COMP90043 Cryptography and Security

Semester 2, 2021, Workshop Week 5

1. Given the parameters below, fill in the blanks accordingly for the relevant RSA

parameter: p =13 q = 7 n = p.q = _____

a) Using Euler's Totient Function, calculate

 $\phi(n) = \phi($ <u>)</u> =

 For the RSA algorithm to work, it requires two coefficients – e and d. Where e represents the encryption component (generally the public key) and d represents the decryption component (generally the private key)

In order to calculate d, we can use Extended Euclidean Algorithm.

a) Suppose $\phi(n) = 72$. For each of the following given values of e, calculate the value of d such that

d.e = 1 mod $\phi(n)$

e=5 e=7

b) Suppose we have two primes p=23 and q=37. For the following e, calculate the value of d such that

d.e = 1 mod $\phi(n)$

e=5 e=61

3. The Diffie-Hellman key exchange algorithm can be defined as follows, show that Diffie-Hellman is subject to a man-in-the-middle attack.

4. Given the encryption and decryption formulas for RSA as follow:

$$C = M^e \mod n$$

$$M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n$$

Perform encryption and decryption for the given values of p, q, e and M

p = 3; q = 13; e = 5; M = 10;	p = 5; q = 7; e = 7; M = 12;
$n = \; \varphi(n) = \; d = \;$	$n = $; $\varphi(n) = $; $d = $;
$C = M^e \mod n = 10^5 \mod __= __;$	$C = M^e \mod n = 12^7 \mod ___= __;$
$M = C^d \mod n = ___ \mod ___ ;$	$M = C^d \mod n = ___ \mod __= __;$
p = 11; q = 7; e = 11; M = 7;	
$n = \; \varphi(n) = \; d = \;$	
$C = M^e \mod n = 7^{11} \mod __= __;$	
$M = C^d \mod n = ___ \mod ___ ;$	

5. In a public-key system using RSA, you intercepted the cipher text C = 8 sent to a user whose public key is e = 13; n = 33. What is the plaintext M ?