Category theory exercise sheet 9

10 November 2022

- 1. Prove that if a category C with products admits a terminal object 1, then the product 1×1 is a terminal object too.
- 2. Prove that if the category C admits binary products, then it has all *finite* products.
- 3. Suppose that C is a cartesian closed category. Then for any three objects X, Y, Z uin C we have an isomorphism

$$(X \times Y)^Z \simeq X^Z \times Y^Z.$$

- 4. Let \mathcal{C} be a category and let X be an object of \mathcal{C} . Prove the following assertions on the slice category of \mathcal{C} over $X \mathcal{C}/X$:
 - \mathcal{C}/X always has an initial object. Who is it?
 - If \mathcal{C} has an initial object, so does \mathcal{C}/X .
 - If X is final in \mathcal{C} , then $\mathcal{C}/X \simeq \mathcal{C}$.
- 5. Prove that the category of (small) categories **Cat** is complete. (For sake of completeness, **Cat** is also cocomplete, but the proof is not as immediate as for limits.)
- 6. Suppose that a category \mathcal{C} admits binary products and pullbacks. Show how the equalizer of two morphisms $f, g: A \to B$ can be obtained as a pullback.