COMP90043 Cryptography and Security

Semester 2, 2021, Workshop Week 5

1. Given the parameters below, fill in the blanks accordingly for the relevant RSA
parameter: $\mathrm{p}=13$
$q=7$
$\mathrm{n}=\mathrm{p} . \mathrm{q}=$ \qquad
a) Using Euler's Totient Function, calculate

$$
\phi(\mathrm{n})=\phi(\quad L=
$$

2. For the RSA algorithm to work, it requires two coefficients - e and d. Where e represents the encryption component (generally the public key) and d represents the decryption component (generally the private key)

In order to calculate d, we can use Extended Euclidean Algorithm.
a) Suppose $\phi(n)=72$. For each of the following given values of e, calculate the value of d such that

$$
\mathrm{d} . \mathrm{e}=1 \bmod \phi(\mathrm{n})
$$

$\mathrm{e}=5$
$\mathrm{e}=7$
b) Suppose we have two primes $p=23$ and $q=37$. For the following e, calculate the value of d such that

$$
\mathrm{d} . \mathrm{e}=1 \bmod \phi(\mathrm{n})
$$

$\mathrm{e}=5$
e=61
3. The Diffie-Hellman key exchange algorithm can be defined as follows, show that DiffieHellman is subject to a man-in-the-middle attack.

Alice

Bob

> Alice calculates shared secret key $K=\left(Y_{B}\right)^{X_{A}} \bmod q$

Bob calculates shared

 secret key $K=\left(Y_{A}\right)^{X_{B} \bmod q}$4. Given the encryption and decryption formulas for RSA as follow:
$C=M^{e} \bmod n$
$M=C^{d} \bmod n=\left(M^{e}\right)^{d} \bmod n=M^{e d} \bmod n$
Perform encryption and decryption for the given values of p, q, e and M

$\begin{gathered} \quad p=3 ; q=13 ; e=5 ; M=10 ; \\ \quad n=\ldots ; \varphi(n)=\ldots ; d=\ldots \\ C=M^{e} \bmod n=10^{5} \bmod \ldots \ldots \\ M=C^{d} \bmod n=\ldots \ldots \\ \bmod \ldots \end{gathered}, \ldots \ldots ;$	
$\left.\begin{array}{c} \quad p=11 ; q=7 ; e=11 ; M=7 ; \\ n=\ldots ; \varphi(n)=\ldots ; d=\ldots \\ C=M^{e} \bmod n=7^{11} \bmod \ldots \\ M=\ldots \end{array}\right]$	

5. In a public-key system using RSA, you intercepted the cipher text $\mathrm{C}=8$ sent to a user whose public key is $e=13 ; n=33$. What is the plaintext M ?
