightarrow G F$ where $\epsilon: F G \Rightarrow$ id is the counit of the adjunction. Prove that

$$
\begin{equation*}
(G F, \eta, \mu) \tag{1}
\end{equation*}
$$

is a monad.
2. Let \mathscr{C} be a category and consider a monad (T, η, μ) over \mathscr{C}. Define:

$$
\begin{aligned}
\operatorname{Obj}\left(\mathscr{C}_{T}\right) & =\operatorname{Obj}(\mathscr{C}) \\
\operatorname{Hom}_{\mathscr{C}_{\mathscr{T}}}(X, Y) & =\operatorname{Hom}_{\mathscr{C}}(X, T Y)
\end{aligned}
$$

We define composition to be:

$$
\begin{equation*}
g \circ_{\mathscr{C}_{T}} f=\mu_{C} \circ T g \circ f: A \longrightarrow T B \longrightarrow T^{2} C \longrightarrow T C \tag{2}
\end{equation*}
$$

The identity morphism for $X \in \mathscr{C}_{T}$ is η_{X}. Prove that \mathscr{C}_{T} is a category. This category is called the Kleisli category of T.

Recall from the lectures that to every monad (T, μ, η) there exists a corresponding Kleisli triple $\left(T, \eta,{ }_{-}^{*}\right)$, where if $g: B \longrightarrow T C$ is a morphisim in \mathscr{C} then $g^{*}: T B \longrightarrow T C$ is $\mu_{C} \circ T f$. Thus, given $f: A \longrightarrow T B$ the Kleisli triple allows us to "compose" g and f using g^{*} :

$$
\begin{equation*}
g^{*} \circ f=\mu_{B} \circ T g \circ f \tag{3}
\end{equation*}
$$

which is exactly (2). So now we see exactly why it is that monads are so helpful for modelling programs. We start by identifying programs with input/output pairs (by identifying programs with morphisms in Set) and then we choose a notion of computation of particular interest, modelled by a monad T. Programs can then be compared with consideration of this notion of computation by comparing morphisms in the Kleisli category of T.

2 Mathematics

Let M be a monoid, define the functor

$$
\begin{aligned}
T: \frac{\text { Set }}{} & \longrightarrow \underline{\text { Set }} \\
X & \longmapsto X \times M \\
(f: X \rightarrow Y) & \longrightarrow(T f(x, m)=(f(x), m))
\end{aligned}
$$

Then define η : id $\Rightarrow T$ by

$$
\begin{aligned}
\eta_{X}: X & \longrightarrow T X \\
x & \longmapsto(x, e)
\end{aligned}
$$

where e is the identity element of M. Define $\mu: T^{2} \Rightarrow T$ by

$$
\begin{aligned}
\mu_{X}: T^{2}(X) & \longrightarrow T(X) \\
\left(\left(x, m_{1}\right), m_{2}\right) & \longrightarrow\left(x, m_{1} \cdot m_{2}\right)
\end{aligned}
$$

Prove that

$$
\begin{equation*}
(T, \eta, \mu) \tag{4}
\end{equation*}
$$

is a monad.

3 Computer science

1. Consider the category Set of sets. Define the following notion of computation corresponding to exceptions. Let E be a set of exceptions.

$$
\begin{aligned}
T A & =A \coprod E \\
\eta_{A}(x) & =x \text { (the canonical inclusion map) } \\
(f: A \longrightarrow T B) & \longrightarrow f^{*}(a)= \begin{cases}a, & a \in A \\
e, & e \in E\end{cases}
\end{aligned}
$$

Prove that this is a Kleisli triple.
2. Define

$$
\begin{aligned}
T A & =\mathcal{P}_{\text {fin }}(A) \\
\eta_{A}(a) & =\{a\} \\
(f: A \longrightarrow T B) & \longrightarrow\left(f^{*}(a)=\bigcup_{x \in a} f(x)\right)
\end{aligned}
$$

Prove that this is a Kleisli triple. What notion of computation does this model?

