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This work establishes a relationship between algebraic geometry and linear logic. Our

focus is on the computational content of linear logic, and how this can be modelled

mathematically.

The primary contribution of this thesis is that proofs in multiplicative exponential linear

logic, whose formulas all have depth ≤ 1, can be modelled using the Hilbert scheme. This

work has emerging from a trio of models of multiplicative linear logic where proofs are

interpreted respectively as ideals of polynomial rings, quantum error correction codes,

and matrix factorisations. In these models, cut-elimination is interpreted respectively as

elimination of variables via the Buchberger Algorithm, the embedding of smaller codes

into more complex ones, and the splitting of an idempotent. The secondary contribution

of this thesis is the observation of how one step of the dynamics of these three models

relate to one another.
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Chapter 1

Introduction

This thesis relates proofs in linear logic [21] to algebraic geometry. This begins by

observing that a proof π in linear logic is a set of patterns of equality between the

occurrences of formulas in π, and that these patterns of equality can be interpreted as

polynomials in the atomic formulas constituting the formulas of π. We believe this is an

interesting new perspective on linear logic and proof theory. These polynomials can in

turn be related to closed subschemes of projective space.

If we specify the structure of a language by exclusively referring to the form of the expres-

sions involved, then the language is said to be formalised. Such formalised languages are

the various systems of deductive logic, with linear logic providing a particular example.

Proofs in linear logic can be presented in different ways, with different features of proofs

being emphasised by each presentation. The sequent calculus presentation adopts the

philosophy that proofs are trees (usually drawn with the root node at the bottom of the

page), with edges labelled by formulas and all nodes except for the root node labelling

valid deduction rules. For example, if A is a formula then the following is a proof of the

statement (¬A⊗A)` (A` ¬A), where ⊗ and ` are logical connectives.

1
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Ax Ax

⊗

Ex

`

`

●

¬A,A ¬A,A

¬A,A⊗¬A,A

A⊗¬A,¬A,A

A⊗¬A,¬A`A

(A⊗¬A)`(¬A`A)

The formula (A⊗ ¬A)` (¬A`A) can be thought of as a linear version of (A⇒ A)⇒
(A⇒ A).

This proof can also be written in sequent calculus form.

Ax¬A,A Ax¬A,A ⊗¬A,A⊗ ¬A,A
Ex

A⊗ ¬A,¬A,A `
A⊗ ¬A,¬A`A `(A⊗ ¬A)` (¬A`A)

Both Axiom-rules in this proof introduce a distinct occurrence of the formula A as

well as its negation ¬A. The two distinct Axiom-rules are what distinguish these two

occurrences, and the structure of the proof on a whole specifies the patterns of equality

between the remaining occurrences of these formulas. Explicitly, the proof can have its

formula occurrences colour coded in this following way:

Ax¬A,A Ax¬A,A ⊗¬A,A⊗ ¬A,A
Ex

A⊗ ¬A,¬A,A `
A⊗ ¬A,¬A`A `(A⊗ ¬A)` (¬A`A)

Note that the Axiom-rules introduce colours, where we think of two formulas with the

same colour as being “logically connected” or “set equal by the proof”. These patterns

of equality induce paths in the underlying graph.



Algebraic Geometry and Linear Logic 3

Connecting linear logic to geometry seems to require paying particular attention to these

paths in the underlying graph of the proof, which have been called persistent paths in

the literature. Thus, following Girard [21] we adopt a different graphical presentation

of linear logic called proof nets, which highlights these paths more strongly. For our

working example, the following is the corresponding proof net.

Ax Ax

⊗

`

`

c

A

¬A

A⊗¬A

¬A

A

¬A`A

(A⊗¬A)`(¬A`A)

(1.1)

Our interest in logic comes from our interest in computation. To study the geometry

of computation we decided to focus on constructive logics due to the well established

relationships between such formal systems and functional programming languages [34],

[49]. The computational content of linear logic lies in the observation that though proofs

are static, sequences of proof rewrites are a kind of dynamics. In Appendix B we show

how a series of proof rewrites computes that the Successor of 2 is equal to 3. This

rewrite procedure is cut-elimination and it was Girard in [25] who first asked what the

geometry behind these proof rewrites is. He studied in his program titled ‘Geometry of

Interaction’ the inherent relationships between proofs in linear logic and operators on

infinite-dimensional Hilbert spaces. This began with the simple observation that proofs

in a restricted fragment of linear logic give rise naturally to permutations on the formulas

involved in the conclusion of the proof. In our running example, we extract from the
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persistent paths the following permutation:

{¬A,A,¬A,A}Ð→ {¬A,A,¬A,A}

¬Az→ A

Az→ ¬A

¬Az→ A

Az→ ¬A

The Geometry of Interaction program has seen rich development from a plethora of

authors since. We mention here a small sample of the works which influenced our

thinking. Danos and Laurent discovered persistent paths in [10] which play a central

role in the models we present in this thesis. There is the work by Seiller [58], [59], [60],

[61] where a new graphical presentation of proofs was given. The models defined there

generalise Girard’s original ones. There is the work of Abramsky and Jagadeesan [1]

where a game semantics model for linear logic is defined and related to Geometry of

Interaction. There is the interesting work of Blute and Panangaden [5] which interprets

proof nets as operators in a calculus which in turn is based on Feynman diagrams in

quantum field theory. There is the Token machine model [41] extending work by Mackie

and Ian [43] and Danos and Régnier [11]. The paper [32] by Hines generalises some of

the algebra used in Girard’s paper on Geometry of Interaction [24].

In order to find interesting semantics of linear logic, in which there is some kind of

relationship between denotations of proofs which are distinct but equivalent under the

equivalence relation induced by cut-elimination, we, inspired by Geometry of Interaction,

searched for other models of linear logic in geometry and we found the following:

• In our model of multiplicative linear logic proofs as ideals in [50], cut-elimination

is related to elimination theory and rewriting of systems of generators by the

Buchberger algorithm.

• In our model of multiplicative linear logic proofs as matrix factorisations in Section

4.2.1, cut-elimination is related to splitting idempotents.

• In our model of multiplicative linear logic proofs as error correcting codes in [51],

cut-elimination is related to the embedding of simpler codes into more complex

ones.

This thesis contains a primary contribution and a secondary contribution. The secondary

contribution is given in Section 4.2.5 where we observe the relationship between the
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processes modeling cut-elimination between all three of these models. This relationship

is new in the sense that it does not appear in either of the papers [50], [51].

We believe these models are interesting, but the real depth from any connection made

here between proof theory and geometry has to come with the inclusion of exponen-

tials. This is where the primary contribution of this thesis lies: in the model of shallow

multiplicative exponential linear logic proofs using Hilbert schemes in Section 3.2.

This model extends that given in [50]. There, we replaced Girard’s permutations with

generators of ideals in a polynomial ring. For instance, the k-algebra associated to (1.1)

is:
k[¬A,A,¬A,A]
(¬A −A,¬A −A) ≅ k[A,A].

Geometrically, this is the affine scheme Speck[A,A] = A2
k
.

So what would !A mean? Our guiding philosophy was that this should somehow be the

“space of proofs of A”. Geometrically, if proofs in multiplicative linear logic are ideals

of polynomial rings, or, equivalently, closed subschemes of affine schemes, then !A ought

to be modelled by a space where each point corresponds to such a closed subscheme.

In general, no such space exists for affine schemes, however such a space does exist for

projective schemes. This space is the Hilbert scheme, and so if we can transform our

model’s ideals into closed subschemes of projective space, which is easy to do, then we

have a good candidate for a geometric interpretation of !A: it should be the Hilbert

scheme of the projective scheme associated to A.

This idea is successful, and is stated formally in Theorem 3.31. Though we do not

yet have an interpretation of cut-elimination in this model, we expect there to be a

generalisation of the relation between cut-elimination and elimination theory in [50].

We can take affine charts of all considered projective schemes and look at the model

algebraically. As already mentioned, multiplicative linear logic proofs were interpreted as

equations in [50], the presence of the Hilbert scheme in shallow multiplicative exponential

linear logic proofs amounts to equations between these equations. This claim is treated

carefully for an involved example in Section 3.2.1, and made completely explicit in

Remark 3.18. The observation that shallow proofs in multiplicative exponential linear

logic are patterns of equality between linear formulas with the exponential fragment of

the proof specifying patterns of equality between these patterns of equality, is the main

conceptual insight of the thesis. It would be interesting to see how this interpretation

is realised by the other models of multiplicative linear logic mentioned in the above

dot-points.

Linear logic and algebraic geometry have been considered together in other contexts

previously. For an introduction, see [47], where it is described how linear logic finds
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a natural semantics in vector spaces, where the Hopf dual is used to model promoted

formulas. There is also the interesting work [45] where it is established that every scheme

X comes equipped with a symmetric monoidal closed category of presheaves of modules.

These categories of presheaves form models of linear logic. There is also [4], where it

is surveyed how Hopf algebras form models of linear logic. This work relates to the

paper of Murfet [46]. Lastly, we mention Waring’s master’s thesis [65], where a smooth

relaxation of Turing machines, the definition of which comes from a vector space model

of linear logic, is considered. The space of such Turing machines has rich geometry and

is studied with respect to the semantics developed by Scott [55].

Chapter 2 gives an introduction to the basic theory of linear logic, including Geometry of

Interaction. The most important definitions and results are given in Section 2.1. Sections

2.2 and 2.3 are optional. The former provides some mathematical background on linear

logic, and the latter revisits history. We re-derive the decomposition of the intuitionistic

implication A⇒ B into the !A⊸ B, originally due to Girard [21]. This section contains

a simplification of a model of the untyped λ-calculus, originally due to Girard [23], which

was critical to the discovery of linear logic. This is another non-primary contribution

of this thesis. Chapter 3 presents the model of shallow multiplicative exponential linear

logic proofs and is the main core of this thesis. Finally, Chapter 4 contains a brief

summary of the other models of multiplicative linear logic mentioned alongside the

observation relating the interpretations of their respective dynamics.



Chapter 2

Linear Logic and Geometry of

Interaction

Modern theoretical computer science blurs the line between constructive logics and func-

tional languages of computation [9, 34, 49]. By constructive, we mean that only direct

proofs of implicative statements p ⇒ q are allowed. For example, the law of excluded

middle ∀p, p ∨ ¬p is rejected.

In this thesis, the logic of interest is linear logic, which can be viewed as a refinement

of both the simply typed λ-calculus (recalled in Appendix A) and of intuitionistic logic.

Linear logic is an example of a type theory and is what we take to be the primary

functional language of computation of interest in this thesis.

The most crucial definitions for understanding the main results of this thesis are pre-

sented at the beginning, while the subsequent chapters offer additional context and

motivation for these definitions. In particular, persistent paths (Definition 2.19) will be

used extensively. Sections 2.2 and 2.3 are optional. The former provides background to

the mathematical ideas which inspired the ideas in this thesis. The latter provides some

reasons why constructive logics can be thought of as containing computational content,

the historical origins of where linear logic comes from, and some relationships between

these logical systems and two λ-calculi systems.

2.1 Linear logic

We give a sequent calculus presentation of Multiplicative Exponential Linear Logic

(MELL), an intuitionistic version of this (IMELL), and also a graphical presentation

of the first of these systems called MELL proof nets. For a textbook treatment see

7
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[26]. MELL consists of a set of deduction rules broken into subsets, including the mul-

tiplicative deduction rules and the exponential deduction rules. If we take only the

multiplicative rules, we arrive at the sublogic Multiplicative Linear Logic (MLL), which

also has a corresponding graphical presentation (MLL proof nets).

2.1.1 MELL

Definition 2.1. There is an infinite set of unoriented atoms X,Y,Z, ... and an ori-

ented atom (or atomic proposition) is a pair (X,+) or (X,−) where X is an unori-

ented atom. The set of preformulas is defined as follows:

• Any atomic proposition is a preformula.

• If A,B are preformulas then so are A⊗B, A`B.

• If A is a pre-formula then so are ¬A, !A, ?A.

The set of formulas is the quotient of the set of preformulas by the equivalence relation

∼ generated by, for arbitrary formulas A,B and unoriented atom X, the following:

¬(A⊗B) ∼ ¬B ` ¬A, ¬(A`B) ∼ ¬B ⊗ ¬A, ¬(X,x) ∼ (X,x)

¬!A ∼?¬A, ¬?A ∼!¬A

where + = −,− = +.

Definition 2.2. A nonempty finite sequence of formulas is a sequent and we write

⊢ A1, ...,An for the sequent (A1, ...,An).

Definition 2.3. A multiplicative exponential linear logic deduction rule (or

simply deduction rule) results from one of the schemata below by a substitution of

the following kind: replace A,B by arbitrary formulas, and Γ,Γ′,∆,∆′ by arbitrary

(possibly empty) sequences of formulas separated by commas:

• The identity rules, these are respectively the Axiom and Cut-rules:

Ax⊢ ¬A,A
⊢ Γ,A,Γ′ ⊢∆,¬A,∆′

Cut⊢ Γ,Γ′,∆,∆′

• The multiplicative rules, these are respectively the Tensor and Par-rules:

⊢ Γ,A,Γ′ ⊢∆,B,∆′
⊗⊢ Γ,Γ′,A⊗B,∆,∆′

⊢ Γ,A,B,Γ′ `⊢ Γ,A`B,Γ′

• The structural rule, this is the Exchange-rule:



Algebraic Geometry and Linear Logic 9

⊢ Γ,A,B,Γ′
Ex⊢ Γ,B,A,Γ′

• The exponential rules, these are respectively the Dereliction, Promotion,

Weakening, and Contraction-rules:

⊢ Γ,A
Der⊢ Γ, ?A

⊢?Γ,A
Prom⊢?Γ, !A

⊢ Γ
Weak⊢ Γ, ?A

⊢ Γ, ?A, ?A
Ctr⊢ Γ, ?A

Definition 2.4. A proof in MELL is a finite rooted planar tree where each edge is

labelled by a sequent and each node except for the root is labelled by a valid deduction

rule. If the edge connected to the root is labelled by the sequent ⊢ Γ then we call the

proof a proof of Γ and in such a situation, Γ is the conclusion of π.

Example 2.1. An example of a proof is given by the Church numeral 2A with respect

to some formula A:

Ax⊢ ¬A,A

Ax⊢ ¬A,A Ax⊢ ¬A,A ⊗⊢ ¬A,A⊗ ¬A,A ⊗⊢ ¬A,A⊗ ¬A,A⊗ ¬A,A
Der⊢ ¬A, ?(A⊗ ¬A),A⊗ ¬A,A
Der⊢ ¬A, ?(A⊗ ¬A), ?(A⊗ ¬A),A
Ctr⊢ ¬A, ?(A⊗ ¬A),A

2.1.2 IMELL

Formulas of IMELL are defined inductively as follows:

• Any atomic proposition is a formula.

• If A,B are formulas then so are A⊗B, A⊸ B.

• If A is a formula then so are ¬A, !A.

Remark 2.1. Unlinke MELL, the IMELL formulas do not allow for negation. So there

is no need for preformulas.

Definition 2.5. A sequent is a pair consisting of a sequence (A1, . . . ,An) of formulas

and a formula B. We write A1, . . . ,An ⊢ B for the pair ((A1, . . . ,An),B).

Definition 2.6. An intuitionistic multiplicative exponential linear logic de-

duction rule (or simply deduction rule) results from one of the schemata below by

a substitution of the following kind: replace A,B by arbitrary formulas, and Γ,Γ′,∆,∆′

by arbitrary (possibly empty) sequences of formulas separated by commas:

• The identity rules, these are respectively the Axiom and Cut-rules:
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Ax
A ⊢ A

Γ ⊢ A ∆,A ⊢ B
Cut

Γ,∆ ⊢ B

• The multiplicative rules, these are respectively the Left Tensor, Right Ten-

sor, Left Implication, and Right Implication-rules:

Γ,A,B ⊢ C
L⊗

Γ,A⊗B ⊢ C
Γ ⊢ A ∆ ⊢ B

R⊗
Γ,∆ ⊢ A⊗B

Γ ⊢ A B,∆ ⊢ C
L⊸

Γ,A⊸ B,∆ ⊢ C
Γ,A,∆ ⊢ B

R⊸
Γ,∆ ⊢ A⊸ B

• The structural rule, this is the Exchange rule:

Γ,A,B ⊢ Γ′
Ex

Γ,B,A ⊢ Γ′

• The exponential rules, these are respectively the Dereliction, Promotion,

Weakening, and Contraction-rules:

Γ,A ⊢ B
Der

Γ, !A ⊢ B
!Γ ⊢ A

Prom
!Γ ⊢!A

Γ ⊢ A
Weak

Γ, !B ⊢ A
Γ, !A, !A,∆ ⊢ B

Ctr
Γ, !A,∆ ⊢ B

2.1.3 Proof nets

A proof in MELL is highly bureaucratic in that every inconsequential decision is written

down explicitly. For example, there is surely no difference from the perspective of logical

reasoning between a proof which makes use of the following two substructures:

⊢?A, ?A, ?B, ?B
Ctr⊢?A, ?B, ?B

Ctr⊢?A, ?B

⊢?A, ?A, ?B, ?B
Ctr⊢?A, ?A, ?B

Ctr⊢?A, ?B

Enumerating all such redundancies is a labour-intensive task, this was done for the

intuitionistic sequent calculus (implicative fragment) in [49]. To establish a framework

where we only work with proofs in MELL up to this bureaucracy and simultaneously

avoid laboriously working with equivalence classes, Girard introduced a new syntax for

proofs [21].

First, we recall the definition of a directed multigraph.

Definition 2.7. A directed multigraph is a triple (V,E,φ) where:

• V is a set of vertices, or nodes.

• E is a set of edges, or lines.
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• r ∶ E Ð→ {(x, y) ∣ x, y ∈ V } is a function from the set of edges to the set of ordered

pairs of vertices.

See [26] for Girard’s own explanation of how one may think of this graphical syntax.

This particular presentation is taken from [42].

Definition 2.8. A proof structure is a directed multigraph with edges labelled by

formulas and with vertices labelled by Ax, Cut, ⊗, `, !, ?, Ctr, Weak, Pax or c. The

incoming edges of a vertex are called its premises, the outgoing edges are its conclu-

sions. Proof structures are required to adhere to the following conditions:

• Each vertex labelled Ax has exactly two conclusions and no premise, the conclu-

sions are labelled ¬A and A for some A. We call this an Axiom-link.

• Each vertex labelled Cut has exactly two premises and no conclusion, where the

premises are labelled ¬A and A for some A. We call this a Cut-link.

• Each vertex labelled ⊗ has exactly two ordered premises and one conclusion. The

left premise is labelled A, the right premise is labelled B and the conclusion is

labelled A⊗B, for some A,B. We call this a Tensor-link.

• Each vertex labelled ` has exactly two ordered premises and one conclusion. The

left premise is labelled A, the right premise is labelled B and the conclusion is

labelled A`B, for some A,B. We call this a Par-link.

• Each vertex labelled Ctr has exactly two premises and one conclusion. The left

premise, the right premise, and the conclusion are all labelled ?A for some A. We

call this a Contraction-link.

• Each vertex labelled Pax has exactly one premise and one conclusion. The premise

and conclusion are both labelled ?A for some formula A. We call this a Pax-link.

Pax-links are only allowed to exist when they are associated with Promotion-links,

see the following clause.

• Each vertex labelled ! has exactly one premise and one conclusion. The premise is

labelled A for some A, and the conclusion by !A. We call this a Promotion-link.

Each Promotion-link must come equipped with a selection of the Pax-links so that

everything lying above these Pax-links and the promotion link itself form a proof

structure, when these Pax and Promotion-links are replaced with Conclusion-links.

• Each vertex labelled Weak has no premise and one conclusion. The conclusion is

labelled ?A for some A. We call this a Weakening-link.
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• Each vertex labelled ? has exactly one premise and one conclusion. The premise is

labelled A for some A, and the conclusion by ?A. We call this a Dereliction-link.

• Each vertex labelled c has exactly one premise and no conclusion. Such a premise

of a vertex labelled c is called a Conclusion-link.

The labels of the edges of the Conclusion-links of a proof structure π are the conclusions

of π.

The proof net links just defined will be drawn graphically as follows:

... Ax
...

...
... Weak

c
...

... Cut ?
...

...

...
...

...
...

...
...

⊗ ` Ctr

...
...

...

A

A B

A⊗B

A B

A`B

A

?A

?A ?A

?A

¬A A

¬A A

?A

● ●

...
...

...

● Pax . . . Pax ! ●

...
...

...

?A1 ?An B

?A1 ?An !B

Definition 2.9. An occurrence of a formula A in a proof structure π is an edge e

labelled by A.

We define a function T from the set of MLL proofs to the set of multiplicative proof

structures.

Definition 2.10. We simultaneously inductively prove that if π has height n and is

constructed from either one proof π′ with height less than n or from two proofs π1, π2
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each with height less than n, then T (π′), T (π1), T (π2) have conclusions corresponding to

the conclusions of π′,π1,π2, and define T (π) which in turn has conclusions corresponding

to the formulas in the final sequent of π.

Ax⊢ ¬A,A
TÐ→ Ax

c c

¬A A

π1
...

⊢ Γ,A,Γ′

π2
...

⊢∆,¬A,∆′
Cut⊢ Γ,Γ′,∆,∆′

TÐ→
T (π1) T (π2)

Cut
A ¬A

π1
...

⊢ Γ,A,Γ′

π2
...

⊢∆,B,∆′
⊗⊢ Γ,Γ′,A⊗B,∆,∆′

TÐ→

T (π1) T (π2)

⊗

c

A B

A⊗B

π
...

⊢ Γ,A,B,Γ′ `⊢ Γ,A`B,Γ′

TÐ→

T (π)

`

c

BA

A`B

π
...

⊢ Γ,A,B,Γ′
Ex⊢ Γ,B,A,Γ′

TÐ→ T (π)

π
...

⊢ Γ,A
Der⊢ Γ, ?A

TÐ→

T (π)

?

c

A

?A

π
...

⊢?A1, . . . , ?An,B
Prom⊢?A1, . . . , ?An, !B

TÐ→

● ●

T (π)

● Pax . . . Pax ! ●

c c c

?A1 ?An !B

?A1 ?An

B
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π
...

⊢ A1, . . . ,An
Weak⊢ A1, . . . ,An, ?A

TÐ→
T (π) Weak

c . . . c c

?A

A1 An

π
...

⊢ Γ, ?A, ?A
Ctr⊢ Γ, ?A

TÐ→

T (π)

Ctr

c

?A?A

?A

Definition 2.11. A proof net is a proof structure which lies in the image of T .

The map T is not surjective as proof structures have a relaxed notion of cut compared

to that of the sequent calculus presentation. The latter insists that the left branch of

the cut be a proof of some proposition A, and the right branch be a proof of some

proposition appealing to the hypothesis A. Proof structures do not check that the left

and right branches are distinct proofs. This allows for a curiosity where proof structures

are capable of feeding their conclusions into their own hypotheses in a circular fashion.

As the snake which eats its own tail this logical Ouroboros can literally be depicted as a

circle, for the simplest example of a connected proof structure which is not a proof net

is given as follows:

Ax

Cut

A¬A

This is not the only type of error which could occur, there is also the possibility that the

proof structure is disconnected. Indeed, the following is also a simple proof structure

which is not a proof net.

Ax Ax

c c c c

¬A A ¬A A

This is an interesting feature of proof nets, that the space of meaningful arguments

exists inside a larger space of all arguments (both meaningful and meaningless ones).

The role of the logician is to survey the space of arguments and find the meaningful

ones, so the following question naturally arises: is there a way of determining whether

a proof structure π is a proof net without constructing a sequent calculus proof ζ such

that T (ζ) = π? This question is answered positively by the Sequentialisation Theorem

(Theorem 2.23) [21] which gives a criterion for when a proof structure is a proof net.

The Sequentialisation Theorem is delayed until Section 2.2.1.
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2.1.4 The dynamics of MELL

Linear logic is a dynamic system, in that it involves a proof re-write procedure. This

procedure is the cut-elimination process and constitutes the content of this section.

Definition 2.12. We present a collection of ordered pairs of subgraphs of proof struc-

tures. The order on these pairs is notated by an arrow where the source is the least

element and the target is the greatest.

• Ax /Cut-reduction.

Ax
...

... Cut

A

¬A

¬A Ð→

...

...

¬A

... Ax

Cut
...

¬A

A

A

Ð→

...

...

A

• ⊗/`-reduction.

...
...

...
...

⊗ `

Cut

↓

...
...

...
...

Cut

Cut

A B ¬B ¬A

A⊗B ¬B`¬A

A

B ¬B

¬A
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• !/?-reduction. Only one Pax-link has been drawn in the diagram, but arbitrarily

many may be present.

● ●

...
...

...

? ● ! Pax ●

Cut
...

↓

...
...

...

Cut
...

¬A A ?B

?¬A !A

?B

¬A A

?B

• !/Pax-reduction. For this rule, n and/or m may be equal to 0. Again, for suc-

cinctness, we have only drawn the situation with limited Pax-links, but arbitrarily



Algebraic Geometry and Linear Logic 17

many may be present.

● ● ● ●

...
...

...
...

...

● Pax ! ● ● Pax Pax ! ●

... Cut
...

...

↓

● ●

● ●

...
...

● Pax ! ●
...

Cut
...

...

● Pax Pax ! ●

...
...

...

?A ¬B ?B ?C D

?A

!¬B ?B

?C !D

?A ¬B

?A
!¬B ?B

?C D

?A ?C !D
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• Weak /!-reduction.

● ●

...
...

...

Weak ● ! Pax . . . Pax ●

Cut
...

...

↓

Weak . . . Weak

...
...

A ?B1 ?Bn

?¬A !A

?B1 ?Bn

?B1 ?Bn
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• !/Ctr-reduction.

● ●

...
...

...
...

Ctr ● ! Pax ●

Cut
...

↓

● ● ● ●

...
...

...
...

... ● ! Pax ●
... ● ! Pax ●

Cut Cut

Ctr

...

?¬A ?¬A
A ?B

?¬A !A

?B

A ?B A ?B

?¬A !A

?B

?¬A !A

?B

?B

A reduction γ ∶ π Ð→ π′ is a pair of proof structures (π,π′) along with a pair of

subgraphs (G1,G2) where G1 is a subgraph of π, G2 is a subgraph of π′, the pair

(G1,G2) is of one of the forms just given, and such that reducing G1 in π yields π′.

Definition 2.13. A proof structure π is cut-free if it has no Cut-links.

Proposition 2.2. MELL proof nets are strongly normalising. That is, for all MELL

proof nets π, there exists a cut-free proof π′ and a sequence of reductions π = π1 Ð→
. . .Ð→ πn = π′.

Proof. See [53].

Proposition 2.3. MELL proofs satisfy the Church-Rosser property. That is, given

two multi-step reductions (that is, a composition of finitely many reductions) π1 Ð→
π2, π1 Ð→ π3, there exists multistep reductions π2 Ð→ π4, π3 Ð→ π4.
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Proof. See [64].

A corollary of the previous two propositions is that every proof π cut-reduces to a unique

cut-free proof π′.

Definition 2.14. The unique cut-free proof net π′ to which π reduces is the normal

form of π.

The cut-elimination procedure of linear logic provides the computational dynamics of

this system. As a concrete example it is shown in Appendix B how the Successor of 2

being equal to 3 is calculated.

2.1.5 Persistent paths

This section features the joint work of the current author and Daniel Murfet [50], to

which both authors made equal contributions.

The occurrences of formulas in MLL proof nets inside a proof π organise themselves into

a partition along a family of paths through π, the persistent paths. The models of MLL

given later in this thesis strongly suggest that a proof net should be thought of as an

organised collection of these persistent paths.

Persistent paths were first defined by Régnier [10]. Our presentation here reproduces

that of [50] where an intrinsic definition was given. This definition does not require

knowledge of the result of any cut-reduction in order to define.

Definition 2.15. Let F denote the set of formulas (Definition 2.1), A the set of oriented

atoms, and A∗ = ⋃n≥0An the set of sequences of oriented atoms of length ≥ 0. We define

an involution r on A∗ as follows:

r ∶ A∗ Ð→ A∗ (2.1)

((X1, x1), ..., (Xn, xn))z→ ((Xn, x̄n), ..., (X1, x̄1)) (2.2)

where + = − and − = +.

For the empty string ∅ ∈ A∗ we define r(∅) = ∅.

The set A∗ is a monoid under concatenation c ∶ A∗ ×A∗ Ð→ A∗ with identity ∅.

Definition 2.16. We denote by ⊗ ∶ F × F Ð→ F the function which maps a pair of

formulas (A,B) to the formula A⊗B. Similarly, ` ∶ F ×F Ð→ F denotes the function

such that `(A,B) = A`B and ¬ ∶ F Ð→ F denotes the function such that ¬(A) = ¬A.
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We denote by inc ∶ A Ð→ F the map which maps an oriented atom (X,x) to itself

(X,x), and lastly we denote by ι ∶ AÐ→ A∗ the function which maps an oriented atom

(X,x) to the sequence consisting only of (X,x).

Lemma 2.4. There is a unique map a ∶ F Ð→ A∗ making the following diagrams

commute:
F ×F A∗ ×A∗

F A∗

a×a

⊗ c

a

F ×F A∗ ×A∗

F A∗

a×a

` c

a

(2.3)

F A∗

F A∗

a

∼ r

a

A F

A∗

inc

ι
a (2.4)

Proof. Left to the reader.

Definition 2.17. Let A be a formula. The sequence of oriented atoms of A is

a(A) = (X1, x1), . . . , (Xn, xn) as defined by the previous lemma. The sequence of

unoriented atoms of A is (X1, ...,Xn) and the set of unoriented atoms of A is

the disjoint union UA = {X1}∐ . . .∐{Xn}. The set of unoriented atoms of a proof

structure π is the disjoint union Uπ = ∐e∈Eπ UAe where Eπ is the set of edges of π, and

Ae is the formula labeling e.

Definition 2.18. Let π be a proof structure. We define an equivalence relation ∼ on

the set Uπ of unoriented atoms of π. We do this by considering each link l of π which is

not a Conclusion-link.

If l is an Axiom-link (respectively Cut-link), with conclusions (premises) ¬A,A, where
U¬A = {X1, . . . ,Xn} and UA = {X ′

1, . . . ,X
′
n} then we define

Xi ∼X ′
i , ∀i = 1, . . . , n. (2.5)

If l is a Tensor or Par-link with premises A,B and conclusions A⊠B (where ⊠ ∈ {⊗,`})
then if we write UA = {X1, . . . ,Xn}, UB = {Y1, . . . , Ym} and UA⊠B = {X ′

1, . . . ,X
′
n, Y

′
1 , . . . , Y

′
m}

we define

Xi ∼X ′
i ,∀i = 1, . . . , n Yi ∼ Y ′

i ,∀j = 1, . . . ,m. (2.6)

Definition 2.19. Each equivalence class [Xi] of formulas in Uπ is the underlying set of

a sequence

(Z1, . . . , Zn) (2.7)

where Zi ∼ Zi+1,∀i = 1, . . . , n − 1. Such a sequence is called a persistent path. Notice

that the reverse sequence (Zn, . . . , Z1) of any persistent path (Z1, . . . , Zn) is itself a
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persistent path. If Z1 is positive, then the persistent path (Z1, . . . , Zn) is positively

oriented.

Remark 2.5. The equivalence relation of Definition 2.18 gives a conceptualisation of the

links as “plugging” wires together. The phrase “plugging” is used informally throughout

the literature ([21, 22, 24]). In what follows, U¬A = {X1, . . . ,Xn} and UA = {X ′
1, . . . ,X

′
n}.

Ax {X1, . . . ,Xn} {X ′
1, . . . ,X

′
n}

...
...

...
...

{X ′
1, . . . ,X

′
n} {X1, . . . ,Xn} Cutid

id

A¬A

¬AA

For this following diagram, we have

UA = {X1, . . . ,Xn}, UB = {Y1, . . . , Ym}, UA⊠B = {X ′
1, . . . ,X

′
n, Y

′
1 , . . . , Y

′
m} (2.8)

where ⊠ ∈ {⊗,`}.

{X1, . . . ,Xn}
...

... {Y1, . . . , Ym}

⊠

...

{X1, . . . ,Xn, Y1, . . . , Ym}

InclusionInclusion

A B

A⊠B

Example 2.2. Let π denote the following proof structure. For clarity, we have artifi-

cially placed labels on the formulas so that we can refer to particular edges, but for all

i = 1, ...,10 the notation Zi, where Z =X,¬X, denotes the formula Z.

Ax Ax Ax

c ⊗ c `

Cut

¬X1
X2 ¬X9

X10
X6 ¬X5

X3⊗¬X8 X7`¬X4

The only positively oriented persistent path π is

(X10,X9,X8,X7,X6,X5,X4,X3,X2,X1). (2.9)
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2.2 The theory of MLL proof nets

MLL consists of the proofs constructed by the rules of 2.3 with the exponential rules

omitted. That is, formulas are constructed from atoms X,Y,Z, . . . along with the con-

nectives ¬,⊗,`. There are only three cut-elimination rules which are the Ax /Cut-
reductions and ⊗/`-reduction of Definition 2.12. MLL is very restricted, and is not

capable of expressing arithmetic operations, for example, the calculation of the Succes-

sor of 2 being 3 of Appendix B is not possible in MLL. This system is of theoretical

interest because it provides a kind of “minimal requirement”.

2.2.1 The Sequentialisation Theorem

We present a proof of the Sequentialisation Theorem, originally due to Girard [21].

Recall that in Section 2.1.3 we defined proof structures along with a map T which

translates any proof in MELL into a proof structure, and defined proof nets to be those

proof structures lying in the image of T .

The condition given by the Sequentialisation Theorem which determines whether a proof

structure is a proof net or not is connectedness of a family of paths related to the proof

net. We define this related structure and then state the theorem.

Definition 2.20. Let π be a proof structure and denote the set of Tensor and Par-links

of π by L⊗,`π (or simply Lπ). A switching of π is a function

S ∶ Lπ Ð→ {L,R}. (2.10)

A switching of a particular link l is a choice of L,R assigned to l.

Remark 2.6. We will also often consider L⊗π , the set of Tensor-links of π.

Definition 2.21. Let π be a proof structure. Let O(π) denote the set of occurrences

of formulas in π (Definition 2.9). We consider two disjoint copies of this set

U(π) ∶= O(π)∐O(π) (2.11)

where elements in one copy are the up elements, and elements from the other are the

down elements. We write ↑ A for the up element corresponding to an occurrence of a

formula A in π, and A ↓ for the down element. Given a switching S of π, a pretrip of π

with respect to S is a finite sequence (x1, ..., xn) of all the elements of U(π) satisfying
the following:
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1. The sequence is a loop, that is, x1 = xn, and all elements (except the first and the

last) are distinct.

2. If xj = A ↓ and A is part of a conclusion link, then xj+1 =↑ A, corresponding to the

same conclusion link.

3. If xj =↑ A and A is part of an axiom link then xj+1 = ¬A ↓, corresponding to the

other conclusion of the axiom link.

4. If xj = A ↓ and A is part of a cut link then xj+1 =↑ ¬A, corresponding to the other

premise of the cut link.

5. For any Tensor-link l with premises A,B such that l has switching L, we have the

following, where all formulas considered are part of the same Tensor-link:

• If xj = A ↓ then xj+1 = (A⊗B) ↓.

• If xj =↑ (A⊗B) then xj+1 =↑ B.

• If xj = B ↓ then xj+1 =↑ A.

If l has switching R, we have:

• If xj = A ↓ then xj+1 =↑ B.

• If xj =↑ (A⊗B) then xj+1 =↑ A.

• If xj = B ↓ then xj+1 = (A⊗B) ↓.

(see Figure 2.1)

6. for any Par-link l with premises A,B such that l has switching L, we have, where

all formulas considered are part of the same Par-link:

• If xj =↑ (A`B) then xj+1 =↑ A.

• If xj = A ↓ then xj+1 = (A`B) ↓.

• If xj = B ↓ then xj+1 =↑ B.

If l evaluates under S to R, we have:

• If xj = A ↓ then xj+1 =↑ A.

• If xj =↑ (A`B) then xj+1 =↑ B.

• If xj = B ↓ then xj+1 = (A`B) ↓.

(see Figure 2.2)
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Figure 2.1: Tensor-link, L switching, R switching

Figure 2.2: Par-link, L switching, R switching.

Definition 2.22. A trip of π with respect to S is a pretrip modulo the natural action

of the cyclic group in the number of variables in the pretrip. We denote the set of all

trips by T (π,S). If the set T (π,S) admits more than one element, these elements are

called short trips, and if it admits only one element, this element is the long trip.

We refer to the proposition “for all switchings S, the set T (π,S) contains exactly one

element” as the long trip condition.

A short pretrip is a choice of representative for a short trip, and a long pretrip is a

choice of representatitive of a long trip.

Theorem 2.23 (The Sequentialisation Theorem). A proof structure π satisfies the long

trip condition if and only π is a proof net.

The rest of this section is dedicated to proving this theorem.

Given a proof structure π satisfying the long trip condition and a Tensor-link l with

premises A,B say, let S be a switching of π and t ∶= (x1, ..., xn) be the long pretrip of

π satisfying x1 = A ↓. Since π satisfies the long trip condition, it must be the case that

↑ (A⊗B) and B ↓ occur somewhere in t. Can we determine which occurs earlier? Say

S(l) = L and let m,k > 0 be such that xm =↑ (A⊗B), xk = B ↓ and assume l <m. Then

t has the shape

(A ↓, (A⊗B) ↓, ...,B ↓, ↑ A, ..., ↑ (A⊗B), ↑ B, ...,A ↓). (2.12)
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Now consider the switching given by

Ŝ ∶ Lπ Ð→ {L,R}

q z→
⎧⎪⎪⎪⎨⎪⎪⎪⎩

S(q), q ≠ l

R, q = l

Then (2.12) becomes:

(A ↓, ↑ B, ...,A ↓) (2.13)

which is a short pretrip, contradicting the assumption that π satisfies the long trip

condition. Thus m < k. We have proven (the first half) of the following.

Lemma 2.7. Let π be a proof structure satisfying the long trip condition, l be a Tensor-

link with premises A,B say, S be a switching of π and (x1, ..., xn) the long pretrip

satisfying x1 = A ↓. If m,k > 0 are such that xm =↑ (A⊗B), xk = B ↓, then:

• If S(τ) = L then m < k.

• If S(τ) = R then k <m.

The proof of the other half is similar to what has already been written, however since

Lemma 2.7 contradicts [21, Lemma 2.9.1] we write out the details here:

Proof. Say m < k, then t has the shape

(A ↓, ↑ B, ..., ↑ (A⊗B), ↑ A, ...,B ↓, (A⊗B) ↓, ...,A ↓). (2.14)

Now consider the switching given by

Ŝ ∶ Lπ Ð→ {L,R}

q z→
⎧⎪⎪⎪⎨⎪⎪⎪⎩

S(q), q ≠ l

L, q = l

Then (2.14) becomes:

(A ↓, (A⊗B) ↓, ...,A ↓) (2.15)

which is a short pretrip.

Lemma 2.8. Let π be a proof structure satisfying the long trip condition, l be a Par-

link with premises A,B say, S be a switching of π and (x1, ..., xn) be the long pretrip

satisfying x1 = A ↓. If m,k > 0 are such that xm =↑ (A`B), xk = B ↓, then:
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• If S(τ) = L then m < k.

• If S(τ) = R then k <m.

Remark 2.9. Lemma 2.7 gives a nice interpretation of Lemma 2.7 that long trips return

to where they left at each Tensor-link.

The situation is a bit different for Par-links; the relevant slogan is long trips visit the

premises before returning to the conclusion.

Say π satisfies the long trip condition, π admits a Tensor-link l (with premises A,B say)

such that the conclusion of l is a Conclusion-link, and if l is removed (i.e, if the link

is removed with premises replaced by Conclusion-links), the resulting proof structure

consists of two disjoint proof structures π1, π2 each satisfying the long trip condition. It

is necessarily the case that any pretrip ρ of π starting at ↑ A visits the entirety of U(π1)
before returning to the Tensor-link l, lest π1 admit a short trip. Moreover, it must be

the case that σ admits no occurrence of formulas in π2 lest the result of removing the

Tensor-link l not result in disjoint proof structures. Thus, if such a link l exists, it is

maximal in the sense that there is no other Tensor-link l′ where a pretrip starting at a

premise of l′ contains the entirety of any pretrip starting at A. Most of the remainder

of this section will amount to proving the converse, that any such maximal Tensor-link

“splits” π. This is the splitting lemma of [21], which is the main technical lemma required

to prove the Sequentialisation Theorem.

Definition 2.24. Let π be a proof structure satisfying the long trip condition, S a

switching of π, and A an occurrence of a formula in π. Consider the long pretrip

(x1, ..., xn) satisfying x1 =↑ A. We denote by PTrip(A, ↑) the subsequence (x1, ..., xm)
of (x1, ..., xn) satisfying xm = A ↓. We define PTrip(A, ↓) similarly.

Also, for a ∈ {↑, ↓} we define the following set

VisitS(A,a) ∶= {C ∈ O(π) ∣↑ C,C ↓ occur in PTrip(A,a)}. (2.16)

The up empire of A is the following set:

Emp↑A ∶= {C ∈ O(π) ∣ For all switchings S we have ↑ C,C ↓ occur in PTrip(A, ↑)}

The down empire of A is defined symmetrically.

One point of difference between the proof presented here and the original proof [21] is

that Girard did not consider down empires. At the time of writing, the current author

does not see how to avoid down empires, and believes the proof in [21] is too terse to

extract a rigorous proof which avoids them.
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With the new terminology, we now have some Corollaries of Lemmas 2.7 and 2.8:

Corollary 2.25. Let π be a proof structure satisfying the long trip condition, and let S

be a switching of π, for a formula A and a ∈ {↑, ↓}:

1. If A is part of an axiom link then PTrip(A, ↑) = (↑ A,PTrip(¬A, ↓),A ↓), where this
notation means the sequence PTrip(¬A, ↓) with ↑ A prepended and A ↓ appended.

2. If l is a Tensor-link with conclusion A⊗B:

(a) If S(l) = L:

• Ptrip(A, ↓) = (A ↓,PTrip(A⊗B, ↓),PTrip(B, ↑), ↑ A).
• PTrip(B, ↓) = (B ↓,PTrip(A, ↑),PTrip(A⊗B, ↓), ↑ B).
• PTrip(A⊗B, ↑) = (↑ A⊗B,PTrip(B, ↑),PTrip(A, ↑),A⊗B ↓).

(b) If S(l) = R:

• PTrip(A, ↓) = (A ↓,PTrip(B, ↑),PTrip(A⊗B, ↓), ↑ A).
• PTrip(B, ↓) = (B ↓,PTrip(A⊗B, ↓),PTrip(A, ↑), ↑ B).
• PTrip(A⊗B, ↑) = (↑ A⊗B,PTrip(A, ↑),PTrip(B, ↑),A⊗B ↓).

3. If A is a premise of a Par-link l with conclusion A`B:

(a) If S(l) = L:

• PTrip(A, ↓) = (A ↓,PTrip(A`B, ↓), ↑ A).
• PTrip(B, ↓) = (B ↓, ↑ B).
• PTrip(A`B, ↑) = (↑ A`B,PTrip(A, ↑),A`B ↓).

(b) If S(l) = R:

• PTrip(A, ↓) = (A ↓, ↑ A).
• PTrip(B, ↓) = (B ↓,PTrip(A`B, ↓), ↑ B).
• PTrip(A`B, ↑) = (↑ A`B,PTrip(B, ↑),A`B ↓).

Corollary 2.26. Let π be a proof structure satisfying the long trip condition, we have

the following.

1. For any axiom link with conclusions A,¬A:

Emp↑A = Emp↓(¬A) ∪ {A}. (2.17)

2. For any cut link with premises A,¬A:

Emp↓A = Emp↑(¬A) ∪ {A}. (2.18)
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3. For any Tensor-link with premises A,B:

Emp↑A ∩Emp↑B = ∅. (2.19)

4. For any tensor or Par-link with premises A,B and conclusion C:

Emp↑C = Emp↑A ∪Emp↑B ∪ {C}. (2.20)

5. For any Tensor-link with premises A,B:

Emp↓B = Emp↑A ∪Emp↓(A⊗B) ∪ {B}. (2.21)

Definition 2.27. Given any link l we write B ∈ l if B occurs as either a premise or a

conclusion of l.

Let π be a proof structure satisfying the long trip condition, and a ∈ {↑, ↓}. The set of

links of A with respect to S is the set

La(A) ∶= {l ∈ Lπ ∣ ∀B ∈ l,B ∈ EmpaA}. (2.22)

Definition 2.28. Let π be a proof structure satisfying the long trip condition and let

a ∈ {↑, ↓}. Define the set

Pa(A) ∶= {l ∈ Lπ ∣ Exactly one premise of l is in EmpaA}. (2.23)

The following two results, the Realisation Lemma and the Separation Lemma will assume

that π is cut-free. The case involving cuts will be reduced to this case in the proof of

Theorem 2.23.

Lemma 2.10 (Realisation Lemma). Let π be a cut-free proof structure satisfying the

long trip condition, let a ∈ {↑, ↓} and A an occurrence of a formula in π. Define the

following function:

S ∶ Pa(A)Ð→ {L,R}

l z→
⎧⎪⎪⎪⎨⎪⎪⎪⎩

L, if the right premise of l is in EmpaA

R, if the left premise of l is in EmpaA

and extend this to a switching Ŝ ∶ Lπ Ð→ {L,R} arbitrarily. Then

EmpaA = VisitŜ(A,a). (2.24)
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Proof. We proceed by induction on the cardinality of the set La(A). For the base case,

assume ∣La(A)∣ = 0. Then π is a disjoint collection of Axiom links. The formula A is

part of one of these, and so Emp↑A = {A,¬A} and Emp↓A = {A}, the result follows

easily.

Now assume that ∣La(A)∣ = n > 0 and the result holds for any formula B such that

∣La(B)∣ < n. First say a =↑, and A is a conclusion of either a tensor or a Par-link

...
...

⊠

...

A1 A2

A

where ⊠ ∈ {⊗,`} and A = A1 ⊗A2 or A = A1 `A2. By (2.20) we have

Emp↑A = Emp↑A1 ∪Emp↑A2 ∪ {A}

= VisitŜ(A1, ↑) ∪VisitS(A2, ↑) ∪ {A}

= VisitŜ(A, ↑)

where the second equality follows from the inductive hypothesis.

Assume A is part of an axiom link. By (2.17)

Emp↑A = Emp↓(¬A) ∪ {A} (2.25)

with

∣L↑(A)∣ = ∣L↓(¬A)∣. (2.26)

Since ∣L↓(¬A)∣ > 0 we necessarily have that ¬A is not a conclusion. Thus, since π is

cut-free, A is connected to an occurrence ¬A which is a premise to either a Tensor-link

or a Par-link. In the case of the former, we have:

...
...

⊗

...

¬AC

C⊗¬A
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then by (2.21):

Emp↓(¬A) = Emp↑C ∪Emp↓(C ⊗ ¬A) ∪ {¬A}

= VisitŜ(C, ↑) ∪VisitŜ(C ⊗ ¬A, ↓) ∪ {¬A}

= VisitŜ(¬A, ↓)

where the second equality follows from the inductive hypothesis.

If ¬A is a premise of a Par-link

...
...

`

...

¬AC

C`¬A

then by construction of Ŝ, where we use the specific definition of S for the first time,

Emp↓(¬A) = {¬A}

= VisitŜ(¬A, ↓).

The case when a =↓ is exactly similar and so we omit the proof.

Definition 2.29. A tensor or Par-link is terminal if its conclusion is premise to a

Conclusion Link.

Corollary 2.30. Let π be a cut-free proof structure satisfying the long trip condition.

Let l be a terminal Tensor-link with premises A,B, say, of π. Then π admits a Par-link

l′ with premises C,D, say, such that C ∈ Emp↑A and D ∈ Emp↑B if and only if for

every switching S of π we have

Emp↑A ≠ VisitS(A, ↑) or Emp↑B ≠ VisitS(B, ↑).

Proof. Say π admitted l′. If the switching S is such that S(l′) = L then C ` D ∈
VisitS(B) ∖Emp↑B and if S(l′) = R then C `D ∈ VisitS(A) ∖Emp↑A.

Conversely, say π admits no such Par-link l′, that is, assume

P↑(A) ∩P↑(B) = ∅. (2.27)

Then there is by Lemma 2.10 a well defined function

S ∶ P↑(A) ∪P↑(B)Ð→ {L,R}
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which extends to a switching Ŝ such that

Emp↑A = VisitŜ(A, ↑) and Emp↑B = VisitŜ(B, ↑). (2.28)

Lemma 2.11 (Separation Lemma). A cut-free proof structure π satisfying the long trip

condition with only Tensor-links amongst its terminal links admits a Tensor-link l, with

premises A,B, say, satisfying

O(π) = Emp↑A ∪Emp↑B ∪ {A⊗B}. (2.29)

Moreover, removing A⊗B results in a disconnected graph with each component a proof

structure satisfying the long trip condition.

Proof. Consider the set of Tensor-links L⊗π of π. We endow this with the following partial

order ≤: a pair of Tensor-links:

l =

...
...

⊗

...

A B

A⊗B

l′ =

...
...

⊗

...

C D

C⊗D

are such that l ≤ l′ if Emp↑A∪Emp↑B ⊆ Emp↑C∪Emp↑D. Let l (with conclusion A⊗B
say) be a Tensor-link maximal with respect to ≤. We show that l satisfies the required

property.

Say O(π) ≠ Emp↑A ∪ Emp↑B ∪ {A ⊗B}. Then by Lemma 2.30 there exists a Par-link

l′, with premises C,D say, such that C ∈ Emp↑A and D ∈ Emp↑B. Since π admits no

terminal Par-links, the unique maximal length directed path of π beginning at the node

` of l′ terminates at an edge labelled E ⊗F , for some E,F . The edge is necessarily the

conclusion to some Tensor-link l′′, by the hypothesis.

Notice that if l′′ = l, then either C`D ∈ Emp↑A or C`D ∈ Emp↑B which in either case

implies Emp↑A∩Emp↑B ≠ ∅, contradicting Corollary 2.26, 2.19, and so l′′ ≠ l. Without

any loss of generality, assume that the unique directed path from l′ to a Conclusion-link
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passes F . The situation looks as follows.

...
...

`

...
...

...
...

⊗ ⊗

c c

C D

C`D

A B E F

A⊗B E⊗F

Let S be a switching of π so that Emp↑ F = VisitS(F, ↑) and so that S(l′) = L, which
exists by Lemma 2.30. Let t = (x1, ..., xn) be the long pretrip of π with respect to S

satisfying x1 = F ↑. We have by Lemma 2.8 that t takes the following shape:

(↑ F, ..., ↑ (C `D), ↑ C, ...,D ↓, ↑D, ...,C ↓, (C `D) ↓, ..., F ↓, ...). (2.30)

We have that D ∈ Emp↑B so for simplicity, rewrite (2.30) as t′ = (x1+k, ..., xn+k) for

some k > 0 (where i+ k means i+ kmodn) so that ↑ B occurs to the left of D ↓ and B ↓
occurring to the right of ↑D.

We have chosen S so that Emp↑ F = VisitS(F, ↑). This same choice of S satisfies

Emp↑B = VisitS(B, ↑). We have that C /∈ Emp↑B = VisitS(B, ↑) and so by Lemma

2.8 we have:

↑ B occurs in (↑ C, ...,D ↓) and B ↓ occurs in (↑D, ...,C ↓). (2.31)

This implies that B ∈ VisitS(F, ↑) = Emp↑ F .

By reversing the switching of l′ we can similarly show that A ∈ Emp↑ F , contradicting

the maximality of l. This proves the first claim.

For the second claim, since O(π) = Emp↑A ∪ Emp↑B ∪ {A ⊗ B} we have by Lemma

2.30 that P↑(A ⊗ B) = ∅ and we saw in the proof of Lemma 2.10 that a switching S

which realises Emp↑A is given by setting all switchings arbitrarily except for those in

P↑(A⊗B). This means that for any switching S of π:

VisitS(A, ↑) = Emp↑A and VisitS(B, ↑) = Emp↑B (2.32)
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which is to say the two subproof structures given by removing A⊗B never admit a short

trip, that is, they each satisfy the long trip condition.

Proof of Theorem 2.23. First assume that π is cut-free.

We proceed by induction on the size ∣Lπ ∣ of the set Lπ. If this is zero then π consists of

a single axiom link and so the result is clear.

For the inductive step, we consider two cases, first say π admits a Par-link for a conclu-

sion. Then removing this Par-link clearly results in a cut-free proof structure satsifying

the long trip condition and so the result follows from the inductive hypothesis. If no such

terminal Par-link exists, then by the Separation Lemma there exists some Tensor-link

in the conclusion for which we can remove and apply the inductive hypothesis.

Now say that π contains Cut-links. We replace each Cut-link with a Tensor-link to

create a new proof ζ. That there exists a proof Ξ which maps to ζ follows from the

part of the result proved already as ζ is cut-free. We adapt Ξ appropriately by replacing

Tensor-links by Cut-rules and we are done.

Conversely, say π is a proof net and let π′ denote an MLL proof (Definition 2.4) such that

T (π′) = π, where T is the translation map of Definition 2.10. One proves by induction

on the structure of π′ that π satisfies the long trip condition.

2.2.2 Geometry of Interaction 0

As mentioned in the Introduction, Geometry of Interaction was initiated by Girard and

further developed by many more authors. None of the ideas presented here are new,

the standard textbook reference is [26] however the following was developed from the

original papers.

There is a distinction between a formal language’s syntax, the raw language of the

system, and its semantics, the meaning of the language. Considering logic as a linguistic

tool constructed with intentional redundancy so that many different sentences can be

formed to describe the same thing, it makes sense to look for mathematical invariants

of a logic’s syntax.

Geometry of Interaction models take a different approach, and consider logic as a com-

putational system whose dynamics are provided by the cut-elimination process. From

this angle, it makes sense to search for mathematical models of a logic’s syntax which

are not invariant under cut-elimination. Instead, if π is a proof which cut-reduces to

π′, and if JπK, Jπ′K respectively denote the interpretations of π,π′, then there ought to



Algebraic Geometry and Linear Logic 35

be some mathematical relationship JπK ↝ Jπ′K transforming one interpretation into the

other.

In this section we present what we call Geometry of Interaction 0, which is a model

of MLL proof nets where to each proof π is associated a permutation απ on a set of

formulas which are conclusions to Axiom-links of π. The reference for Geometry of

Interaction 0 is [22], which this section follows. See the Introduction of [61] for more on

the distinction between denotational semantics and Geometry of Interaction.

Remark 2.12. We have motivated Geometry of Interaction as “dynamics conscious” se-

mantics for proofs. This was not the only concern in the original papers though. A

Geometry of Interaction model not only models cut-elimination, but also sequentialisa-

tion, and and more generally orthogonality. In this thesis we do not consider this side

of Geometry of Interaction. Sequentialisation and orthogonality are concepts tied more

closely to the logic of the system, for example, they have been motivated by the question

“what is a type? ([24, Page 222])”.

For us, we primarily view linear logic as a system of computation, so we are most

interested in its cut-elimination process. Thus, we do not consider these aspects of our

models. We do not rule out the possibility of these ideas being interpretable in our

models of Chapter 4, and leave these as interesting further research questions.

A cut-free proof π in MLL with a single conclusion A, and with all premises of all

Axiom-links atomic is determined by A up to the Axiom-links of π. For instance, when

the following proof net is read with dashed Axiom-links ignored, we obtain a proof net

π, and similarly if we read the dashed Axiom-links and with the solid arrow Axiom links

ignored.

Ax

Ax

Ax Ax

⊗ `

`

c

¬X⊗¬X X`X

(¬X⊗¬X)`(X`X)

(2.33)

A compact way of describing the axiom links of a proof in MLL is to read each Axiom-link

as a transposition, and to give the product of these as a permutation. This translation
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of proofs into permutations was first given in [22] and was expounded upon in [24]. Due

to the popularity of the latter paper, the former is often overlooked.

We present some of the core results of [22] where it is shown how to relate the permu-

tations of a proof with cuts to the permutations of the associated normal form. The

most important difference between the current presentation and that of [22] is that we

use unoriented atoms (Definition 2.17).

Definition 2.31. Let π be a proof net. Let P(π) denote the disjoint union of all the

unoriented atoms of all formulas which are conclusions to Axiom-links in π.

Recall the definitions of pretrips (Definition 2.24) and switchings (Definition 2.20).

Definition 2.32. Let π be a proof net with Axiom-links l1, ..., ln say. For each i = 1, ..., n
the link li defines a permutation τli on the set P(π) in the following way: if li has

conclusions ¬A,A then the jth element of the sequence of unoriented atoms of A is

mapped via τli to the jth element of the sequence of unoriented atoms of ¬A. We define

the axiom link permutation associated to π απ to be the product of all these

permutations:

απ ∶= τl1⋯τln . (2.34)

Let S be a switching of π. For each unoriented atom X ∈ P(π), corresponding to a for-

mula A say, let βSπ (X) denote the unoriented atom corresponding to the first occurrence

in PTrip(π,S,A, ↓) of the form ↑ B where B is a formula labeling a conclusion of an

Axiom-link in π.

The set of all permutations of the second form is denoted

Σ(π) ∶= {βSπ ∣ S is a switching of π}. (2.35)

Example 2.3. The proof net given by ignoring the dashed lines in (2.33) corresponds

to the permutation

X1 ↔X2,X3 ↔X4 (2.36)

and that given by ignoring the axiom links and including the dashed lines is

X1 ↔X4,X2 ↔X3. (2.37)
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Figure 2.3: The switching S of Example 2.4

Example 2.4. Let π denote the following proof structure with Tensor-links labelled

l1, l2, l3 as displayed. The formula A denotes ¬X ⊗ ¬X.

Ax Ax Ax Ax

¬X1 X2 ¬X3 X4 ¬X5 X6 ¬X7 X8

c c c c

l1⊗
l2⊗

¬A ¬A

l3⊗

¬A⊗ ¬A

c

Consider the switching S(l1) = S(l2) = S(l3) = L. Then we have

βSπ ∶X1 ↦X7 ↦X5 ↦X3 ↦X1, Xi ↦Xi, i = 2,4,6,8. (2.38)

The long trip corresponding to this switching is illustrated in Figure 2.4.

We can now rephrase the long trip condition of Section 2.2.1 in terms of permutations.
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Proposition 2.13. Let π be a proof structure, then π is a proof net if and only if for

all β ∈ Σ(π) the permutation απβ is cyclic.

Lemma 2.14. Let π be a proof structure such that every conclusion of every Axiom-link

is atomic. Assume there is a Cut-link in π with premises A,¬A. Write

A ∶=X1 ⊠1 ⋯⊠n−1Xn (2.39)

where for each i = 1, . . . , n− 1 we have ⊠i ∈ {⊗,`} and for each i = 1, . . . , n we have that

Xi is atomic. Let ζ be a proof structure equivalent to π under cut-reduction which is

obtained by reducing all ⊗/`-reductions. Then in ζ, there exists for each i a cut link li

with premises Xi,¬Xi.

Proof. By induction on n.

Definition 2.33. We define a permutation γπ on P(π) (Definition 2.31). Let l be a

cut link in π with premises ¬A,A, say. Let ¬A,A have corresponding unoriented atoms

X1, . . . ,Xn and Y1, . . . , Yn. Let γl be the permutation which swaps Xj and Yj . By

Lemma 2.14 this corresponds to a transposition of a pair of elements in P(π) uniquely
determined by Xi, Yj . Ranging over all cut links l1, . . . , ln we define

γπ ∶= γl1 . . . γln . (2.40)

Example 2.5. We denote by π the following proof net with artificial labels on the for-

mulas. Assume Xi for i = 1, . . . ,6 is atomic.

Ax Ax Ax

c ⊗ c `

Cut

¬X1
X2 ¬X3

X4

X⊗¬X
X`¬X

X5 ¬X6

(2.41)

We have

γπ ∶X2 ↔X6, X3 ↔X5, Xi ↔Xi, i = 1,4. (2.42)

We introduce η-expansion, which relates Axiom-links of a compound formula A to

Axiom-links of the formulas constituting A.

Definition 2.34. A pair of proof nets (π,π′) where π′ is obtained from π via replacing

some subgraph of π of the form on the left of the following with that on the right is an
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η-expansion, written π Ð→η π′.

Ax Ax Ax

...
... Ð→ ⊗ `

...
...

A⊗B ¬A`¬B
A ¬B

A⊗B ¬A`¬B

Lemma 2.15. The set P(π) is invariant under reduction of ⊗/`-reductions and η-

expansion. More precisely, we have the following two statements:

• Say π′ is produced by reducing a ⊗/`-reduction in π, then P(π) = P(π′).

• Say π Ð→η π′, then P(π) = P(π′).

Proof. For the first claim we simply notice that reducing a ⊗/`-reductions has no effect

on the Axiom-links of π. For the second we see that the order of the sequence of

unoriented atoms of A,B is explicated by the Axiom-links produced by an η-expansion.

Hence, when considering P(π), we can always assume without loss of generality that π

contains no possibility of ⊗/`-reductions and that all conclusions of all Axiom-links of

π are atomic.

Lemma 2.16. Let π be a proof net admitting no possibility of ⊗/`-reductions and

assume that all conclusions of all Axiom-links of π are atomic. All reductions π Ð→ π′

are necessarily of the following form, with X atomic.

Ax Ax Ax

... Cut
...

...
...

X ¬X
X¬X ¬X X

(2.43)

Proof. All reductions of π are Ax /Cut-reductions, but since all the Axiom-links have

atoms as conclusions, it must be the case that the Cut-links in these Ax /Cut-reductions
have premises which are also atoms. These atoms can only possibly exist if they are

conclusions to an Axiom-link, and so we obtain the form given in the statement.

Definition 2.35. Say π is a proof net with no ⊗/`-reductions and all conclusions of all

Axiom-links are atomic. Moreover, say there is a reduction π Ð→ π′ which by Lemma
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2.15 is of the form (2.43). We define a function ι ∶ P(π′)↣ P(π) given by the following

schema:
Ax

¬X X

...
...

Ax Ax

¬X X ¬X X

... Cut
...

(2.44)

Definition 2.36. Let π be a proof net and consider P(π), in light of Lemma 2.15

we can assume without loss of generality that π admits no ⊗/`-reductions and that

all conclusions of all Axiom-links in π are atomic. Let ζ be the corresponding normal

form. Let (π = π1,⋯, πn = ζ) be a sequence of cut reductions. These induce a family of

functions:

P(ζ) = P(πn)Ð→ P(πn−1)Ð→ ⋯Ð→ P(π2)Ð→ P(π1) = P(π) (2.45)

Composing these determines a function ιζπ ∶ P(ζ)Ð→ P(π).

Remark 2.17. MLL is confluent, meaning that for every pair of cut-reduction steps

π Ð→ π′, π Ð→ π′′ there exists a proof net π′′′ and reductions π′ Ð→ π′′′, π′′ Ð→ π′′′. It

follows from this that the morphism ιπ is independent of the choice of reduction path.

We give an alternate characterisation of the image of ιπ.

Lemma 2.18. Let π be a proof net and assume all conclusions of all Axiom-links are

atomic. A formula A in π is in im ιπ if and only if it is not the premise to a Cut-link.

Proof. First we consider the case where π admits no ⊗/`-reductions.

Say A is premise to a Cut-link. Since A ∈ P(π) it is also the case that A is conclusion

to an Axiom-link. Hence there exists a cut reduction which removes A, and so A is not

in the image of ιπ.

Now say A is not premise to a Cut-link and so A is necessarily not part of an Ax /Cut-
reduction. There are no ⊗/`-reductions in π. Hence A survives cut-elimination. In

other words, A ∈ im ιπ.

The general case follows from inspection of the ⊗/`-reduction of Definition 2.12.
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Definition 2.37. Let π be a proof net. We describe a final permutation δπ on P(π).
For each X ∈ P(π) let di denote the least integer such that (απ ○ γπ)di(X) is above a

Conclusion-link (meaning the unique maximal length directed path from X ends at a

Conclusion-link).

We define the following permutation on P(π), the permutations:

δπ(X) = (απ ○ γπ)di(X). (2.46)

Remark 2.19. Notice that such an integer di in Definition 2.37 always exists as π is a

proof net (as π satisfies the long trip condition, see Section 2.2.1).

At the start of this section we mentioned that Geometry of Interaction models interpret

cut-elimination non-trivially. In Geometry of Interaction 0 this role is played by δπ in

the following theorem which can be viewed as a projection of the permutation απ onto

the subset P(ζ) ⊆ P(π).

Theorem 2.38. [Geometry of Interaction 0] Let π be a proof net possibly with Cut-links

and let ζ be the normal form of π. Then

δπ = ιζπαζ . (2.47)

Proof. By inspection we have that γπ is invariant under reduction of ⊗/`-reductions.

Also, απ is clearly invariant under reduction of ⊗/`-reductions, thus we can assume that

π admits no possibility of a ⊗/`-reduction. Furthermore, by inspection of Definition

(2.34) we see that απ is invariant under η-expansion, it is also clear that γπ is invariant

under η-expansion. Thus we can also assume that all conclusions of all Axiom-links of

π are atomic.

All cut links appear inside “chains” of Axiom and Cut-links, such as in the following

Diagram.

Ax . . . Ax

... Cut Cut
...

¬X
X ¬X X ¬X

X

By Lemma 2.18, all formulas in the “interior” of these chains are not in im ιπ. Hence,

δπ is a product of transposes where the formulas on the two extreme ends of these

chains are swapped. By considering the cut elimination rules we see that this is exactly

the behaviour of αζ , and that these two formulas are the images of the corresponding

formulas in ζ.
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2.2.3 Geometry of Interaction I

Geometry of Interaction 0 interprets MLL proof nets as permutations which correspond

to the Axiom-links of the proof being interpreted. Geometry of Interaction I attempts to

extend this model to MELL by replacing each variable X in the set P(A) of conclusions
to Axiom-links with an entire copy of the natural numbers N and then uses bijections

N ×NÐ→ N to model the exponentials.

For this section (and only this section), we need to consider a variation on the negation of

formulas given in Definition 2.1. We consider instead the following equivalence relation

on the set of preformulas:

¬(A⊗B) ∼ ¬A` ¬B, ¬(A`B) ∼ ¬A⊗ ¬B, ¬(X,x) ∼ (X,x)

¬!A ∼?¬A, ¬?A ∼!¬A.

The difference is that the negation of multiplicative formulas no longer swaps the order

of A,B.

A permutation σ on a finite set X induces a bounded linear operator on the Hilbert

space FX freely generated by X, which is defined by x z→ σx for each x ∈ X. Writing

this linear operator as a matrix with respect to the basis X of FX we obtain an n × n
matrix Mσ, where n is the number of elements of X, where each entry is either 0 or 1.

We focus on the specific Hilbert space H = ℓ2 of sequences z = (z0, z1, ...) of complex

numbers which are square summable, ie, ∑∞n=0 ∣zn∣2 converges. Then we consider the

space of bounded linear operators B(H) on H. Since B(H) is (countably) infinite dimen-

sional, we have that B(H)n ≅ B(H) for every n > 0. Thus, if we read each entry 1 of Mσ

as the identity operator, and each entry 0 as the zero operator, then each Mσ induces

an operator HÐ→ H (in other words, an element of B(H)) allowing for each such matrix

to be compared on the same footing. More precisely, each matrix is an element of the

same Hilbert space, even though they differ in size. Thus, the ultimate interpretation

JπK of an MELL proof net π is a bounded linear operator JπK ∈ B(H).

In fact, each bounded linear operator JπK is a partial isometry.

Definition 2.39. A bounded linear operator u ∶ ℓ2 Ð→ ℓ2 is a partial isometry if any,

and hence all, of the following equivalent conditions are met.

• uu∗u = u,

• u∗uu∗ = u∗,

• (uu∗)2 = uu∗,
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• (u∗u)2 = u∗u.

Girard wanted to “internalise” the direct sum ℓ2⊕ ℓ2 and the tensor product ℓ2⊗ ℓ2 into

ℓ2 itself using bijections N∐N Ð→ N and N × N Ð→ N respectively. When attempting

to internalise a neutral element for tensor product, Girard remarks in [24] that id⊗u is

not isomorphic to u for general u, so instead he relates these two by a partial isometry

induced by the injective function r ∶ N Ð→ N × N, n z→ (0, n). The core observation is

that given a partial injection ι ∶ NÐ→ N, i.e. a partial function with domain of definition

D ⊆ N such that ι∣D ∶ D Ð→ N is injective, induces a projection Aι ∶ ℓ2 Ð→ ℓ2. If ι is a

bijection then Aι is unitary. Any partial injection ι can be decomposed as ι = ρ○σ where

σ is a bijection and ρ a partial identity (that is, if D is the domain of definition of ρ then

ρ∣D is the identity on D). Thus Aι = AσAρ where Aσ is unitary and Aρ a projection.

Such a decomposition guarantees that Aι is a partial isometry. This motivates the idea

that to model exponentials, permutations must be generalised to partial isometries.

To end up with a Geometry of Interaction model, Girard introduces [24] the execution

formula (Definition 2.44) which in some cases relates an interpretation JπK of a proof

net π to the interpretation Jπ′K of a proof net π′ obtained by reducing all cuts in π. The

class of proofs for which the execution formula genuinely relates JπK to Jπ′K is when π is

cut-equivalent to a proof net which only promotes against an empty context. In Section

2.2.4 we give an example of this formula not holding and provide some extra comments.

The space H has an inner product defined as follows:

⟨z,w⟩ =
∞
∑
n=0

znwn. (2.48)

In fact, the sum Hm of m copies of H also has an inner product structure, defined by

⟨(z1, ..., zm), (w1, ...,wm)⟩
Hm
=

m

∑
j=1
⟨(zj ,wj)⟩

H
. (2.49)

We fix the standard basis for ℓ2 consisting of sequences bi such that all entries are equal

to 0 except for the ith which is equal to 1. We note that this basis is countably infinite.

Consider the following functions

α1 ∶ NÐ→ N α2 ∶ NÐ→ N

nz→ 2n nz→ 2n + 1
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which induce a bijection α ∶ N∐N Ð→ N. Applying these functions to the standard

basis vectors of ℓ2 we obtain the following partial isometries:

p ∶ ℓ2 Ð→ ℓ2 q ∶ ℓ2 Ð→ ℓ2

(z0, z1, ...)z→ (z0,0, z1,0, z2, ...) (z1, z2, ...)z→ (0, z0,0, z1,0, ...)

which have the following adjoints:

p∗ ∶ ℓ2 z→ ℓ2 q∗ ∶ ℓ2 Ð→ ℓ2

(z0, z1, ...)z→ (z0, z2, ...) (z0, z1, ...)z→ (z1, z3, ...).

Lemma 2.20. The functions p, q, p∗, q∗ satisfy the following:

• p∗p = idℓ2 = q∗q,

• pp∗ + qq∗ = idℓ2,

• p∗q = 0 = q∗p.

Definition 2.40. Let π be a proof structure. We decorate the edges of π with the

symbols p, q, id which will later be interpreted as the operators with the same name.

The labeling is done in the following way: the left premise of each Tensor and each

Par-link is labelled p and the right premise of each Tensor and each Par-link is labelled

q, the remaining edges are labelled id. An example is given as follows.

Ax Ax Ax

c ⊗ c `

Cut

id
p q

id

id
id

p q

Each persistent path of π consists of formulas whose corresponding edge is traversed

either forwards, or backwards. If the edge is traversed forwards then we associate a

symbol in {p, q, id} to this edge. If the edge is traversed backwards then we augment

the label with an asterisk ∗ and consider a symbol from {p∗, q∗, id∗}. For example, the

unique (assuming A is atomic), positively oriented persistent path in the above example

has associated word

id∗ q id id∗ q∗p id id∗ p∗ id . (2.50)

Denote the operator of the same name as w ∈ {p, q, id, p∗, q∗, id∗} by w. The operator

associated to ρ is

oρ ∶= wn ○ ⋯ ○w1. (2.51)
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So, in the above example, the associated operator is qq∗pp∗ = id. We will see that this

is the same operator which is associated to the proof net given by a single Axiom-link,

which is the normal form of the original proof net.

Definition 2.41. Let π be a proof structure and ζ the proof structure obtained by

removing all the Cut-links of π (and appending conclusion links to the premises of the

Cut-links removed). Consider all the unoriented atoms of all premises to conclusion

links of ζ, say there are n of these. We construct an n × n matrix JπK, we will use these

unoriented atoms as the indices for the rows and columns of JπK. For each persistent

path ρ of ζ, form oρ of Definition 2.40 and let this be entry BA of JπK where ρ begins

at B and ends at A. The remaining entries are 0.

Example 2.6. Consider π of Example 2.2. We remove the Cut-link to obtain a proof-

structure π′. Label the left premise of each Tensor and each Par-link by p and the right

premise of each Tensor and each Par-link by q. Label the remaining edges by the identity

map idℓ2. For convenience, we have added artificial labels to the formulas.

Ax Ax Ax

c ⊗ c `

● ●

¬X1,id
X2,p

¬X3,q
X4,id

¬X5,p X6,q

X7⊗¬X8,id ¬X9`X10,Id

Now we calculate the persistent paths in π′ along with their associated linear operators.

These are as follows:

ν1 = (X1,X2,X7) oν1 = idp id = p, (2.52)

ν2 = (X7,X2,X1) oν2 = id∗ p∗ id∗ = p∗, (2.53)

ν3 = (X4,X3,X8) oν3 = id q id = q, (2.54)

ν4 = (X8,X3,X4) oν4 = id∗ q∗ id∗ = q∗, (2.55)

ν5 = (X9,X5,X6,X10) oν5 = id qp∗ id∗ = qp∗, (2.56)

ν6 = (X10,X6,X5,X9) oν6 = idpq∗ id∗ = pq∗. (2.57)
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Hence JπK is the following 4×4 matrix, where we assume respectively that index 1,2,3,4,5,6

corresponds to conclusion ¬X1,X7,¬X8,X4,¬X9,X10:

JπK =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

¬X1 X7 ¬X8 X4 ¬X9 X10

¬X1 0 p∗ 0 0 0 0

X7 p 0 0 0 0 0

¬X8 0 0 0 q∗ 0 0

X4 0 0 q 0 0 0

¬X9 0 0 0 0 0 pq∗

X10 0 0 0 0 qp∗ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.58)

Remark 2.21. There are more paths which begin and end at conclusions in π′ than the

persistent paths ν1, ..., ν6. For example, there is the following path:

ρ ∶= (¬X1,X2,¬X3,X4). (2.59)

The path ρ has corresponding operator oρ = q∗p. We notice that this is the zero operator.

This reflects the fact that ρ is not a persistent path.

Definition 2.42. Let π be a proof structure and ζ the proof structure obtained by

removing all Cut-links in π (and appending Conclusion-links to the premises of the Cut-

links removed). Say π has atoms X1, . . . ,Xm amongst the premises to its Conclusion-

links, and say it has atoms Y1, . . . , Yn amongst the premises of the Cut-links. We will

construct a (2n+m)×(2n+m) matrix σ and use X1, . . . ,Xm, Y1, Y
′
1 , . . . , Yn, Y

′
n as labels

for the indices of this matrix.

For each i = 1, . . . , n consider the minor with rows and columns Yi, Y
′
i . Set this to be the

matrix

⎡⎢⎢⎢⎢⎣

Yi Y ′i

Yi 0 1

Y ′i 1 0

⎤⎥⎥⎥⎥⎦
(2.60)

The remaining entries are 0.

The point is that JπK contains the information of the persistent paths of π once the Cut-

links have been removed, and σ contains the information of the Cut-links. This allows

us to talk about persistent paths of π which traverse Cut-links some chosen amount of

times in a way made precise by the following proposition.

Proposition 2.22. Let X,Y be amongst the unoriented atoms of all premises to all

Conclusion-links of some proof structure π. The operator given by the persistent path

from X to Y and which traverses Cut-links exactly m times is the Y X entry of the

matrix JπK(σJπK)m. Moreover, if no such path exists then this entry is equal to 0.
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Proof. Both JπK and σ can be thought of as weighted incidence matrices of the graph π.

This makes the first claim clear. For the second, first notice the Y X entry of JπK(σJπK)m

is the composition of some sequence of operators which in turn are given by persistent

paths in ζ, the proof structure given by removing the Cut-links of π. Since the incidences

described by σ are exactly the ones given by the way persistent paths connect at Cut-

links, we must have some corresponding persistent path in π as claimed.

Corollary 2.43. If π is a proof net and σm is as defined in Definition 2.42 then there

exists an integer n > 0 such that JπK(σmJπK)n = 0.

Proof. Follows from Proposition 2.22 along with the fact that persistent paths in proof

nets are of finite length.

Definition 2.44. Let π be a proof stucture. Let ζ denote the proof structure given

by removing the Cut-links of π, and adding Conclusion-links at the premises of these

removed Cut-links. Let n denote the sum of the number of unoriented atoms of all the

conclusions of ζ. We define, where I is the n × n identity matrix,

Ex(JπK) = (I − σ2)JπK(I − σJπK)−1(I − σ2) (2.61)

= (I − σ2)JπK(
∞
∑
i=0
(σJπK)i)(I − σ2) (2.62)

which by Corollary 2.43 is a well-defined matrix. This is the execution formula.

The execution formula (2.61) is due to Girard [24].

Example 2.7. We continue with π from Examples 2.2 and 2.6. Using the same indexing

as Example 2.6 we have that σ is the following matrix.

σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

¬X1 X7 ¬X8 X4 ¬X9 X10

¬X 0 0 0 0 0 0

X7 0 0 0 0 1 0

¬X8 0 0 0 0 0 1

X4 0 0 0 0 0 0

¬X9 0 1 0 0 0 0

X10 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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This matrix reflects the “plugging” in the unique positively oriented persistent path of π

of X7 into ¬X9 and of ¬X8 into X10. Notice that this matrix satisfies the following.

I − σ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.63)

Consider also JπKσJπK, which is a matrix whose ijth entry corresponds to the sum of

operators corresponding to the paths in π′ which traverse the cut once, where the start

of the path is the conclusion in π′ with label corresponding to column j, and whose end

point is the conclusion with label corresponding to row i. In our current example this is

given as follows:

JπKσJπK =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 p∗pq∗

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 q∗qp∗ 0

0 0 0 pq∗q 0 0

qp∗p 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 q∗

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 p∗ 0

0 0 0 p 0 0

q 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.64)

Multiplying by σJπK yields:

JπKσJπKσJπK =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 p∗pq∗q 0 0

0 0 0 0 0 0

0 0 0 0 0 0

q∗qp∗p 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.65)
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The matrix JπKσJπKσJπKσJπK is the zero matrix and therefore JπK(σJπK)n = 0 for n > 2.
Thus

JπK + JπKσJπK + JπKσJπKσJπK +⋯ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

¬X1 X7 ¬X8 X4 ¬X9 X10

¬X1 0 0 0 1 0 q∗

X7 0 0 0 0 1 0

¬X8 0 0 0 0 0 1

X4 1 0 0 0 p∗ 0

¬X9 0 1 0 p 0 0

X10 q 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.66)

The execution formula thus yields

Ex(JπK) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

¬X1 X7 ¬X8 X4 ¬X9 X10

¬X1 0 0 0 1 0 0

X7 0 0 0 0 0 0

¬X8 0 0 0 0 0 0

X4 1 0 0 0 0 0

¬X9 0 0 0 0 0 0

X10 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.67)

What happens if we perform the same process to π after we have performed cut-elimination?

Under this process, π corresponds to the proof consisting of a single axiom link:

Ax

c c

¬X1 X4

which corresponds to the matrix

⎡⎢⎢⎢⎢⎣

¬X1 X4

¬X1 0 1

X4 1 0

⎤⎥⎥⎥⎥⎦
(2.68)

which appears as a submatrix in (2.65). Theorem 2.45 states that this is not a coinci-

dence.

Theorem 2.45 (Geometry of Interaction I). Let π be a proof net and ζ normal form of

π. Then the matrix JζK exists as a minor in Ex(JπK) and any entry in Ex(JπK) which
is not in the minor corresponding to JζK is equal to 0.

Proof. It is clear by inspection of the reduction rules for MLL (Definition 2.12) that

persistent paths are preserved by reduction. This establishes the first claim.
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On the level of words, we replace instances of p∗p and q∗q with 1. That this is observed

by the execution formula follows from the fact that as operators p∗p = q∗q = 1 (Lemma

2.20).

There are also entries in JπK + JπKσJπK + JπKσJπKσJπK + . . . which do not correspond to

persistent paths in π, but instead correspond to persistent paths in the proof structure

obtained by removing the Cut-links in π. However, these are sent to 0 by the presence

of the matrices (I − σ2) in the execution formula.

2.2.4 A comment

In our presentation of Geometry of Interaction I we have only discussed the multiplicative

fragment of linear logic. The original paper also includes definitions for the exponential

fragment too, but the execution formula does not hold for this fragment. This example

is known to the community and was pointed out to me by Laurent Régnier, Damiano

Mazza, and Olivier Laurent. We give an explicit example of this here.

Define the following functions

t ∶ (N ×N) ×NÐ→ N × (N ×N) r ∶ NÐ→ N ×N

((n,m), k)z→ (n, (m,k)) nz→ (0, n).

By abuse of notation, we also denote by t, r the respective induced linear transformations

t ∶ H3 Ð→ H3, r ∶ HÐ→ H2.

Consider the following proof net π

● ● ● ●

Ax Ax

? ?

● Pax ! ● ● Pax ! ●

c Cut c

¬A

?¬A

?¬A

A

!A ?¬A

?¬A

¬A

A

!A
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which normalises to the following proof net π′:

● ●

Ax

?

● Pax ! ●

c c

¬A

?¬A

?¬A

A

!A

Following [24] we have (where the conclusions labeling the rows and columns are read

from left to right)

JπK =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

?¬A !A ?¬A !A

?¬A 0 0 0 (1⊗ r)t∗

!A 0 0 t(1⊗ r∗) 0

?¬A 0 (1⊗ r)t∗ 0 0

!A r(1⊗ r∗) 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.69)

and

Jπ′K =
⎡⎢⎢⎢⎢⎣

?¬A !A

?¬A 0 (1⊗ r)t∗

!A t(1⊗ r∗) 0

⎤⎥⎥⎥⎥⎦
(2.70)

Calculating Ex(JπK) we see:

JπKσJπK =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1⊗ r∗)t∗t(1⊗ r) 0 0 0

0 t(1⊗ r∗)(1⊗ r)t∗ 0 0

0 0 0 ((1⊗ r)t∗)2

0 0 (t(1⊗ r∗))2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.71)

Thus, we need (1⊗r)t∗ = ((1⊗r)t∗)2, where we have suppressed isomorphisms between

N and N2. Let β ∶ N × N Ð→ N be a bijection. For the execution formula to hold we

require

(1H⊗H ⊗ β−1r)t∗(β−1 ⊗ r) = 1H⊗H ⊗ β−1r. (2.72)

For our particular choice of r, there is no such β which satisfies (2.72). At the time of

writing this thesis, it is an open question (and has been for four decades) whether there

exists an appropriate choice of β, r so that (2.72) holds.
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2.3 Origins

This section features the joint work of the current author, Morgan Rogers, and Thomas

Seiller, to which all authors made equal contribution.

In the initial development of linear logic [21], an important part was played by the

‘normal functors’ model of untyped λ-calculus [23] where terms are interpreted by finite

polynomial functors [38]. This model has been studied through the lens of categorical

semantics [31, 63], and plays a fundamental role in the current work around 2-categorical

models of linear logic [14, 15, 18]. In [23] Girard proved his so-called Normal Form

Theorem1: an equivalence between normal functors and analytic functors2, by way of

a normal form common to each type of functor. We give a proof of this result using

modern notation in Appendix C.

Exploiting this result, he constructed a model of the untyped λ-calculus which can

be understood as a categorification of Scott domains [19, 55–57]: instead of interpret-

ing terms as continuous functions between directed complete partially ordered sets, he

interprets them as functors preserving certain (co)limits (normal functors) between cat-

egories which possess the corresponding (co)limits. More precisely, a term t (equipped

with a valid context x) is interpreted as a normal functor Jx ∣ tK ∶ (SetA)n → SetA, where

A is a fixed countably infinite set.

In [54] we found that one need not consider normal functors at all, as the core mathe-

matical ideas at work can be understood by considering much simpler normal functions

instead. This leads to a simplification of the normal functors model given in Section

2.3.1. At face value, the simplified model is similar to the weighted relational model [39],

and also to the “weighted Scott domains” model [13, Section 3]. We show in Section

[54, Section 6] that it is distinct from these. We present here enough of our simplified

model in order to understand the decomposition of the intuitionistic implication, and

defer further details to [54].

2.3.1 λ-terms as normal functions

We present enough details of our simplified model needed to comprehend the decompo-

sition !p⊸ q of the intuitionistic implication p ⊃ q.

Notation 2.46. For a set A, we denote by Q(A) the set of functions a ∶ A → N ∪ {∞}
and by I(A) the subset consisting of those a such that ∑a∈A a(a) < ∞ (that is, those

1Which is a variant of normal form theorems on ordinals obtained within the theory of dilators [20].
2We stress here that the notion of analytic functor as introduced by Girard differs from that introduced

and studied by Joyal [36].
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for which all values are finite and all but finitely many are 0). The set Q(A) admits a

partial order ≤ given by a1 ≤ a2 if and only if ∀a ∈ A, a1(a) ≤ a2(a).

Definition 2.47. We say a function f ∶ Q(A)→ Q(B) is normal if it is order-preserving

and preserves suprema of filtered sets. That is, if {ai}i∈I is a filtered set of elements in

Q(A), then f(supi∈I{ai}) = supi∈I{f(ai)}.

Observe that Q(A) ×Q(A′) ≅ Q(A ⊔A′) and this bijection induces a natural ordering

on the left-hand side, so we can extend Definition 2.47 to functions of several variables.

Theorem 2.48. Let f ∶ Q(A) → Q(B) be order preserving. Then f is normal if and

only if for any pair (a, b) ∈ Q(A) ×B we have

f(a)(b) = sup
u∈I(A)

f(u)(b)τu≤a (2.73)

where τu≤a is equal to 1 if and only if u ≤ a and is equal to 0 otherwise.

Proof. Suppose f is normal and let (a, b) ∈ Q(A)×B. Consider the set Xa ∶= {u ∈ I(A) ∣
u ≤ a}. Then Xa is filtered with respect to the ordering on I(A) and supXa = a. Since
f is normal, we thus have

f(a)(b) = f( sup
u∈Xa

u)(b) = sup
u∈Xa

f(u)(b) = sup
u∈I(A)

f(u)(b)τu≤a. (2.74)

On the other hand, suppose (2.73) holds. Let {ai}i∈I be a filtered set. Then for any

b ∈ B we have

f(sup
i∈I
{ai})(b) = sup

u∈I(A)
{f(u)(b)τu≤supi∈I{ai}}. (2.75)

Also,

sup
i∈I
{f(ai)(b)} = sup

i∈I
{ sup
u∈I(A)

{f(u)(b)τu≤ai}} (2.76)

One can verify that the right-hand sides of (2.75) and (2.76) are equal by a circle of

inequalities, exploiting the fact that a ≤ a′ implies τu≤a ≤ τu≤a′ for all u.

We can “curry” a normal function f ∶ Q(A) ×Q(B)→ Q(C) to a function f+ ∶ Q(A)→
Q(I(B) ×C) and dually “uncurry” functions.

Definition 2.49. Let f ∶ Q(A) ×Q(B)→ Q(C) be arbitrary. We can define a function

f+ ∶ Q(A)→ Q(I(B) ×C) as follows:

f+(a)(u, c) = f(a, u)(c). (2.77)
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Conversely, given arbitrary g ∶ Q(A)→ Q(I(B)×C) we define g− ∶ Q(A)×Q(B)→ Q(C)
as

g−(a, b)(c) ∶= sup
u∈I(B)

g(a)(u, c)τu≤b. (2.78)

We note that f+ is normal when f is and g− is normal when g is by Theorem 2.48.

That currying then uncurrying yields the identity, is the following proposition. We also

consider the effect of uncurrying followed by currying.

Proposition 2.23. Given f ∶ Q(A)×Q(B)→ Q(C) and g ∶ Q(A)→ Q(I(B)×C) which
are normal, we have (f+)− = f and (g−)+ ≥ g.

Proof. Let (a, b) ∈ Q(A) ×Q(B), c ∈ C. We have:

(f+)−(a, b)(c) = sup
u∈I(B)

f+(a)(u, c)τu≤b = sup
u∈I(B)

f(a, b)(c)τu≤b = f(a, b)(c).

On the other hand, for a, c as above and u ∈ I(B),

(g−)+(a)(u, c) = g−(a, u)(c) = sup
u′∈I(B)

g(a)(u′, c)τu′≤u ≥ g(a)(b, c).

Now fix an infinite set A and a choice of bijection q ∶ I(A)×A→ A. There is an induced

bijection q ∶ Q(A)→ Q(I(A) ×A).

Definition 2.50. A context is a sequence of variables x = {x1, . . . , xn}. A context x is

valid for a λ-term t if the set of free variables of t is a subset of x.

Definition 2.51. Let x = {x1, . . . , xn} be a set of variables and let t be a λ-term for

which x is a valid context. We associate to each such pair (x, t) a normal function

Jx ∣ tK ∶ Q(A)n → Q(A) inductively on the structure of t:

• When t = xi is a variable, Jx ∣ xiK ∶= πi.

• When t = t1t2 is an application, Jx ∣ (t1)t2K ∶= (q ○ Jx ∣ t1K)− ○ ⟨id(SetA)n , Jx ∣ t2K⟩.

• When t = λy.t′ is an abstraction, Jx ∣ λy.t′K ∶= q−1 ○ (Jx, y ∣ t′K)+.

Example 2.8 (Church numeral 2 in λ-calculus). Consider the term (f)(f)x in the

context (f, x). Its interpretation in our model is as follows after simplifying:

Jf, x ∣ ffxK ∶ Q(A) ×Q(A)→ Q(A)

(a1, a2)↦ q−(a1, q−(a1, a2)).
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The interpretation of the Church numeral 2 ∶= λfλx.ffx is obtained by applying (−)+

and q−1 (twice) but the essence of the interpretation is captured by the above. Beware

that q− is distinct from q−1!

In our model, application is interpreted by introducing a new summand in the domain

(via q−) and then substituting the interpretation of the second term into this new sum-

mand. So, in the above, we think of the interpretation of fx as the substitution of a2

into the new argument of a1 introduced by q−. Then for ffx, this intermediate term

q−(a1, a2) is substituted into the new argument of a1 introduced by the outermost q−.

Lemma 2.24 (Substitution Lemma). Let t, s be λ-terms and x = {x1, . . . , xn} be a

collection of variables and y another variable so that x∪ {y} is a valid context for t and

x is a valid context for s. Then for any α ∈ Q(A)n we have

Jx ∣ t[y ∶= s]K(α) = Jx, y ∣ tK(α, Jx ∣ sK(α)). (2.79)

Proof. We proceed by induction on the structure of the term t. The base case where t

is a variable is trivial.

Say t = t1t2 is an application. First, for (α,a) ∈ Q(A)n×Q(A), we have the following,
note that we suppress the contexts to ease notation:

Jt1t2K(α,a) = (qJt1K)− ((α,a), Jt2K(α,a)) . (2.80)

On the other hand,

J(t1[y ∶= s])(t2[y ∶= s])K(α) = (qJt1[y ∶= s]K)− (α, Jt2[y ∶= s]K(α))

= (qJt1K)− ((α, JsK(α)), Jt2K(α, JsK(α)))

where in the final line we have used the inductive hypothesis.

Say t = λy′.t′ is an abstraction. We have, for (α,a) ∈ Q(A)n ×Q(A):

Jx, y ∣ λy′.tK(α,a) = q−1Jx, y, y′ ∣ t′K+(α,a). (2.81)



Algebraic Geometry and Linear Logic 56

On the other hand, we have for α ∈ Q(A)n and c ∈ A the following (assume q−1(c) =
(c′, c′′)).

Jx, y ∣ λy′.t[y ∶= s]K(α)(c) = (q−1Jx, y, y′ ∣ t′[y ∶= s]K+)(α)(c)

= Jx, y, y′ ∣ t′[y ∶= s]K+(α)(c′, c′′)

= supu∈I(A)nJx, y, y′ ∣ t′[y ∶= s]K(u, c′)(c′′)τu≤α
= supu∈I(A)nJx, y, y′ ∣ t′K(u, Jx ∣ sK(u), c′)(c′′)τu≤α
= Jx, y, y′ ∣ t′K+(α, Jx ∣ sK(α), c′)(c′′)

= q−1Jx, y, y′ ∣ t′K+(α, Jx ∣ sK)(c)

where we have used the inductive hypothesis in the fourth line.

Theorem 2.52. Definition 2.51 gives a denotational model of the λ-calculus.

Proof. By the Substitution Lemma we have for α ∈ Q(A)n:

Jx ∣ t[y ∶= s]K(α) = Jx, y ∣ tK(α, Jx ∣ sK(α)). (2.82)

On the other hand, we have

Jx ∣ (λy.t)sK(α) = (q q−1Jx, y ∣ tK+)− ⟨id, Jx ∣ sK⟩)(α)

= Jx, y ∣ tK(α, Jx ∣ sK(α))

which concludes the proof.

2.3.2 Linear proofs as linear functions

The model given in Definition 2.51 of the untyped λ-calculus can easily be extended

to a model of the simply typed λ-calculus by allowing the set A to vary. Via the

Curry-Howard correspondence we thus obtain a model of the implicative fragment of

intuitionistic sequent calculus, where implication A⇒ B is interpreted as Q(I(A)×B).
The presence of the pair of constructors (I,×) suggests the decomposition of A⇒ B as

!A⊸ B. This suggestion is supported by the model as a normal function f ∶ Q(A) Ð→
Q(A) is one which is uniquely determined by its restriction f ∣I(A) ∶ I(A)Ð→ Q(A), but
the stronger condition that f is determined by its restriction f ∣A ∶ A Ð→ Q(A) (using
the identification δ ∶ AÐ→ I(A), az→ δa) is satisfied by the linear functions (Definition

2.53). Since our model distinguishes between linear and non-linear functions, our syntax

ought to as well.
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Thus, we can shift our perspective, and assign to each formula A a set A, and to each

sequent A ⊢ B a linear function Q(A) Ð→ Q(B), or what is the same, a function

AÐ→ Q(B). In fact, Q can be extended to a comonad, and so we really assign to each

sequent a morphism in the cokleisli category of Q.

Definition 2.53. Given an element a ∈ A, let δa ∈ Q(A) be the function for which δa(a′)
evaluates to 1 if a = a′ and to 0 otherwise. We say a function f ∶ Q(A)→ Q(B) is linear
if

f(a)(b) = ∑
a∈A

a(a)f(δa)(b).

More generally, given sets A1, . . . ,An,B, a function f ∶ ∏ni=1Q(Ai) → Q(B) is said to

be multilinear if it is linear in each argument. We denote the set of such functions

Lin(∏ni=1Q(Ai),Q(B)).

Remark 2.25. Whereas a normal function f ∶ Q(A)→ Q(B) is determined by its restric-

tion to the domain I(A) → Q(B), if f is linear then it is determined by its restriction

to the domain A→ Q(B) (after identifying a ∈ A with δa).

To understand multilinearity, given a function f ∶ Q(A)×Q(B)→ Q(C) which is linear

in the second argument, for any a ∈ Q(A) and b ∈ Q(B) we have

f(a, b) = f (a,∑
b∈B

b(b) ⋅ δa) = ∑
b∈B

b(b) ⋅ f(a, δb). (2.83)

We can actually “curry” and “uncurry” multilinear functions using the presentation

expressed in (2.83). Unlike currying for normal functions, this linear currying is a

bijection.

Proposition 2.26. There is a bijection,

Lin (Q(A) ×Q(B),Q(C)) Lin (Q(A),Q(B ×C)).
(−)×

(−)÷
(2.84)

Proof. We define f× ∶ Q(A)→ Q(B ×C) as follows for a ∈ Q(A) and (b, c) ∈ B ×C:

f×(a)(b, c) = f(a, δb)(c). (2.85)

Conversely, given a linear function g ∶ Q(A)→ Q(B ×C) we define g÷ ∶ Q(A) ×Q(B)→
Q(C) as follows for (a, b) ∈ Q(A) ×Q(B), c ∈ C:

g÷(a, b)(c) = ∑
b∈B

b(b) ⋅ g(a)(b, c). (2.86)

Clearly, if f ∶ Q(A) ×Q(B) → Q(C) is linear in its second argument, then (f×)÷ = f .
Conversely, for any g ∶ Q(A)→ Q(B ×C) we have (g÷)× = g.
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Example 2.9. Taking A = B and C = {∗} in Proposition 2.26, we find that (idQ(A))÷

is the ‘scalar product’ map,

(idQ(A))÷(a, a′) = ∑
a∈A

a(a) ⋅ a′(a) ∈ N

which is the linear extension of (a, a′)↦ δa(a′).

At this point we already have enough structure to interpret the formulas of linear logic.

Definition 2.54. We choose, for each atomic formula X, a set which we denote X. For

a formula, we define the interpretation inductively via the rules:

A⊗B = A⊸ B = A ×B, !A = I(A). (2.87)

Rather than the category of sets, we take the context for these interpretations to be

the Kleisli category of Q. Indeed, Q becomes a monad on Set when equipped with unit

transformation δ ∶ A → Q(A) mapping a to δa and multiplication µ ∶ Q(Q(A)) → Q(A)
given by viewing elements on each side as extended multisets and taking the disjoint

union. Morphisms A→ B in the Kleisli category are functions A→ Q(B), which in turn

correspond to linear functions Q(A) → Q(B). As such, we will interpret a proof π of

a sequent A1, . . . ,An ⊢ B as a multilinear function Q(A1) ×⋯ ×Q(An) → Q(B), which
correspond to linear maps Q(A1 × ⋯ × An) → Q(B). Thus cartesian products of sets

induces the monoidal product operation on the Kleisli category.

To interpret proofs, we need a little more structure. Let dA ∶ Q(I(A)) → Q(A) be

the map sending δa to ∑a∈A a(a)δa, extended linearly. Let pA ∶ Q(A) → Q(I(A)) be
the morphism that maps δa to δδa , extended linearly. We will also employ the linear

extension of the diagonal map, which we denote ∆A ∶ Q(I(A))→ Q(I(A) × I(A)), and
the swap map sA,B ∶ Q(A) ×Q(B)→ Q(B) ×Q(A).

Definition 2.55. We construct the interpretation JπK of a proof π in Intuitionistic Mul-

tiplicative Exponential Linear Logic by induction on the structure of π, with reference

to Definition 2.6. Throughout, when a composition symbol carries a subscript, this

indicates the formula corresponding to the argument at which to compose.

• If π consists of a single Axiom-rule, then JπK ∶= idQ(X).

• If π ends with a Cut-rule, then JπK ∶= Jπ2K ○A Jπ1K.

• If π ends with an Exchange-rule, then JπK ∶= Jπ′K ○A,B sB,A.

• If π ends with a Left Tensor-rule, then JπK ∶= Jπ′K up to identifying multilinear

maps out of Q(A) ×Q(B) with linear maps out of Q(A ×B).



Algebraic Geometry and Linear Logic 59

• If π ends with a Right Tensor-rule, then JπK(a, b) ∶= Jπ1K(a) × Jπ2K(b).

• If π ends with a Right Implication-rule, then JπK ∶= Jπ′K×.

• If π ends with a Left Implication-rule, then for a ∈ A, JπK(α,a, b, β) ∶= Jπ1K÷(α,a) ⋅
Jπ2K(b, β) (this is the linear version of application).

• If π ends with a Dereliction-rule, then JπK ∶= Jπ′K ○A dA.

• If π ends with a Promotion-rule, then JπK ∶= pA ○ Jπ′K.

• If π ends with a Contraction-rule, then JπK ∶= Jπ′K ○!A,!A∆A.

• If π ends with a Weakening-rule, then JπK(a1, . . . , an, a) ∶= Jπ′K(a1, . . . , an).

Example 2.10 (Church numeral 2A in linear logic). Consider the Church numeral 2A

(without the penultimate right implication rules). Recall that by definition, A⊸ A = A×A
(where on the right-hand side we drop the underline on the A for convenience). Thus

we can write f ∈ !(A⊸ A) = I(A × A) as f = ∑ni=1 ci(ai, bi) with ai, bi ∈ A and ci ∈ N.
With this notation, dA×A(δf) = ∑ni=1 ciδ(ai,bi), and hence the interpretation of the above

proof is the function Q(A) ×Q(I(A ×A))→ Q(A) obtained as the linear extension of:

A × I(A ×A)→ Q(A)

(a, f)↦ (
n

∑
i=1
ci ⋅ δa(ai)) ⋅

⎛
⎝

n

∑
i,j=1

ci ⋅ cj ⋅ δbi(aj)
⎞
⎠
⋅
⎛
⎝
n

∑
j=1

cj ⋅ δbj
⎞
⎠
.

Theorem 2.56. Definition 2.55 gives a model of intuitionistic linear logic. That is, if

π1 and π2 are Cut-equivalent proofs, then Jπ1K = Jπ2K.

Proof. We go through each Cut-elimination rule methodically and prove invariance of

the interpretations under these transformations.

The interesting cases are Prom /Der and (R⊸)/(L⊸). First we consider Prom /Der.

Say π is on the left of the cut and π′ is on the right. The two interpretations are

respectively

Jπ′K ○A dA ○!A pA ○ JπK, Jπ′K ○A JπK. (2.88)

So it suffices to show that dA ○ pA = idQ(I(A)). It suffices to check this on elements of

the form δa, and indeed dA(pA(δa)) = dA(δδa) = δa is the identity, as required.

Next we consider (R ⊸)/(L ⊸). One of the interpretations involves (JζK×)÷ for some

proof ζ where the other involves simply JζK. These are equal by Proposition 2.26 and

the result follows.
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Remark 2.27. We have not yet motivated the splitting of the disjunction connective ∧
made by linear logic. To justify this we need a slightly bigger logic than MELL. We

must consider Intuitionistic Multiplicative Additive Exponential Linear Logic (IMAELL)

which admits a further two connectives (the additive connectives) ⊕,& which have

the following Right-introduction-rules:

Γ ⊢ A R⊕LΓ ⊢ B ⊕A
Γ ⊢ A R⊕RΓ ⊢ A⊕B

Γ ⊢ A Γ ⊢ B
R&

Γ ⊢ A&B

There are two equivalent choices for the Right-Introduction-rule of ∧. They are:

Γ ⊢ A ∆ ⊢ B R∧1Γ,∆ ⊢ A ∧1 B
Γ ⊢ A Γ ⊢ B R∧2Γ ⊢ A ∧2 B

These are each derivable from the other due to the following proof tree fragments:

Γ ⊢ A Γ ⊢ B R∧1Γ,Γ ⊢ A ∧1 B
Ex /Ctr

Γ ⊢ A ∧1 B

Γ ⊢ A
Weak

Γ,∆ ⊢ A
∆ ⊢ B

Weak
Γ,∆ ⊢ B

R∧2Γ,∆ ⊢ A ∧2 B

However, if we tried to reproduce this in linear logic, we fail because we do not have

the Contraction-rules nor Weakening-rules for arbitrary formulas. Thus, once we have

decided to only allow Contraction-rules and Weakening-rules for promoted formulas,

the connective ∧ naturally splits into two connectives. Hence why linear logic has two

multiplicative connectives and two additive connectives. We see that ∧1 = ⊗ and ∧2 = &.

For the other connectives we consider the two possible constructions of ∨, thought of as
the word “or”:

Γ ⊢ A R∨L1Γ ⊢ B ∨1 A
Γ ⊢ A R∨R1Γ ⊢ A ∨1 B

Γ ⊢ A,B
R∨2Γ ⊢ A ∨2 B

Then these are equivalent by the following prooftrees (this time in Classical Logic)

Γ ⊢ A,B
R∨R1Γ ⊢ A ∨1 B,B
R∨L1Γ ⊢ A ∨1 B,A ∨1 B
Ctr

Γ ⊢ A ∨1 B

Γ ⊢ A
Weak

Γ ⊢ A,B
R∨2Γ ⊢ A ∨2 B

Again, these proofs crucially use Contraction and Weakening-rules, so they form non-

equivalent connectives in linear logic. We see that ∨1 = ⊕,∨2 = `.



Chapter 3

Proofs and Locally Projective

Schemes

3.1 Parameter spaces

Proofs in Multiplicative Linear Logic (MLL) are modelled by systems of linear equa-

tions between occurrences of formulas, and computation of a program is elimination of

variables appearing in these systems [50]. This chapter proves that shallow proofs (Defi-

nition 3.2) are locally projective schemes. Algebraically, these locally projective schemes

describe equations between formulas along with equations between these equations, as

made formal in Remark 3.18.

Definition 3.1. Let A be a formula. We define the depth Depth(A) of A by induction

on the structure of A as follows:

• If A =X is atomic then Depth(A) = 0.

• If A = A1 ⊠A2 where ⊠ ∈ {⊗,`} then Depth(A) =max{Depth(A1),Depth(A2)}.

• If A = ◻A′ where ◻ ∈ {!, ?} then Depth(A) = Depth(A′) + 1.

Definition 3.2. A formula A is linear if Depth(A) = 0 and is shallow if Depth(A) ≤ 1.
A proof π is shallow if all formulas appearing in π are shallow.

In [50] we associated to every MLL proof net π a coordinate ring Rπ as a quotient

Rπ = Pπ/Iπ, where Pπ is a polynomial ring and Iπ is an ideal. The polynomial ring

Pπ is defined as a tensor product of polynomial rings PA, where are free commutative

k-algebras over the unoriented atoms of A. The polynomial ring Pπ depends only on the

61
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formulas which appear in π, and Iπ depends on the links. Of course, one could consider

the closed embedding of affine schemes Spec(Rπ)Ð→ SpecPπ, but the geometry of Iπ is

not interesting, as Iπ is always generated by polynomials of the form x − y for variables

x, y. However, for shallow proofs this perspective is interesting because it allows for

bang “!” to be modeled using a parameter space.

Every closed subscheme X Ð→ Y of an affine scheme Y = SpecR (where R is some k-

algebra) is affine and given by Spec(X/I) for some ideal I ⊆ R uniquely determined by

X [30, §II Ex 3.11]. There is an equivalence of categories AffSchop
k
≅ k-Alg between the

opposite category of the category AffSch
k
whose objects are affine schemes over Speck

and the category k-Alg whose objects are k-algebras. Under this equivalence, the ring

PA corresponds to the scheme SpecPA. If we denote by A
1 the affine space Spec(k[X])

then SpecPA is isomorphic to An. Amongst the set of all ideals I ⊆ PA ≅ k[X1, . . . ,Xn]
are those which are determined by proofs of A. We are therefore interested in the

set of closed subschemes of SpecR, but in general this collection is not itself a scheme.

However, the set of particular closed subschemes of projective space does form a scheme,

the Hilbert scheme. Moreover, the algebraic model of MLL is easily made projective, as

we will explain in due course.

For affine schemes the categorical product is easy to understand, as A1 ×A1 ≅ A2. For

projective schemes, the situation is rather different; if we let P1 denote the projective

scheme Proj(k[X ′,X]) then P1 ×P1 /≅ P2. There does exist however a closed embedding

P1 × P1 Ð→ P3. For affine schemes, the correspondence between closed subschemes and

ideals is one-to-one, the analogous statement about projective schemes and graded1

k-algebras is given as follows.

Proposition 3.1. Let A be a k-algebra.

• If Y is a closed subscheme of Pr (for some r ≥ 1) then there is a homogeneous

ideal I ⊆ S = A[x0, . . . , xr] such that Y ≅ ProjS/I. Moreover, if I is saturated

(Definition 3.3) then I is uniquely determined by Y.

• A scheme Y over SpecR, with R a k-algebra, is projective if and only if it is

isomorphic to ProjS for some graded ring S, where the degree 0 elements S0 are

given by R, and S is finitely generated by the degree 1 elements S1 as an S0-algebra.

Proof. See [30, II Corollary 5.16].

Definition 3.3. Let I ⊆ k[x0, . . . , xn] be a homogeneous ideal. The saturation I of I

is

I = {s ∈ k[x0, . . . , xn] ∣ ∀i = 0, . . . , r,∃n > 0 such that xni s ∈ I}. (3.1)

1All graded algebras in this chapter are N-graded
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If I = I then I is saturated.

We replace A1 × A1 with P3 and following this, all the geometry corresponding to the

polynomials arising fromMLL can easily be made projective. In projective space, if T is a

graded k-algebra such that ProjT ≅ Pr, for some r, then particular closed subschemes of

Pr can be parameterised by the Hilbert schemeHT of T . More precisely, the construction

of the Hilbert scheme begins with the Hilbert functor. Recall that a for R a ring and

M and R-module, and k > 0 an integer, M is locally free of rank k if there exists

n > 0, f1, . . . , fn ∈ R such that for all i = 1, . . . , n, Mfi is a free Rfi-module of rank k. If

T is a graded k-algebra, and h ∶ N Ð→ N is some choice of function, then the Hilbert

functor of T with respect to h is a functor Hh
T ∶ k−Alg Ð→ Set where Set is the category

of sets and functions. This functor maps a k-algebra R to the following set, where R⊗T
denotes ⊕d≥0R⊗ Ta:

Hh
T (R) = {I ⊆ R⊗ T ∣ I is homogeneous and ∀d ≥ 0,

(R⊗ Td)/Id is a locally free R-module

of rank h(d)}.

It was first proved by Grothendieck in [28] that there exists a scheme, which we denote by

Hh
T , representing this functor. That is, there is a natural isomorphism for all R ∈ k−Alg

Hh
T (R) ≅ HomSch

k
(Spec(R),Hh

T ) (3.2)

where Sch
k
is the category of schemes X Ð→ Speck over Speck and morphisms of

schemes commuting over Speck. We provide a detailed definition of this scheme in

Section 3.1.2.2, and in Appendix D.6 we provide a construction. This particular version

of the Hilbert scheme along with its construction is first written down in [29].

The foundation of our theory is the observation that all MLL proofs induce homogeneous

ideals of graded k-algebras of the correct form. The guiding philosophy for interpreting

shallow proofs is that !A is the “space of proofs of A”. For example, if we consider a

proof π consisting simply of an Axiom-link

Ax

c c

¬X X

then we have attributed to π the ideal (X1 −X2) ⊆ k[X1,X2] ≅ k[X]⊗kk[X]. Geomet-

rically, this corresponds to the closed subscheme given by the diagonal ∆A1 Ð→ A1 ×A1

which we replace with the diagonal of projective schemes ∆P1 Ð→ P1 × P1 (which we

ultimately post-compose with the closed embedding P1 × P1 Ð→ P3 mentioned earlier).
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To understand this algebraically, we use the fact that there exists an operator ×k such

that for graded k-algebras S,T we have Proj(S ×k T ) ≅ ProjS ×ProjT .

Definition 3.4. Let S,T be graded k-algebras. We define their Cartesian product,

denoted S ×k T , to be the following graded k-algebra: as a k-module it is the sum of

the images of the k-module morphisms Sd ×k Td Ð→ S ⊗k T for all d ≥ 0. This is a

k-subalgebra of S ⊗k T which is a graded k-algebra with grading (S ×k T )d ≅ Sd ⊗k Td
for d ≥ 0.

Proposition 3.2. Let S,T be graded k-algebras, and suppose that S is generated by S1

as an S0-algebra and that T is generated by T1 as a T0-algebra. Then Proj(S ×k T ) ≅
ProjS ×k ProjT .

Proof. See [30, Exercise 5.11].

We remark that

Proj ((k[X ′
1,X1] ×k k[X ′

2,X2])/(X1X
′
2 −X ′

1X2)) ≅∆P1 . (3.3)

So the equation X1 −X2 ∈ k[X1,X2] has been replaced by the equation X1X
′
2 −X ′

1X2 ∈
k[X ′

1,X1] ×k k[X ′
2,X2]. We notice that I = (X1X

′
2 − X ′

1X2) is such that I ∈ Hh
T (k)

where T = k[X ′
1,X1] ×k k[X ′

2,X2] and h is the Hilbert function of I ⊆ T . We show in

Lemma 3.15 that for any MLL proof net π there exists a Hilbert function h, a graded

k-algebra T , and a k-algebra R such that Iπ ∈ Hh
T (R). We therefore interpret !A as

HT =∐h∈HHh
T where H is the set of all Hilbert functions.

In Definition 3.27, for each reduction γ ∶ π Ð→ π′, if X(π),X(π′) denote respectively

the corresponding (locally) closed subschemes of π,π′, we give a pair of morphisms of

schemes Sγ ∶ X(π) Ð→ X(π′), Tγ ∶ X(π′) Ð→ X(π). Our main result is Theorem 3.31

which states that the morphisms Sγ , Tγ are mutually inverse isomorphisms.

3.1.1 Projective schemes

We provide background material on projective schemes. We assume the reader has a

working knowledge of affine schemes over an algebraically closed field, but for a reminder

see Appendix D.1.

Let S =⊕d≥0 Sd be a graded ring and I ⊆ S an ideal.

Definition 3.5. The irrelevant ideal S+ of S is⊕d>0 Sd. The ideal I is homogeneous

if

I =⊕
d≥0
(I ∩ Sd). (3.4)



Algebraic Geometry and Linear Logic 65

Given a graded ring S, we let ProjS denote the set of homogeneous prime ideals of S

which do not contain S+. We denote by V (I) the set

V (I) = {p ∈ ProjS ∣ p ⊇ I}. (3.5)

For each p ∈ ProjS we consider the ring S(p) of elements of degree zero in the localisation

ring K−1S where K is the multiplicatively closed set of homogeneous elements which

are not in p. For any open subset U ⊆ ProjS we define O(U) to be the following set

OProjS(U) = {s ∶ U Ð→∐S(p) ∣ ∀p ∈ U, s(p) ∈ S(p), and there exists

a neighbourhood U ⊇ V ∋ p and homogeneous

a, f ∈ S, of equal degree such that ∀q ∈ V,

f /∈ q and s(q) = a/f ∈ S(p)}.

Proposition 3.3. For any p ∈ ProjS, the stalk Op ≅ S(p), where S(p) denotes the degree

0 elements of Sp.

Moreover, for any homogeneous f ∈ S+, let D+(f) denote {p ∈ ProjS ∣ f /∈ p} then D+(f)
is open and

(D+(f),O∣D+(f)) ≅ SpecS(f). (3.6)

Proof. See [30].

Given any p ∈ ProjS, since p /⊇ S+ there exists f ∈ S+ such that f /∈ p. Thus p ∈ D+(f).
This shows that the collection {D+(f)}f∈S+ cover ProjS. It follows that ProjS is a

scheme.

Remark 3.4. In the particular case S = k[x0, . . . , xn], we have for all i = 0, . . . , n

k[x0, . . . , xn](xi) ≅ k[x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi]

and so Projk[x0, . . . , xn] is canonically covered by affine schemes of polynomial rings

Speck[x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi]Ð→ Projk[x0, . . . , xn]. (3.7)

Given two k-algebras A,B (not necessarily graded), and a homomorphism φ ∶ A Ð→ B

there is a corresponding morphism of schemes SpecB Ð→ SpecA. The corresponding

statement for projective schemes is given by the following lemma.
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Lemma 3.5. Let T,S be two graded k-algebras and φ ∶ T Ð→ S a graded homomorphism

preserving degrees. Let U ⊆ ProjS denote the set {p ∈ ProjS ∣ p /⊇ φ(T+)}. Then U is

open and φ induces a morphism of schemes U Ð→ ProjT .

Proof. Let p ∈ ProjS. Say p ⊇ S+, then φ−1(p) ⊇ φ−1(S+) = T+ which implies p ⊇
φ(φ−1(p)) ⊇ φ(T+). Thus we have a well defined map U Ð→ ProjT .

Definition 3.6. We write Pn for Projk[x0, . . . , xn].

Given k-algebras S,T , the scheme Proj(S ⊗k T ) is covered by open subsets D+(f ⊗ g)
for f ∈ S, g ∈ T homogeneous of the same degree d > 0. The following are well-defined

morphisms of k-algebras

φf,g ∶ S(f) Ð→ (S ×k T )f⊗g ψf,g ∶ T(g) Ð→ (S ×k T )f⊗g
s

fn
z→ s⊗ gn
(f ⊗ g)n

t

gn
z→ fn ⊗ t
(f ⊗ g)n

If h ∈ S, k ∈ T are homogeneous of the same positive degree then the following diagram

commutes

S(f) (S ×k T )(f⊗g) T(g)

S(fh) (S ×k T )(fh⊗gk) T(gk)

φf,g ψf,g

φfh,hk ψfh,gk

(3.8)

By Lemma 3.5, the morphisms Spec(φf,g),Spec(ψf,g) glue to give morphisms of schemes

over Speck:

ϕ ∶ Proj(S ×k T )Ð→ ProjS, ψ ∶ Proj(S ×k T )Ð→ ProjT. (3.9)

From this, it is easy to prove Proposition 3.2.

Corollary 3.7. Fix integers m,n ≥ 1. There is a canonical closed immersion Pm ×k
Pn Ð→ P(n+1)(m+1)−1 of schemes over k, called the Segre embedding.

Proof. Consider the following morphism of graded k-algebras

γ ∶ k[{zij ∣ 0 ≤ i ≤m,0 ≤ j ≤ n}]Ð→ k[x0, . . . , xm] ×k k[y0, . . . , yn]

zij z→ xi ⊗ yi

which is surjective since the latter ring is generated as a k-algebra by the elements xi⊗yi.
Therefore the morphism of k-schemes induced by γ and Lemma 3.5 is the desired closed

immersion.
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Corollary 3.8. Fix n > 0. There exists a closed immersion ∏ni=1 P1 Ð→ P2n−1.

Proof. Consider the following homomorphism of k-algebras.

γ ∶ k[{zi1...in ∣ ∀j = 1, . . . , n, ij ∈ {0,1}}]Ð→ k[x01, x11] ×k . . . ×k k[x0n, x1n]

zi1...in z→ xi11 ⊗ . . .⊗ xjnn

which is surjective.

3.1.2 Properties of the Hilbert scheme

Section 3.2 differs from the original Geometry of Interaction paper [24] where rather

than interpreting exponentials using the Hilbert scheme, Girard interpreted exponentials

using the Hilbert hotel.

To understand the geometry of the model to be defined in Section 3.2 one need not

first aquire a knowledge of the Hilbert scheme’s construction, but one must understand

some of its properties. We have organised this chapter so that the minimal theory of the

Hilbert scheme required to understand our model is presented first and then the algebraic

geometry involving the construction of the Hilbert scheme is delayed till Appendix D.5.

3.1.2.1 The Grassmann scheme

Definition 3.9. Let X be a scheme. We denote the following functor by hX :

hX ∶ k −Alg Ð→ Set

R z→ HomSch
k
(SpecR,X)

and which maps a homomorphism of k-algebras f ∶ R Ð→ T to the composition map

f̂ ○ (−) ∶ Hom(SpecR,X) Ð→ Hom(SpecT,X) which maps a morphism of schemes

g ∶ SpecR Ð→X to the composite f̂ ○ g, where f̂ ∶ Spec ∶ T Ð→ SpecR is induced by f .

If F ∶ k −Alg Ð→ Set is a functor and there exists a scheme X such that F ≅ hX , then
F is representable and is represented by X.

Let R be a k-algebra. Let n > 0, 0 < k < n and define the set

Gkn(R) = {L ⊆ Rn ∣ L is an R submodule, and

Rn/L is a locally free R-module of rank k}.



Algebraic Geometry and Linear Logic 68

Example 3.1. Consider the C-algebra C2. Then for any C-algebra R we have R⊗CC2 ≅
R2. Let e1, e2 be the standard R-basis for R2 and consider the short exact sequence

0 SpanR{e1 − e2} R2 R 0.

We have SpanR{e1 − e2} ∈ G1
2(R).

Given an element L ∈ Gkn and a k-algebra homomorphism ϕ ∶ R Ð→ S we can tensor the

following short exact sequence

0 L Rn Rn/L 0. (3.10)

by S over R and obtain a new short exact sequence which is isomorphic (as localisation

commutes with tensor product) to the following.

0 S ⊗R L Sn Sn/(S ⊗R L) 0.

It follows that Sn/(S ⊗k L) is locally free if Rn/L is. Thus we have a well defined map

Gkn(R) Ð→ Gkn(S) ∶ L z→ S ⊗R L which is denoted Gkn(ϕ) and in this way Gkn extends

to a functor.

Definition 3.10. The functor Gkn ∶ k −Alg Ð→ Set is the Grassmann Functor.

Let {ei1 , . . . , eik} be a size k subset of {e1, . . . , en}, the standard basis vectors of Rn,

with i1 < . . . < ik. Amongst the elements of Gkn(R) are the modules L ∈ Gkn(R) such that

Rn/L has basis {[ei1]L, . . . , [eik]L}, where for j = 1, . . . , k, [eij ]L denotes the image of

ei ∈ Rn under the standard quotient map Rn Ð→ Rn/L. Fix a subset B = {ei1 , . . . , eik} ⊆
{e1, . . . , en}, we will denote by [B]L the set {[ei1]L, . . . , [eik]L}.

Definition 3.11. Let B = {ei1 , . . . , eik} be a size k subset of {e1, . . . , en}. Define the

following subset

Gkn/B(R) ∶= {L ∈ G
k
n(R) ∣ Rn/L is free with R-basis [B]L} ⊆ Gkn(R). (3.11)

This defines a full subfunctor of Gkn.

Lemma 3.6. The functor Gkn/B is represented by

Speck[{zji ∣ 1 ≤ i ≤ k,1 ≤ j ≤ n − k}]. (3.12)
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Proof. Fix a k-algebra R. If L ∈ Gkn/B then for each eij /∈ B we have

[eij ] =
k

∑
l=1
αj,l[eil] (3.13)

for some coefficients αj,l ∈ R. The data of these coefficients is equivalent to a k-algebra

morphism

k[{zji }]Ð→ R (3.14)

which in turn is equivalent to a morphism SpecR Ð→ Speck[{zji }].

Proposition 3.7. For all n > k > 0, the functor Gkn is represented by a closed subscheme

of P(
n
k
)−1.

Proof. See Appendix D.5.

Definition 3.12. We denote the projective scheme representing the functor Gkn by Gkn.

This is the Grassmann scheme.

Remark 3.8. To summarise our notation, we have defined the Grassmann functor Gkn

which is represented by the Grassmann scheme Gkn, i.e, there exists a natural isomor-

phism hGk
n
≅ Gkn.

3.1.2.2 The Hilbert scheme

We follow [29].

Definition 3.13. A graded k-module with operators is a pair (T,F ) consisting of

a graded k-module

T =⊕
d∈N

Td (3.15)

and a family of operators

F = ⋃
d,e∈N

Fd,e, where ∀d, e ∈ N, Fd,e ⊆ Hom(Td, Te). (3.16)

Definition 3.14. Let (T,F ) be a graded k-module with operators. A graded submodule

L =⊕
d∈N

Ld ⊆ T (3.17)

is an F -submodule if Fd,e(Ld) ⊆ Le for all d, e ∈ N.

Example 3.2. If T is a graded k-algebra, then any homogeneous ideal is a homogeneous

F -module when the family {Fd,e}d,e∈N is taken to be the set of all multiplications by

monomials of degree e − d.
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Definition 3.15. If (T,F ) is a graded k-module with operators and D ⊆ N is a subset

of the degrees, we denote by (TD, FD) the graded k-module with operators where

TD =⊕
d∈D

Td, FD = {Fd,e ∈ F ∣ d, e ∈D } . (3.18)

Let R be a commutative k-algebra. Notice that if (T,F ) is a graded k-module with

operators, then so is

R⊗ T ∶=⊕
d∈N

R⊗ Td (3.19)

when paired with the operators F̂ = {idR⊗Fd,e}d,e∈N. We define the set

Hh
T (R) = {F − submodules L ⊆ R⊗ T ∣ ∀d ∈ N, (R⊗ Td)/Ld is

locally free of rank h(d)}.

Let ϕ ∶ R Ð→ S be a k-algebra homomorphism. Let f1, . . . , fn ∈ R be a set of elements

generating the unit ideal. Then for any d ∈ N and any i = 1, . . . , n there is a short exact

sequence

0 (Ld)fi (R⊗ Td)fi (R⊗ Td/Ld)fi 0. (3.20)

By tensoring with S over R we obtain a similar short exact sequence. The function

LÐ→ S ⊗L is denoted Hh
T (ϕ)

Hh
T (ϕ) ∶Hh

T (R)Ð→Hh
T (S). (3.21)

It is easy to see that Hh
T ∶ k −Alg Ð→ Set is a functor.

Definition 3.16. The functor Hh
T is the Hilbert functor.

Definition 3.17. Let D ⊆ N. The restriction is the following natural transformation

ResTD ∶Hh
T Ð→Hh

TD
which maps an element L ∈Hh

T (R) to the restriction LD =⊕d∈D Ld.

Theorem 3.18. Let (T,F ) be a graded k-module with operators. Let h ∶ N Ð→ N be a

function such that ∑d∈N h(d) <∞. Suppose M ⊆ N ⊆ T are homogeneous k-submodules

satisfying:

• N is a finitely generated k-module.

• N generates T as an F -module.

• For every field K ∈ k −Alg and every L ∈ Hh
T (K), M generates (K ⊗ T )/L as a

K-module.
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• There is a subset G ⊆ F so that G is the closure of F under composition and G is

such that GM ⊆ N .

Then Hh
T is represented by a quasiprojective scheme Hh

T .

Proof. See [29, Theorem 2.2]. We also reproduce this proof in Appendix D.6.

Theorem 3.18 only holds when h is such that ∑d∈N h(d) < ∞ because we construct Hh
T

as a subscheme of Grn, for some r > ∑d∈N h(d). We wish to work with graded polynomial

rings k[x0, . . . , xn] where the associated Hilbert function is not of finite support. Our

method will be to construct a subset D ⊆ N and exhibit the Hilbert functor Hh
T as a

subfunctor of Hh
TD

, and relate to this a closed embedding of schemes Hh
T Ð→Hh

TD
.

Proposition 3.9. Let d > 0, c > 0. There exists a unique expression

c = (kd
d
) + (kd−1

d − 1
) + . . . + (kδ

δ
) (3.22)

where kd > kd−1 > . . . > kδ ≥ δ > 0.

Proof. See [2].

Definition 3.19. The d-binomial expansion of c is the unique expansion given by

(3.22).

The dth Macaulay difference set of c, Md(c) is defined as the tuple

Md(c) = (kd − d, dd−1 − (d − 1), . . . , kδ − δ). (3.23)

We note that the data of the d-binomial expansion of c is equivalent to that of the dth

Macaulay difference set of c.

Example 3.3. The following is the 4-binomial expansion of 27:

27 = (6
4
) + (5

3
) + (2

2
) + (1

1
) (3.24)

This has 4th Macaulay difference set (2,2,0,0).

Definition 3.20. Let c > 0, d > 0, and let kd > kd−1 > . . . > kδ ≥ δ > 0 be the integers

involved in the d-binomial expansion of c. Define the following natural number

c⟨d⟩ = (kd + 1

d + 1
) + (kd−1 + 1

d
) + . . . + (kδ + 1

δ + 1
). (3.25)
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The upper pointy bracket d is the function

(−)⟨d⟩ ∶ NÐ→ N

cz→ c⟨d⟩.

Remark 3.10. The dth Macaulay difference set of c and the (d+1)th Macaulay difference

set of c⟨d⟩ are equal.

Proposition 3.11. Fix n > 0 and a homogeneous ideal I ⊆ k[x0, . . . , xn]. Let h be the

Hilbert function of I. There exists an integer j such that for all d ≥ j we have

h(d + 1) = h(d)⟨d⟩. (3.26)

Proof. See [2, Section 2].

Corollary 3.21. Let I ⊆ k[x0, . . . , xn] be homogeneous with Hilbert function h. Let j

be the integer such that for all d ≥ j we have (3.26). Then for all d ≥ j the dth Macaulay

difference set of h(d) is equal to the jth Macaulay difference set of h(j).

Proof. By induction on d ≥ j. Say d ≥ j and that the dth Macaulay difference set of

h(d) is equal to the jth Macaulay difference set of h(j). Then by Remark 3.10 we have

the (d + 1)th Macaulay difference set of h(d)⟨d⟩ is equal to the dth Macaulay difference

set of h(d). By Proposition 3.11 h(d)⟨d⟩ = h(d + 1). Therefore the (d + 1)th Macaulay

difference set of h(d + 1) is equal to the dth Macaulay difference set of h(d).

Definition 3.22. Let I ⊆ k[x0, . . . , xn] be a homogeneous ideal. The Gotzmann

number G(I) of I ⊆ k[x0, . . . , xn] is the number of elements in the eventually constant

dth Macaulay difference set of h(d).

Example 3.4. Consider the Segre embedding (Corollary 3.7) Seg ∶ P1×P1 Ð→ P3 and the

canonical closed embedding of the diagonal ι ∶∆Ð→ P1 ×P1. Since these are both closed

embeddings, so is their composite Seg ι ∶ ∆ Ð→ P3. This closed embedding corresponds

uniquely to a saturated homogeneous ideal I ⊆ S = k[Z00, Z01, Z10, Z11] (Proposition 3.1).

This ideal I is

I = (Z01 −Z10, Z00Z11 −Z01Z10). (3.27)

We calculate the Gotzmann number of I ⊆ S. First we calculate the Hilbert function.

We can calculate the Hilbert function of I ⊆ S directly by using a minimal free graded

resolution of S/I. Let f = Z01 − Z10, g = Z00Z11 − Z01Z10. Then we have the following

minimal free graded resolution, where for d > 0 the notation S(d) denotes the graded
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k-algebra S with degree shifted by d:

0 S(−3) S(−1)⊕ S(−2) S S/I 0.
g−f (f g)) 1

Thus for any d ≥ 0:

0 = dimS(−3)d − dimS(−1)d − dimS(−2)d + dimSd − dim(S/I)d
= dimSd−3 − dimSd−1 − dimSd−2 + dimSd − dim(S/I)d.

In general, if S′ = k[x1, . . . , xn] then the dimension of S′d is the number of monomials

in n variables of degree d. This number is

dimS′d = (
n + d − 1

d
). (3.28)

Here, n = 3 and so:

dim(S/I)d = (
d

d − 3
) − (d + 2

d − 1
) − (d + 1

d − 2
) + (d + 3

d
) (3.29)

which is equal to 2d+ 1. So the Hilbert function of I is h ∶ NÐ→ N, h(d) = 2d+ 1. Notice

that

2d + 1 = (d + 1

d
) + ( d

d − 1
). (3.30)

By uniqueness of such expressions (Proposition 3.9) it follows that the Macaulay differ-

ence set is (1,1) and the Gotzmann number G(I) of I is 2.

Definition 3.23. Let D ⊆ N. We say that D is supportive if the canonical mor-

phism Hh
S Ð→ Hh

SD
is a closed embedding. It is very supportive if Hh

S Ð→ Hh
SD

is an

isomorphism (see [29, Corollary 3.4]).

For the remainder of this Section let S = k[x0, . . . , xn] for some fixed n > 0.

Proposition 3.12. Let I ⊆ S be a homogeneous ideal with Hilbert function h. Let G(I)
denote the Gotzmann number of I ⊆ S. Then the set {G(I)} is supportive and the set

{G(I),G(I) + 1} is very supportive.

Proof. See [29, Proposition 4.2].

Corollary 3.24. Let I ⊆ S be a homogeneous ideal with Hilbert function h. Let G(I)
denote the Gotzmann number of I ⊆ S and let D = {G(I)}. Denote by r, s the following

integers

r = (n +G(I) − 1

G(I) ), s = ( r

h(G(I))). (3.31)
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There exists a composable sequence of closed embeddings

Hh
S Ð→Hh

SD
Ð→ Gh(G(I))r Ð→ Ps−1. (3.32)

In particular, Hh
S is projective.

It follows from Proposition 3.1 that for h ∶ N Ð→ N there exists a homogeneous ideal

I ⊆ S such that Proj(S/I) ≅ Hh
S . Explicit equations for such an ideal were first given

by Iarrobino and Kleiman in [35]. There is another presentation due to Bayer, see [29,

Section 4] for a comparison.

Remark 3.13. We only consider shallow proofs (Definition 3.2) in this chapter, for which

the details of the embedding (3.32) are not necessary, though we will use that Hh
S is

projective. It is due to the fact that we work with shallow proofs that we only need to

know that Hh
S is projective. In order to extend the model of Section 3.2 to all of MELL

it seems necessary to prove certain properties of at least one of the sets of equations

which define an ideal I such that Proj(S/I) ≅Hh
S . Due to time limits, we have withheld

from this investigation, but we believe it would be interesting to extend our model to

MELL using a deeper knowledge of (3.32). We comment on this again in Remark 3.16

and in Section 3.3.

3.2 Exponentials

Definition 3.25. Let H denote the set of all Hilbert functions h ∶ NÐ→ N.

Recall from Definition 3.2 that a proof is shallow if all of its formulas have depth ≤ 1.

Definition 3.26. Let A be a shallow formula. The scheme of A, S(A), is defined

inductively to be a disjoint union of projective spaces as follows:

• If A = (X,x) then S(A) = P1.

• If A = A1 ⊗ A2, then say S(A1) = ∐i∈I Pri ,S(A2) = ∐j∈J Psj . Recall by Corol-

lary 3.7 there exists for each pair (i, j) ∈ I × J a closed embedding Pri × Psj Ð→
P(ri+1)(sj+1)−1. We define

S(A) =∐
i∈I
∐
j∈J

P(ri+1)(sj+1)−1. (3.33)

• If A =!B with A linear. If m denotes the number of unoriented atoms of B then

S(B) = P2m−1. By Proposition 3.12 there exists for each h ∈ H an integer sh > 0
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and a closed embedding Hh
S Ð→ Psh . We define

S(A) = ∐
h∈H

Psh . (3.34)

Definition 3.27. Each edge e of a proof net π is labelled by a formula Ae. The ambient

scheme of π denoted S(π) is the product of all schemes of formulas ranging over all

edges e in π. That is, let Eπ denote the set of edges of π then

S(π) = ∏
e∈Eπ

S(Ae). (3.35)

Definition 3.28. For every pair of formulas A,B, write S(A) =∐i∈I Pri ,S(B) =∐j∈J Psj

and fix an isomorphism, for ⊠ ∈ {⊗,`}

ϕM ∶ S(A ⊠B)Ð→∐
i∈I
∐
j∈J

P(ri+1)(si+1)−1. (3.36)

For any Hilbert function h ∈H let sh > 0 be such that S(?A) =∐h∈H Psh , fix an isomor-

phism

ϕD ∶ S(?A) × S(A)Ð→ ∐
h∈H

Psh × S(A). (3.37)

For every sequence i = 1, . . . , n, every set of formulas ?A1, . . . , ?An, with S(?Ai) =
∐hi∈H Pshi , and every linear formula B we fix an isomorphism

ϕP1 ∶
n

∏
i=1

S(?Ai) × S(B)Ð→ ∐
h1∈H

. . . ∐
hn∈H

n

∏
i=1

Pshi × S(B). (3.38)

For S(!B) =∐h∈H Psh we fix an isomorphism

ϕP2 ∶
n

∏
i=1

S(?Ai) × S(!B)Ð→ ∐
h1∈H

. . . ∐
hn∈H

∐
h∈H

n

∏
i=1

Pshi × Psh . (3.39)

Let l be a link of a shallow proof net π. If l is not a Promotion-link then let Ll denote
the set of edges incident to l. If l is a Promotion-link then let Ll denote the set of edges

which are conclusions to the Promotion-link and all associated Pax-links. We define a

closed subscheme X(l) of ∏e∈Ll
S(Ae) along with a closed embedding

ιl ∶ X(l)Ð→ ∏
e∈Ll

S(Ae). (3.40)

Conclusion-link
...

c

A
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Then we define X(l) to be the identity closed subscheme S(A) of S(A) and take ιl to be

the identity morphism

ιl ∶ X(l) = id ∶ S(A)Ð→ S(A). (3.41)

Axiom or Cut-link

Ax
...

...

...
... Cut

¬A A

¬A A

In both cases, we use the fact that S(¬A) = S(A). We define X(l) to be the diagonal

∆S(A) and define ιl to be the canonical embedding

ιl ∶∆S(A) Ð→ S(¬A) × S(A). (3.42)

Tensor or Par-link ⊗,`.

...
...

...
...

⊗ `

...
...

A B

A⊗B

A B

A`B

Let ⊠ ∈ {⊗,`}. Say S(A) = ∐i∈I Pri ,S(B) = ∐j∈J Psj . For each pair (i, j) ∈ I × J there

exists the Segre embedding

Pri × Psj Ð→ P(ri+1)(sj+1)−1. (3.43)

We compose with the canonical inclusion morphisms to obtain

Pri × Psj Ð→∐
i∈I
∐
j∈J

P(ri+1)(sj+1)−1 = S(A ⊠B). (3.44)

By the universal property of the coproduct this induces a morphism

∐
i∈I
∐
j∈J

Pri × Psj Ð→ S(A ⊠B) (3.45)

which we pre-compose with ϕ−1M to obtain

f ∶ S(A) × S(B)Ð→ S(A ⊠B). (3.46)
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We take the graph of f , Γf to be X(l) and the canonical inclusion to be ιl:

ιl ∶ X(l) = Γf Ð→ S(A) × S(B) × S(A ⊠B). (3.47)

Dereliction-link.
...

?

...

A

?A

We have assumed that π is shallow, and so A is linear. Thus if m denotes the num-

ber of unoriented atoms of A then S(A) = P2m−1. Let S denote the graded k-algebra

k[x0, . . . , x2m−1]. For each h ∈H there exists an integer sh such that S(?A) =∐h∈H Psh .
Fix h ∈H, let U = SpecR denote an open affine of Hh

S , and consider the bijection

ψ ∶HS
h(R) ≅ HomSch

k
(U,Hh

S) (3.48)

coming from representability of the functor HS
h.

Associated to the inclusion U Ð→ Hh
S is an element I ∈ Hh

S(R). This is a homogeneous

ideal of R⊗ S with Hilbert function h. This in turn corresponds to a closed embedding

UU = Proj((R⊗ S)/I)Ð→ Proj(R⊗ S) ≅ SpecR × S(A). (3.49)

By glueing along all open affines U ⊆Hh
S we obtain a closed subscheme

ι ∶ Uh Ð→Hh
S × S(A). (3.50)

We post-compose with the product of the embedding Hh
S Ð→ Psh and the identity

id ∶ S(A)Ð→ S(A):
Uh Ð→ Psh × S(A). (3.51)

We post-compose with the canonical inclusion to obtain a closed embedding

Uh Ð→ ∐
h∈H
(Psh × S(A)). (3.52)

We post-compose with ϕ−1D to obtain a closed embedding

Uh Ð→ S(?A) × S(A). (3.53)
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By the universal property of the coproduct, this induces a morphism

ιl ∶ X(l) = ∐
h∈H

Uh Ð→ S(?A) × S(A). (3.54)

Promotion-link.
● ●

...
...

...

● Pax . . . Pax ! ●

...
...

...

!B?A1 ?An

?A1 ?An B (3.55)

Let ζ denote the proof net in the interior of the box and let Lζ denote the set of links

of ζ. For each link l ∈ Lζ , the scheme X(l) is a subscheme of some product of schemes

associated to some edges of ζ. Let Ecl denote the edges of ζ which are not in Ll, and let

Ae denote the formula labelling an edge e. Then there is a closed subscheme

∏
e∈Ec

l

S(Ae) ×X(l)Ð→ S(ζ). (3.56)

We identify X(l) with this subscheme.The intersection of the subschemes associated to

link l ∈ Lζ gives a closed subscheme X(ζ) = ⋂l∈Lζ
X(l)Ð→ S(ζ).

For each i = 1, . . . , n let {shi}hi∈H denote a set of integers so that

S(?Ai) = ∐
hi∈H

Pshi . (3.57)

We fix an element h = (h1, . . . , hn) ∈Hn and consider the product of projective schemes

∏ni=1 Pshi . For each i = 1, . . . , n we let Ui = SpecRi be an open affine chart of Hhi
Si
, where

Si = k[x0, . . . , x2mi−1] where mi is the number of unoriented atoms of Ai. Post-compose

this with the inclusions Hhi
Si
Ð→ Phsi , take the product with id ∶ S(B)Ð→ S(B) and take

the product over all i = 1, . . . , n to obtain:

n

∏
i=1
Ui × S(B)Ð→

n

∏
i=1

Phsi × S(B). (3.58)

We post-compose this with the canonical inclusion morphisms of the coproduct to obtain

n

∏
i=1
Ui × S(B)Ð→ ∐

h1∈H
. . . ∐

hn∈H

n

∏
i=1

Pshi × S(B) (3.59)
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which we post-compose with ϕ−1
P1 to obtain the following.

n

∏
i=1
Ui × S(B)Ð→

n

∏
i=1

S(?Ai) × S(B). (3.60)

We prove in Lemma 3.15 below that composing ιζ ∶ X(ζ) Ð→ S(ζ) with the projection

ρConc ∶ S(ζ)Ð→∏ni=1 S(?Ai) × S(B) induces a closed embedding

X(ζ) ∏ni=1 S(?Ai) × S(B).
ρConcιζ

(3.61)

We next consider the scheme Yh such that the following is a pullback diagram

∏ni=1Ui × S(B) ∏ni=1 S(?Ai) × S(B)

Yh X(ζ)

ρConcιζ (3.62)

Let R =⊗n
i=1Ri and fix a choice of isomorphism

δ ∶
n

∏
i=1
Ui Ð→ SpecR. (3.63)

Letm denote the number of unoriented atoms of B and let S denote the graded k-module

k[x0, . . . , x2m−1]. We fix another isomorphism

δ′ ∶ SpecR × S(B)Ð→ Proj(R⊗k S) (3.64)

where R⊗k S is graded with R taken in degree 0. Consider the composition

∏ni=1Ui × S(B) SpecR × S(B) Proj(R⊗ S)
δ×idS(B) δ′

It follows that there exists a homogeneous saturated ideal I ⊆ R⊗S such that Proj((R⊗
S)/I) ≅ Yh. We justify in Lemma 3.15 below that for all d ≥ 0 the R-module (R⊗S/I)d
is locally free of rank h(d), where h is the Hilbert function of I ⊆ R⊗S. Thus I ∈Hh

S(R).
By the universal property of the Hilbert scheme, the ideal I corresponds to a morphism

SpecR Ð→Hh
S . (3.65)

We pre-compose this with δ−1 to obtain

n

∏
i=1
Ui Ð→Hh

S . (3.66)

This is a morphism depending on choices of open affines U1, . . . , Un of Hh1
S1
, . . . ,Hhn

Sn

respectively. By ranging over all such choices we obtain a family of morphisms which
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we can glue to obtain the following

f ∶
n

∏
i=1
Hhi
Si
Ð→Hh

S . (3.67)

We consider the graph of this

Γf Ð→
n

∏
i=1
Hhi
Si
×Hh

S . (3.68)

For each i = 1, . . . , n there is a fixed choice (3.32) of closed embedding Hhi
Si
Ð→ Pshi .

Similarly for each h ∈H there is a fixed choice of closed embedding Hh
S Ð→ Psh for some

sh. We post-compose with the product of these to obtain

Γf Ð→
n

∏
i=1

Pshi × Psh . (3.69)

We then post-compose with the canonical inclusion morphisms to obtain

Γf Ð→ ∐
h1∈H

. . . ∐
hn∈H

∐
h∈H

n

∏
i=1

Phi × Psh . (3.70)

We post-compose with ϕ−1
P2 to obtain to obtain

ιl ∶ X(l) = Γf Ð→
n

∏
i=1

S(?Ai) × S(!B). (3.71)

Weakening-link

Weak

...

?A

We take the empty subscheme ∅ for X(l) and the unique morphism ∅Ð→ S(!A) for ιl

ιl ∶ X(l) = ∅Ð→ S(!A). (3.72)

Contraction-link
...

...

Ctr

...

?A ?A

?A
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Let Γ∆ be the graph of the diagonal ∆ ∶ S(?A) Ð→ S(?A) × S(?A). We take this to be

X(l), and ιl to be the canonical inclusion

ιl ∶ X(l) = Γ∆ Ð→ S(?A) × S(?A) × S(?A). (3.73)

Pax-link.
...

Pax

...

?A

?A

We take the diagonal ∆ to be X(l) and ιl to be the canonical inclusion.

ιl ∶ X(l) =∆Ð→ S(A) × S(A). (3.74)

Lemma 3.14. Let ζ be an MLL proof net with conclusions A1, . . . ,An. Then if ρConc ∶
S(ζ)Ð→∏ni=1 S(Ai) denotes the standard projection, then the following composite

X(ζ) S(ζ) ∏ni=1 S(Ai)
ιζ ρConc

(3.75)

is a closed embedding.

Proof. Fix a choice of i ∈ {1, . . . , n} and let X1 be an unoriented atom in Ai. Then there

exists an integer j ∈ {1, . . . , n} and an unoriented atom X2 of Aj such that X1 and X2

are two end points of a common persistent path. Say i = j = 1. Let X3, . . . ,Xm denote

the remaining unoriented atoms of A1 (where we allow for the possibility that there are

none of these). Consider the diagonal

∆1,2 Ð→ P1 × P1. (3.76)

We take the product of this with m−2 copies of the identity idP1 ∶ P1 Ð→ P1 to form the

closed embedding

∆1,2 ×
m−2
∏
i=1

P1 Ð→
m

∏
i=1

P1. (3.77)

We post-compose this with Segre embedding ∏mi=1 P1 Ð→ P2m−1 to form the closed em-

bedding

∆1,2 ×
m−2
∏
i=1

P1 Ð→ P2m−1 = S(A1). (3.78)
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By taking the product of this with the product ∏ni=2 id ∶ ∏ni=2 S(Ai) Ð→ ∏ni=2 S(Ai) we
obtain a closed embedding

∆1,2 ×
m−2
∏
i=1

P1 ×
n

∏
i=2

S(Ai)Ð→
n

∏
i=1

P(Ai). (3.79)

By construction of X(π) we have the following commuting diagram

∆1,2 ×∏m−2i=1 P1 ×∏ni=2 S(Ai) ∏ni=1 S(Ai)

X(π)

The cases when i = j ≠ 1 and when i ≠ j are similar.

Lemma 3.15. Let ζ be a shallow proof with no Promotion-links and with conclusions

?A1, . . . , ?An,B. Then if ρConc ∶ S(ζ) Ð→ ∏ni=1 S(?Ai) × S(B) denotes the standard

projection, then the composition

X(π) S(ζ) ∏ni=1 S(?Ai) × S(B)
ιζ ρConc

(3.80)

is a closed embedding.

Also, for each i = 1, . . . , n let {shi}hi∈H denote a set of integers so that

S(?Ai) = ∐
hi∈H

Pshi . (3.81)

Fix an element h = (h1, . . . , hn) ∈ Hn and consider the product of projective schemes

∏ni=1 Pshi . For each i = 1, . . . , n we let Ui = SpecRi be an open affine chart of Hhi
Si
, where

Si = k[x0, . . . , x2mi−1] where mi is the number of unoriented atoms of Ai. Post-compose

this with the inclusions Hhi
Si
Ð→ Phsi , take the product with id ∶ S(B)Ð→ S(B) and take

the product over all i = 1, . . . , n to obtain:

n

∏
i=1
Ui × S(B)Ð→

n

∏
i=1

Phsi × S(B). (3.82)

Post-compose this with the canonical inclusion morphisms of the coproduct to obtain the

following:
n

∏
i=1
Ui × S(B)Ð→ ∐

h1∈H
. . . ∐

hn∈H

n

∏
i=1

Pshi × S(B). (3.83)

Post-compose with ϕ−1
P1 of Definition 3.27 to obtain the following.

n

∏
i=1
Ui × S(B)Ð→

n

∏
i=1

S(?Ai) × S(B). (3.84)
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By the first part of this lemma we have a closed embedding

X(ζ) ∏ni=1 S(?Ai) × S(B).
ρConcιζ

(3.85)

We next consider the pullback Yh in the diagram

∏ni=1Ui × S(B) ∏ni=1 S(?Ai) × S(B)

Yh X(ζ)

ρConcιζ (3.86)

Let R =⊗n
i=1Ri and fix a choice of isomorphism

δ ∶
n

∏
i=1
Ui Ð→ SpecR. (3.87)

Let m denote the number of unoriented atoms of B and let S denote the graded k-module

k[x0, . . . , x2m−1]. We fix another isomorphism

δ′ ∶ SpecR × S(B) ≅ Proj(R⊗k S) (3.88)

where R⊗ S is graded with R taken in degree 0. Consider the composition

∏ni=1Ui × S(B) SpecR × S(B) Proj(R⊗ S)
δ×idS(B) δ′

It follows that there exists a homogeneous saturated ideal I ⊆ R⊗S such that Proj((R⊗
S)/I) ≅ Yh. Then for all d ≥ 0 the module ((R⊗ S)/I)d is a free R-module.

Proof. First consider the case n = 0 (ie, there are no Pax-links). Let m denote the

number of unoriented atoms of B. Since ζ is a proof net, m is even [50, Proposition

4.11]. Then d is even and there exists an isomorphism X(ζ) ≅∏m/2i=1 ∆i,i+1 such that the

following diagram commutes

X(ζ) S(B)

∏m/2i=1 ∆i,i+1 ∏mi=1 P1
∏m/2

i=1 ι∆i,i+1

Seg

where Seg ∶ ∏mi=1 P1 Ð→ P2m−1 = S(B) is the Segre embedding and ∏m/2i=1 ι∆i,i+1 is a

product of canonical inclusions of diagonals ι∆i,i+1 ∶ ∆i,i+1 Ð→ P1 × P1. We can thus

write down generators for I explicitly:

I = (Zi0Zj1 −Zi1Zj0)0≤i,j≤m ⊆ S = k[{Zik ∣ 0 ≤ i ≤m,k ∈ {0,1}}]. (3.89)
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For each d ≥ 0 the module (S/I)d is a free k-module.

Now say n > 0 and say all premises to all Pax-links are conclusions to Dereliction-links.

We fix i ∈ {1, . . . , n} and consider the Dereliction-link with conclusion ?Ai. If mi denotes

the number of unoriented atoms of Ai and Si denotes the algebra Si = k[x0, . . . , x2mi−1]
then

S(?Ai) × S(Ai) = ∐
h∈H

Hh
Si
× S(Ai). (3.90)

For each i = 1, . . . , n we fix an hi ∈ H and consider Hhi
Si
× S(Ai) along with the closed

embedding given in (3.50):

Uhi Ð→Hhi
Si
× S(Ai). (3.91)

Since this is a closed embedding it follows from Lemma 3.14 that the following composite

is a closed embedding

X(ζ) ∩∏ni=1Uhi ∏ni=1Hhi
Si
∩ S(ζ) ∏ni=1 (Hhi

Si
× S(Ai)) × S(B)Projection

(3.92)

We need to show that post-composing this with the product of projections

n

∏
i=1
(Hhi

Si
× S(Ai)) × S(B)Ð→

n

∏
i=1
Hhi
Si
× S(B)

is a closed embedding.

Fix an i ∈ {1, . . . , n}. Let S̃i denote the following graded k-algebra

S̃i = k[x10, x11] ×k . . . ×k k[xmi
0 , xmi

1 ]. (3.93)

There exists a homogeneous ideal Ii ⊆ Si such that Si/Ii ≅ S̃i. It follows that there is a

canonical degree preserving surjective homomorphism ψi ∶ Si Ð→ S̃i (which is that given

in the proof of Corollary 3.8). By Lemma 3.5 this induces a morphism of projective

schemes ψ̃i ∶ (P1)mi Ð→ P2mi−1 which is the Segre embedding. Moreover, if J ⊆ S̃i is a

homogeneous ideal with Hilbert function h, then ψ−1i (J) ⊆ Si is also homogeneous and

also has Hilbert function h. Thus there is a natural transformation between the functors

HS̃i

hi Ð→HS
hi which induces a morphism of schemes fi ∶Hhi

S̃i
Ð→Hhi

S . We consider the

product of ψ̃ with fi to obtain

ψ̃i × fi ∶Hhi
S̃i
× (P1)mi Ð→Hhi

S × P2mi−1. (3.94)
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If Ui,hi denotes the universal closed subscheme Ui,hi Ð→ Hhi
S × P2mi−1 and Ũi,hi Ð→

Hhi
S̃i
× (P1)mi that for Hhi

S̃i
× (P1)mi , then the following is a pullback diagram

Ũi,hi Hhi
S̃i
× (P1)mi

Ui,hi Hhi
Si
× S(Ai)

ι̃i

ιi

Let m denote the number of unoriented atoms in B and let Seg ∶ (P1)m Ð→ S(B) denote
the Segre embedding. We have the following factorisation of the composite (3.92):

X(ζ) ∩∏ni=1Ui,hi ∏ni=1 (Hhi
Si
× S(Ai)) × S(B)

∏ni=1(Hhi
S̃i
× (P1)mi) × (P1)m

∏ni=1 Ũi,hi × (P1)m

(∏n
i=1 ψ̃i×fi)×Seg

∏n
i=1 ι̃i×id

For each i = 1, . . . , n letm′
i denote the number of unoriented atoms of Ai whose persistent

path ends at Aj for some j. We obtain a factorisation of the composite

X(ζ) ∩
n

∏
i=1

Ui,hi Ð→
n

∏
i=1

Ũi,hi × (P1)m Ð→
n

∏
i=1
(Hhi

S̃i
× (P1)mi) × (P1)m (3.95)

given as follows

X(ζ) ∩∏ni=1Ui,hi ∏ni=1(Hhi
S̃i
× (P1)mi) × (P1)m

∏ni=1(Hhi
S̃i
× (P1)m′i) × (P1)m

Each persistent path determined by one of the m′
i atoms, for each i, yields an identifica-

tion between two copies of P1 in ∏hii=1H
hi
S̃i
×(P1)m′i . Thus we can push forward along the

projection which projects out S(Ai) and result in a closed subscheme. This establishes

the claim about closedness.

The claim about freeness also follows easily from the fact that Ui,hi is constructed by

glueing together affine schemes with the required property.

Contraction-links and Pax-links only introduce trivial identifications and so the general

case easily reduces to the previous.
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Remark 3.16. We remark that Lemma 3.14 is the main hurdle in extending our model

beyond shallow proofs and to all MELL proofs. In the notation of that lemma, there

seems to be no simple way of assuring that the ideal I corresponding to Yh is such that

for all d ≥ 0 the R-module ((R⊗ S)/I)d is locally free of rank h(d). We commented on

this already in Remark 3.13 and we will again in Section 3.3.

Definition 3.29. Let π be a proof net with set of links Lπ. For each link l ∈ Lπ, the
scheme X(l) is a subscheme of some product of schemes associated to some edges of π

associated to l. Let Ecl denote the edges of π which are not incident to l, and let Ae

denote the formula labelling an edge e. Then there is a closed subscheme

∏
e∈Ec

l

S(Ae) ×X(l)Ð→ S(π). (3.96)

We identify X(l) with this subscheme.

The scheme associated to π is the intersection of all schemes associated to the links.

X(π) = ⋂
l∈Lπ

X(l). (3.97)

Definition 3.30. For each reduction γ ∶ π Ð→ π′ we define a closed subscheme Y(π′) ⊆
S(π′) and a pair of morphisms of schemes Sγ ∶ S(π)Ð→ S(π′), Tγ ∶ Y(π′)Ð→ S(π).

Let γ ∶ π Ð→ π′ be a reduction. Let Eπ denote the set of edges of π′, and Eπ′ that of π′.

γ ∶ π Ð→ π′ is an Ax /Cut-reduction. We set Y(π′) = S(π′). Consider the following

reduction where the labels a, b, c, d are artificial.

Ax
...

... Cut

Ab

¬Ac

¬Aa
γÐ→

...

...

¬Ad
(3.98)

Let e ∈ Eπ′ . For the edge displayed in (3.98) labelled ¬Ad define a morphism ρe to be

the projection ρe ∶ S(π)Ð→ S(¬Ac).

For every edge e ∈ Eπ′ which is not displayed in (3.98) there is a corresponding edge e′

in Eπ. For these set ρe to be the projection ρe ∶ S(π)Ð→ S(Ae′).

We define Sγ ∶ S(π)Ð→ S(π′) to be the morphism induced by the universal property of

the product and the set {ρe}.

Now let e ∈ Eπ. For the edges displayed in (3.98) define a morphism τe to be a projection

S(π)Ð→ S(¬Ad).
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For every edge e ∈ Eπ which is not displayed in (3.99) there is a corresponding edge e′ in

Eπ′ . For these set τe to be the projection τe ∶ S(π′)Ð→ S(Ae′).

We define Tγ ∶ S(π′) Ð→ S(π) to be the morphism induced by the universal property of

the product and the set {τe}.

γ ∶ π Ð→ π′ is a ⊗/`-reduction. We set Y(π′) = S(π′).

...
...

...
...

⊗ `

Cut

γÐ→

...
...

...
...

Cut

Cut

Aa Bb ¬Bc ¬Ad

(A⊗B)f (¬B`¬A)g

Aj

Bh ¬Bi

¬Ak

(3.99)

Let e ∈ Eπ′ . For the edges displayed in (3.99) define a morphism ρe to be a projection

according to the following table.

Edge label ρe

Bh S(π)Ð→ S(Bb)
¬Bi S(π)Ð→ S(¬Bc)
Aj S(π)Ð→ S(Aa)
¬Ak S(π)Ð→ S(¬Ad)

For every edge e ∈ Eπ′ which is not displayed in (3.99) there is a corresponding edge e′

in Eπ. For these set ρe to be the projection S(π)Ð→ S(Ae′).

We define Sγ ∶ S(π)Ð→ S(π′) to be the morphism induced by the universal property of

the product and the set {ρe}.

Now let e ∈ Eπ. For the following edges displayed in (3.99) define a morphism τe to be a

projection according to the following table.
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Edge label τe

Aa S(π)Ð→ S(Ai)
Bb S(π)Ð→ S(Bg)
¬Bc S(π)Ð→ S(¬Bh)
¬Ad S(π)Ð→ S(¬Aj)

For the edge labelled (A ⊗ B)f : say S(A) = ∐i∈I Pri ,S(B) = ∐j∈J Psj , for each pair

(i, j) ∈ I × J we consider the Segre embedding

Seg ∶ Pri × Psj Ð→ P(ri+1)(sj+1)−1. (3.100)

We post-compose this with the canonical inclusion to obtain

Pri × Psj Ð→∐
i∈I
∐
j∈J

P(ri+1)(sj+1)−1 = S(A⊗B). (3.101)

By the universal property of the coproduct we obtain

∐
i∈I
∐
j∈J

Pri × Psj Ð→ S(A⊗B) (3.102)

which we pre-compose with ϕM of Definition 3.27 to obtain

S(A) × S(B)Ð→ S(A⊗B). (3.103)

We set this to be τf . We define τg similarly.

We define Tγ ∶ S(π′) Ð→ S(π) to be the morphism induced by the universal property of

the product and the set {τe}.
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γ ∶ π Ð→ π′ is a !/?-reduction. Consider the following reduction.

● ●

...
...

...

? ● ! Pax ●

Cut c

...
...

...

Cut c

?Bc

?Bg

Ab

!Af?¬Ad

¬Aa

?Bj

Ai¬Ah

(3.104)

Say S(?Bg) = ∐h1∈H Psh . Then there exists a graded k-algebra S, such that for each

Hilbert function h ∈ H, there is a fixed choice of closed embedding Hh
S Ð→ Psh . We set

Y(π′) =∐h∈HHhs
S ∩ S(π′).

Let e ∈ Eπ′ . For the edges displayed in (3.99) define a morphism ρe to be a projection

according to the following table.

Edge label ρe

¬Ah S(π)Ð→ S(¬Aa)
Ai S(π)Ð→ S(Ab)
?Bj S(π)Ð→ S(?Bc)

For every edge e ∈ Eπ′ which is not displayed in (3.104) there is a corresponding edge e′

in Eπ. For these we set ρe to be the projection S(π)Ð→ S(Ae′).

We define Sγ ∶ S(π)Ð→ S(π′) to be the morphism given by the universal property of the

product and the set {ρe}.

Now let e ∈ Eπ. For the following edges displayed in (3.104) we define a morphism τe to

be a projection according to the following table.

Edge label τe

¬Aa S(π)Ð→ S(¬Ah)
Ab S(π)Ð→ S(Ai)
?Bc S(π)Ð→ S(?Bj)
?Bg S(π)Ð→ S(?Bj)
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Let ζ denote the proof net in the interior of the displayed box. We have already seen in

Definition 3.27 that if S(!A) = ∐h∈H Psh and if we are given an element h1 ∈ H, we can

construct a morphism

f ∶Hh1
S1
Ð→Hh

S (3.105)

as in (3.67), for graded k-algebras S1, S. We post-compose with the canonical inclusion

to obtain

Hh1
S1
Ð→ ∐

h∈H
Hh
S ≅ S(!A). (3.106)

By the universal property of the disjoint union we obtain

∐
h∈H

Hh1
S1
Ð→ S(!A) (3.107)

which we pre-compose with (ϕP2 ∣∐h∈HH
h1
S1

)−1, which is the inverse of a restriction of ϕP2

of Definition 3.27 in order to obtain

∐
h1∈H

Hh1
S1
∩ (S(?Bj) × S(Ai))Ð→ S(!A). (3.108)

We take τf and τd to be the result of pre-composing this with the projection S(π′) Ð→
S(?Bj) × S(Ai):

τf = τd ∶ Y(π′)Ð→ S(!A). (3.109)

We define Tγ ∶ Y(π′)Ð→ S(π) to be the morphism induced by the universal property of

the product and the set {τe}.
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γ ∶ π Ð→ π′ is a !/Pax-reduction. We set Y(π′) = S(π′).

● ● ● ●

...
...

...
...

...

● Pax ! ● ● Pax Pax ! ●

c Cut c c

● ●

● ●

...
...

● Pax ! ●
...

Cut
...

...

● Pax Pax ! ●

c c c

?Aa ¬Bb ?Bc ?Cd Df

?Ag

!¬Bh ?Bi

?Cj !Dk

?Al ¬Bm

?An
!¬Bo ?Bp

?Cq Dr

?As ?Ct !Du

(3.110)

Let e ∈ Eπ′ . For the edges displayed in (3.110) define a morphism ρe to be a projection

according to the following table.

Edge label ρe

?Al S(π)Ð→ S(?Aa)
¬Bm S(π)Ð→ S(¬Bb)
?An S(π)Ð→ S(?Ag)
!¬Bo S(π)Ð→ S(!¬Bh)
?Bp S(π)Ð→ S(?Bi)
?Cq S(π)Ð→ S(?Cj)
Dr S(π)Ð→ S(Df)
?As S(π)Ð→ S(?Ag)
?Ct S(π)Ð→ S(?Cj)
!Du S(π)Ð→ S(!Dk)
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For every edge e ∈ Eπ′ which is not displayed in (3.110) there is a corresponding edge e′

in Eπ. For these we set ρe to be the projection ρe ∶ S(π)Ð→ S(Ae′).

We define Sγ ∶ S(π)Ð→ S(π′) to be the morphism induced by the universal property of

the product and the set {ρe}.

Now let e ∈ Eπ. For the edges displayed in (3.110) we define a morphism τe to be a

projection according to the following table.

Edge label τe

?Aa S(π)Ð→ S(?Al)
¬Cb S(π)Ð→ S(¬Cm)
?Cc S(π)Ð→ S(?Cp)
?Bd S(π)Ð→ S(?Bq)
Df S(π)Ð→ S(Dr)
?Ag S(π)Ð→ S(?An)
!¬Ch S(π)Ð→ S(!¬Co)
?Ci S(π)Ð→ S(?Cp)
?Bj S(π)Ð→ S(?Bt)
!Dk S(π)Ð→ S(!Du)

For every edge e ∈ Eπ which is not displayed in (3.110) there is a corresponding edge e′

in Eπ′ . For these we set τe to be the projection τe ∶ S(π′)Ð→ S(Ae′).

We define Tγ ∶ S(π′)Ð→ S(π) to be the morphism given by the universal property of the

product and the set {τe}.
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γ ∶ π Ð→ π′ is a Weak /!-reduction.

● ●

...
...

Weak ● ! Pax ●

Cut
...

Ð→

Weak

...

?¬Aa !Ab

Ac ?Bd

?Bf

?Bg

Let ∅g Ð→ S(?Bg) denote the empty subscheme. We set Y(π′) = ∅g ∩ S(π′).

Let e ∈ Eπ′ be the displayed edge of π′ labelled ?Bg. We define ρe to be the projection

ρe ∶ S(π)Ð→ S(?Bf).

For every edge e ∈ Eπ′ which is not displayed in (3.104) there is a corresponding edge e′

in Eπ. For these we set ρe to be the projection S(π)Ð→ S(Ae′).

We define Sγ ∶ S(π)Ð→ S(π′) to be the morphism induced by the universal property of

the product and the set {ρe}.

Now let e ∈ Eπ. Let ζ denote the proof inside the box. The empty scheme ∅ is the initial

object in the category of schemes (over k). For each edge e in ζ we define τe to be the

unique morphism τe ∶ ∅g Ð→ S(Ae). If e is labelled ?¬Aa or !Ab we similarly define τe

to be the unique morphism τe ∶ ∅g Ð→ S(Ae).

For every edge e ∈ Eπ which is not displayed in (3.110) there is a corresponding edge e′

in Eπ′ . For these we set τe to be the projection τe ∶ S(π′)Ð→ S(Ae′).

The universal property of the product then induces a morphism which we take to be

Tγ ∶ Y(π′)Ð→ S(π).
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γ ∶ π Ð→ π′ is a Ctr /!-reduction. Set Y(π′) = S(π′).

● ●

...
...

...
...

Ctr ● ! Pax ●

Cut
...

● ● ● ●

...
...

...
...

... ● ! Pax ●
... ● ! Pax ●

Cut Cut

Ctr

...

!Ag

Ac

Ai Ak

!An !Aq

?Bd

?Bh

?Bj ?Bl

?Bo

?Br

?Bs

?¬Am ?¬Ap

?¬Af

?¬Aa ?¬Ab

(3.111)

Let e ∈ Eπ′ . For the edges displayed in (3.110) define a morphism ρe to be a projection

according to the following table.

Edge label ρe

?¬Am S(π)Ð→ S(?Ag)
!An S(π)Ð→ S(!Ag)
Ai S(π)Ð→ S(Ac)
?Bj S(π)Ð→ S(?Bd)
?Bo S(π)Ð→ S(?Bh)
?¬Ap S(π)Ð→ S(?¬Ag)
!Aq S(π)Ð→ S(!Ag)
Ak S(π)Ð→ S(Ac)
?Bl S(π)Ð→ S(?Bd)
?Br S(π)Ð→ S(?Bh)
?Bs S(π)Ð→ S(?Bh)



Algebraic Geometry and Linear Logic 95

For every edge e ∈ Eπ′ which is not displayed in (3.110) there is a corresponding edge e′

in Eπ. For these we set ρe to be the projection ρe ∶ S(π)Ð→ S(Ae′).

We define Sγ ∶ S(π)Ð→ S(π′) to be the morphism induced by the universal property of

the product and the set {ρe}.

Now let e ∈ Eπ. For the edges displayed in (3.110) we define a morphism τe to be a

projection according to the following table.

Edge label τe

?Aa S(π)Ð→ S(?An)
?¬Ab S(π)Ð→ S(!An)
Ac S(π)Ð→ S(Ai)
?Bd S(π)Ð→ S(?Bj)
?¬Af S(π)Ð→ S(?An)
!Ag S(π)Ð→ S(!An)
?Bh S(π)Ð→ S(?Bo)

For every edge e ∈ Eπ which is not displayed in (3.110) there is a corresponding edge e′

in Eπ′ . For these we set τe to be the projection τe ∶ S(π′)Ð→ S(Ae′).

The universal property of the product then induces a morphism which we take to be

Tγ ∶ S(π′)Ð→ S(π).

Remark 3.17. We only needed to introduce the restriction S(π′)∣Y(π′) in Definition 3.30

for !/?-reductions and !/Weak-reductions. It can be checked easily that given a sequence

of reductions π1
γ1Ð→ . . .

γn−1Ð→ πn the morphisms Tγi for all i factor through the appropriate

restrictions so that we end up with a composable sequence of morphisms Tγ1 ○ . . . ○ Tγn .

Theorem 3.31. If γ ∶ π Ð→ π′ is a reduction, then the morphisms Sγ ∶ S(π) Ð→
S(π′), Tγ ∶ Y(π′)Ð→ S(π) restrict to well defined morphisms

Sγ ∣X(π) ∶ X(π)Ð→ X(π′)

Tγ ∣X(π′) ∶ X(π′)Ð→ X(π)

which are mutually inverse isomorphisms.

Proof. γ ∶ π Ð→ π′ is an Ax /Cut-reduction. We refer to Diagram (3.98) and consider

only this type of Ax /Cut-reduction.

It suffices to consider only the links involved in the reduction. Let l denote the link in

π to which ¬Ac is the conclusion, and let l′ denote the link in π to which ¬Aa is the
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premise. We define the following restrictions

Sγ,l = Sγ ∣∆a,b∩∆b,c∩X(l)

Sγ,l′ = Sγ ∣X(l′)∩∆a,b∩∆b,c

and consider the three dimensional diagram, ignoring the dashed line for now.

X(l′) ∩X(l) X(l)

X(l′) ∩∆a,b ∩∆b,c ∩X(l) ∆a,b ∩∆b,c ∩X(l)

X(l′) S(π′)

X(l′) ∩∆a,b ∩∆b,c S(π)

Sγ,l

Sγ,l′

Sγ

(3.112)

The morphisms Sγ,l and Sγ,l′ are isomorphisms with inverses given by Tγ ∣X(l), Tγ ∣X(l′)
respectively. The front-face and the back-face of the cube (3.112), given as follows, are

both pullback diagrams.

X(l′) ∩∆a,b ∩∆b,c ∩X(l) ∆a,b ∩∆b,c ∩X(l) X(l′) ∩X(l) X(l)

X(l′) ∩∆a,b ∩∆b,c S(π) X(l′) S(π′)

This implies that the dashed arrow X(l′) ∩∆a,b ∩∆b,c ∩X(l)Ð→ X(l′) ∩X(l) in (3.112)

both exists and is an isomorphism with inverse given by Tγ ∣X(l′)∩X(l).

γ ∶ π Ð→ π′ is a ⊗/`-reduction. This case is similar to the previous so we omit the

proof.

γ ∶ π Ð→ π′ is a !/?-reduction. We consider only the case where there are a restricted

amount of Pax-link, and with Conclusion-links as displayed in Definition 3.30, but the

general result follows easily from this.

We refer to Diagram (3.104). Let ζ denote the proof net inside the box. We have

already seen in Definition 3.27 that if we write S(?B) =∐h∈H Psh , fix a Hilbert function

h1 ∈ H, let m1 denotes the number of unoriented atoms of B, if m denotes the number

of unoriented atoms of A, and we let

S1 = k[x0, . . . , x2m1−1], S = k[x1, . . . , x2m−1] (3.113)
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then we can construct a morphism

f ∶Hh1
S1
Ð→Hh

S (3.114)

for some Hilbert function h. We have also shown in Definition 3.27 how to construct a

morphism Uh Ð→Hh
S ×S(A) which we post-compose with the composite Hh

S Ð→ Psh Ð→
S(!A) times the identity on S(A) to obtain ιh ∶ Uh Ð→ S(!A)×S(A). On the other hand,

consider the closed embedding

Γf Ð→Hh1
S1
×Hh

S (3.115)

of the graph of f . Associated to h1, h are fixed choices of closed embeddings Hh1
S1
Ð→

Psh1 ,Hh
S Ð→ Psh which we can post-compose with the canonical inclusions to obtain

Hh1
S1
Ð→ S(?B),Hh

S Ð→ S(!A). Post-composing (3.115) with the product of these gives

o ∶ Γf Ð→ S(?B) × S(!A) (3.116)

The intersection we must analyse is the following

Uh ∩ Γf S(A) × Γf

Uh × S(?B) S(A) × S(?B) × S(!A)

idS(A) ×o
ιh×idS(?B)

We claim that the following is a pullback diagram

X(ζ) ∩ Γf S(A) × Γf

Uh × S(?B) S(A) × S(?B) × S(!A)
id×o

ιh×id

(3.117)

To show that (3.117) is a pullback diagram, it suffices to show that the following is.

X(ζ) ∩ Γf Uh

Hh1
S1
× S(A) Hh

S × S(A)

ιh

f×id

This can be shown by taking open affine charts of Hh1
S1
,Hh

S and the fact that the tensor

product induces pullbacks in the category k −Alg of k-algebras.

γ ∶ π Ð→ π′ is a !/Pax-reduction. We consider only the case where there are restricted

Pax-doors, and with Conclusion-links as in (3.110).

Let ζ1 denote the proof net inside the displayed box in π on the left in π, and let

ζ2 denote the proof net inside the box on the right. Let h1 ∈ H, let m1 denote the
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number of unoriented atoms of A, m the number of unoriented atoms of B, and k the

number of unoriented atoms of C. Let S1 = k[x0, . . . , x2m1−1], S = k[x0, . . . , x2m−1], T =
k[x0, . . . , x2k−1]. Then there exists Hilbert functions h, g such that

f1 ∶Hh1
S1
Ð→Hh

S , f2 ∶Hh
S Ð→Hg

T (3.118)

correspond respectively to X(ζ1) ∩Hh
S1

and X(ζ2) ∩Hh
S .

Consider the closed subscheme Γf ∩X(ζ2) Ð→ Hh1
S1
×Hh

S × S(C). This corresponds to a

function q ∶ Hh1
S1
×Hh

S Ð→ Hg
T . On the other hand, let ρ ∶ Hh1

S1
×HS ×Hg

T Ð→ Hh1
S1
×Hg

T

denote the canonical projection. If ρ∗ denotes the pushforward along ρ, then we need

to show

ρ∗(Γf1 ∩ Γf2) ≅ ρ∗Γq (3.119)

but this is easy because clearly Γf ∩ Γg ≅ Γq.

γ ∶ π Ð→ π′ is a Weak /!-reduction. This case is trivial as we are mapping empty

schemes to empty schemes via morphisms uniquely defined by the property that their

domain is the initial object in the category of schemes (over Speck).

γ ∶ π Ð→ π′ is a Ctr /!-reduction. We refer to Diagram (3.111).

Due to the diagonals at the Axiom and Cut-links it suffices to consider only the displayed

Promotion-links, Pax-links, and the displayed Contraction-link of π′.

Let l!, lPax respectively denote the displayed Promotion and Pax-links of π. Let lL! , l
L
Pax,

lR! , L
R
Pax, lCtr respectively denote the Promotion-link of π′ displayed on the left, the

Pax-link of π′ displayed on the left, the Promotion-link of π′ displayed on the right, and

the Pax-link of π′ displayed on the right.

By inspection of the definition of Sγ , Tγ , we obtain the following commuting diagram

X(l!) ∩X(lPax) X(lL! ) ∩X(lLPax) ∩X(lR! ) ∩X(lRPax) ∩X(lCtr) X(l!) ∩X(lPax)

X(l!) ∩X(lPax) ∆X(l!)∩X(lPax) X(l!) ∩X(lPax)

o

where

∆X(l!)∩X(lPax) Ð→ (S(Ac) × S(?Bd) × S(!Ag) × S(?Bh))
2

(3.120)

denotes the diagonal which factors through o. All vertical arrows are isomorphisms, and

the bottom horizontal composition is clearly the identity. The argument for the other

composition is similar.
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3.2.1 An example

Consider the following proof net π, which is the Church numeral 2X cut against a simple

proof net given by appending a Promotion-link to the Church numeral 0X . We have

labelled the formulas artificially; each Xp means the atomic formula X.

Ax Ax Ax ● ●

c ⊗ ⊗ c Ax

? ? `

Ctr ● ! ●

Cut

¬Xa
Xb ¬Xc Xd ¬Xe

Xf

Xg1⊗¬Xg2
Xh1

⊗¬Xh2
¬XoXn

?(Xi1
⊗¬Xi2

) ?(Xj1
⊗¬Xj2

)
Xm1`¬Xm2

?(Xk1
⊗¬Xk2

) !(Xl1
`¬Xl2

)

Associated to the Axiom-links are the following projective schemes:

S(¬Xa) = S(Xb) = S(¬Xc) = S(Xd) = S(¬Xe) = S(Xf) = S(Xn) = S(¬Xo) = P1.

For the Tensor and Par-links, we will be considering the closed embedding P1×P1 Ð→ P3.

So strictly speaking the interpretation of each non-atomic, linear formulas is P3 but to

make the ideas of the model more transparent within this example, we will directly

consider the closed subscheme P1 × P1, rather than doing so via the Segre embedding:

S(Xg1 ⊗ ¬Xg2) = S(Xh1 ⊗ ¬Xh2) = S(Xm1 ` ¬Xm2) = P1 × P1.

For each of the linear formulas we consider a corresponding graded k-algebra. For

instance, associated to the formula ¬Xa is the graded k-algebra k[X ′
a,Xa]. Since the

variable X is consistent throughout all of the formulas, we will use the algebra k[a′, a]
in place of k[X ′

a,Xa], and similarly for the other variables.

Let S = k[z′1, z1] × k[z′2, z2]. Then for each Hilbert function h ∈ H we have a fixed

choice of closed embedding of the Hilbert scheme Hh
S given by Proposition 3.12 into

some projective space Psh . We take the disjoint union of the codomains of these:

S(?(Xi1 ⊗ ¬Xi2)) = S(?(Xj1 ⊗ ¬Xj2))

= S(?(Xk1 ⊗ ¬Xk2)) = S(!(Xl1 ⊗ ¬Xl2)) = ∐
h∈H

Psh .

The interior of the box of π determines a point in ∐h∈H Psh which is inside the closed

subscheme Hh
S ⊆ Psh for some particular Hilbert function h∗. Since the closed subscheme
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X(π) Ð→ S(π) is given by taking the intersection of X(l) ranging over all links l of π,

the closed subscheme X(π) is connected with connected component determined by h∗.

So for this example we can restrict ourselves to this particular Hilbert function, which

we now calculate.

Consider 0X
Ax

`

c

Xn ¬Xo

Xm1`¬Xm2

We build the closed subscheme X(0X). From the Axiom-link lAx we have the diagonal

X(lAx) = ∆n,o Ð→ P1 × P1. If we consider the projection ρ ∶ S(ζ) Ð→ P1 × P1 then we

have that the composite

X(ζ)Ð→ S(ζ)Ð→ S(Xm1 ` ¬Xm2) = P1 × P1 (3.121)

is isomorphic to the diagonal

P1 ∆Ð→ P1 × P1. (3.122)

The following ideal

I = (m1m
′
2 −m′

1m2) ⊆ k[m′
1,m1] × k[m′

2,m2] (3.123)

is such that Proj(S/I) ≅ X(ζ) (as closed subschemes of P1 × P1). Conceptually, this

ideal should be thought of as its corresponding counterpart obtained by dividing by the

primed variables. Now we set S = k[m′
1,m1] × k[m′

2,m2]. We have

(m1m
′
2

m′
1m

′
2

− m
′
1m2

m′
1m

′
2

) ⊆ S(m′1m′2). (3.124)

Carrying this through the k-algebra isomorphism S(m′1m′2) ≅ k[m1/m′
2,m2/m′

1] ≅ k[m1,m2]
determined by the rule:

m1m
′
2

m′
1m

′
2

z→m1/m′
2,

m′
1m2

m′
1m

′
2

z→m2/m′
1. (3.125)

We obtain the ideal

(m1 −m2) ⊆ k[m1,m2]. (3.126)

So we can think of (3.123) as the equation “m1 =m2” as made transparent by (3.126).

We saw in Example 3.4 that the Hilbert function of I ⊆ S is h∗(d) = 2d+1, and that the

Gotzmann number G(I) of I is 2. The degree 2 component of the algebra corresponding
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to P3 maps onto the degree 1 component of the algebra corresponding to P1 × P1. The

Hilbert scheme Hh∗

S is by Proposition 3.12 therefore a closed subscheme of G
h∗(1)
S1

= G3
4.

We identify the degree 1 component S1 of S with k4 via the isomorphism defined by

linearity and the following assignments, where e1, . . . , e4 are the standard basis vectors

for k4:

m′
1m

′
2 z→ e1 m1m

′
2 z→ e2 m′

1m2 z→ e3 m1m2 z→ e4. (3.127)

Let η ∶ Hh∗

S Ð→ G3
4 denote this closed embedding. Recall from Lemma 3.6 that for any

size k subset B of {e1, . . . , e4} the open subset G3
4/B ⊆ G

3
4 is representable. Consider the

set B = {e3} which corresponds to {m′
1m2} ⊆ S1. There exists the following pullback

diagram

η−1(Hh∗

S ) G3
4/B

Hh∗

S G3
4

η̂

η

where G3
4/B represents a functor. By Lemma 3.6 it is represented by SpecR where R is

the following ring

R = k[{yi ∣ 1 ≤ i ≤ 3}]. (3.128)

Since η is a closed embedding, it follows that η̂ is and so there exists an ideal J ⊆ S
such that η−1(Hh∗

S ) ≅ SpecR/J . By representability of Hh∗

S and G3
4 the morphism η

corresponds to a natural transformation η between functors η ∶Hh∗

S Ð→ G3
4. Let R be a

k-algebra, the function η
R
∶ Hh∗

S (R) Ð→ G3
4(R) maps a homogeneous ideal L ⊆ R ⊗k S

(such that for all d ≥ 0 the k-module ((R ⊗k S)/L)d is locally free of rank h∗(d)) to

L1 ⊆ R ⊗k S1 ≅ R4 (such that R4/L1 is locally free of rank 3). Recall from Proposition

3.12 that if E = {2,3} then Hh∗

S ≅ Hh∗

SE
. A homomorphism R/J Ð→ R is given by a

collection of coefficients {αp ∈ R}1≤p≤3 satisfying the equations of J . These equations

determine the Hilbert scheme as a subscheme of the Grassmann scheme, and so for the

sake of simplicity we can put them into a black box and deal only with the coefficients

{αp ∈ R}1≤p≤3, i.e. k-algebra homomorphisms R Ð→ R, i.e. points of the Grassmann

scheme SpecR Ð→ G3
4/B.

We have the following equation in R/I by (3.127).

m1m
′
2 =m′

1m2

which correspond to the following subspace of k4:

Spank{e2 − e3}. (3.129)
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So, we define a function R Ð→ k as the k-algebra homomorphism generated by the

following rules

y1 z→ 0, y2 z→ 1, y3 z→ 0. (3.130)

These equations come from the fact that in k4/Spank{e2 − e3} we have the equation

e3 = y0e1 + y1e2 + y3e4, if y1 = y3 = 0, y2 = 1.

Thus, the ideal corresponding to the Promotion-link is

(y1, y2 − 1, y3) ⊆R. (3.131)

Now we consider the Dereliction-link

...

?

...

Xg1⊗¬Xg2

?(Xi1
⊗¬Xi2

)

For the Hilbert function h∗ we have again that G3
4/B is represented by another copy of

R:
R′ = k[y′i ∣ 1 ≤ i ≤ 3]. (3.132)

There is a universal subspace of (R′)4 with basis B given as follows:

SpanR′{e3 − y′1e1 − y′2e2 − y′3e4} ⊆ (R′)4. (3.133)

This translates through (3.127) (withm′
1,m1,m

′
2,m2 respectively replaced by g′1, g1, g

′
2, g2)

to:

(g′1g2 − y′1g′1g′2 − y′2g1g′2 − y′3g1g2) ⊆R′[g′1, g1] ×kR′[g′2, g2]. (3.134)

Similarly, for the other Dereliction-link we have a third copy of R:

R′′ = k[y′′i ∣ 1 ≤ i ≤ 3] (3.135)

and the universal subspace

SpanR′′{e3 − y′′1 e1 − y′′2 e2 − y′′3 e4)} ⊆ (R′′)4 (3.136)

with corresponding ideal

(h′1h2 − y′′1h′1h′2 − y′′2h1h′2 − y′′3h1h2) ⊆R′′[h′1, h1] ×kR′′[h′2, h2]. (3.137)



Algebraic Geometry and Linear Logic 103

The Contraction-link introduces a fourth copy of R:

R′′′ = k[y′′′i ∣ 1 ≤ i ≤ 3] (3.138)

and contributes the following ideal

(y′i − y′′′i , y′′i − y′′′i )1≤i≤3 ⊆R′ ⊗kR′′ ⊗kR′′′. (3.139)

Finally the Cut-link contributes the ideal

(y′′′i − yi)1≤i≤3 ⊆R′′′ ⊗kR. (3.140)

All that remains to be considered is the linear component of the proof. The Axiom-link

with conclusions ¬Xa,Xb is interpreted as the diagonal ∆Ð→ P1 ×P1 which is the given

by the following ideal

(ab′ − a′b) ⊆ k[a′, a] ×k k[b′, b]. (3.141)

Similarly to above, we can think of these polynomials as their corresponding polynomials

given by dividing through by the primed variables. We obtain the ideal

(a − b) ⊆ k[a, b] (3.142)

which reflects the logical structure that ¬Xa and Xb are conclusions to the same Axiom

link.

The Tensor-link with conclusion Xg1 ⊗ ¬Xg2 contributes the following ideal:

(g1g′2b′c′ − g′1g′2bc′, g′1g2b′c′ − g′1g′2b′c, g1g2b′c′ − g′1g′2bc)

⊆ (k[g′1, g1] ×k k[g′2, g2]) ×k k[b′, b] ×k k[c′, c].

Again, we can think of this as the corresponding ideal given by dividing by the primed

variables, given as follows:

(g1 − b, g2 − c, g1g2 − bc) ⊆ k[g1, g2, b, c]. (3.143)

This reflects the logical structure that the premises Xb,¬Xc of the Tensor-link have

respective corresponding conclusions Xg1 ,¬Xg2 .

The other Tensor-link and the Par-link are similar. We thus have the following set of

equations:

ab′ − a′b, cd′ − c′d, ef ′ − e′f, no′ − n′o
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g1g
′
2b
′c′ − g′1g′2bc′, g′1g2b

′c′ − g′1g′2b′c g1g2b
′c′ − g′1g′2bc

h1h
′
2d

′e′ − h′1h′2de′ h′1h2d
′e′ − h′1h′2d′e, h1h2d

′e′ − h′1h′2de

m1m
′
2n

′o′ −m′
1m

′
2no

′, m′
1m2n

′o′ −m′
1m

′
2n

′o, m1m2n
′o′ −m′

1m
′
2no

g′1g2 − y′1g′1g′2 − y′2g1g′2 − y′3g1g2

h′1h2 − y′′1h′1h′2 − y′′2h1h′2 − y′′3h1h2

y1, y2 − 1, y3

yi − y′′′i , for 1 ≤ i ≤ 3

y′i − y′′′i , for 1 ≤ i ≤ 3

y′′i − y′′′i , for 1 ≤ i ≤ 3

To understand these equations, we can localise at all of the primed variables (except for

the y variables) and obtain the following set of polynomials:

a − b, c − d, e − f, n − o

g1 − b, g2 − c, g1g2 − bc

h1 − d, h2 − e, h1h2 − de

m1 − n, m2 − o, m1m2 − no

g2 − y′1 − y′2g1 − y′3g1g2

h2 − y′′1 − y′′2h1 − y′′3h1h2

y1, y2 − 1, y3

yi − y′′′i , for 1 ≤ i ≤ 3

y′i − y′′′i , for 1 ≤ i ≤ 3

y′′i − y′′′i , for 1 ≤ i ≤ 3.

Remark 3.18. In the Introduction we claimed that the exponential fragment of shallow

proofs is modelled by equations between equations. In light of the above example we can

now make this precise. Consider the two equations

g2 − y′1 − y′2g1 − y′3g1g2 (3.144)

h2 − y′′1 − y′′2h1 − y′′3h1h2. (3.145)
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These are the equations pertaining to the Dereliction-links of π. The variables

y′1, y
′
2, y

′
3, y

′′
1 , y

′′
2 , y

′′
3 (3.146)

have constraints put upon them by the Contraction-link which introduces the following:

y′1 = y′′′1 , y′2 = y′′′2 , y′3 = y′′′3 (3.147)

y′′1 = y′′′1 , y′′2 = y′′′2 , y′′3 = y′′′3 (3.148)

which imposes the following equations in the quotient:

y′1 = y′′1 , y′2 = y′′2 , y′3 = y′′3 . (3.149)

That is, the normal vector of the two linear spaces (3.144) are set to be equal via the

Contraction-link. Notice that this does not impose that g2 = h1. This equation does hold,

but due to the Axiom-link with conclusions ¬Xc,Xd, and the two Tensor-links outside of

the box. So the exponential fragment of shallow proofs only make identifications between

the coefficients of polynomials. The linear component of the proof makes identifications

between the variables.

Remark 3.19. It is interesting to note that Section 3.2.1 seems to extend the theory of [50]

which relates cut-elimination to elimination theory. If we define all variables pertaining

to edges which lie above the Cut-link to be elimination variables, and the remaining

two variables a, f as non-elimination variables, then fixing a monomial order on these

variables so that all elimination variables are greater than non-elimination variables, we

can perform the Buchberger algorithm to relate the output to the result of eliminating

the cuts from π.

Using software algebra, performing the Buchberger Algorithm on the final set of polyno-

mials given in the example yields the polynomial a − f , which is the result of localising

the diagonal ∆ Ð→ P1 × P1, the closed embedding corresponding to the normal form of

π:

Ax

c c

¬Xa Xf

3.3 Future paths

Extending the model to all of MELL. The immediate obstruction to extending our

model to all of MELL is Lemma 3.15 which only considers shallow proofs. We postulate

that this lemma does indeed generalise. To check this, one must check that the local

freeness condition is satisfied by the embedding (3.32).
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However, it is not precisely this lemma which would be generalised. A difficulty in

working with our model is the fact that we have defined the Hilbert scheme HT to

parameterise graded k-modules T . In fact, a more general Hilbert scheme exists which

is parameterised by projective schemes instead. Similarly toHT the more general Hilbert

scheme represents a functor. The reference for this is [28].

Definition 3.32. Suppose S is a locally Noetherian scheme and X Ð→ S is a projective

scheme over S. The Hilbert functor from the category SchS whose objects are locally

Noetherian schemes over S to the categories of sets by:

HilbX/S ∶ SchS Ð→ Set

T z→ {Closed subschemes Z Ð→X ×S T ∣

Z is flat over T}.

Theorem 3.33. There exists a scheme HilbX/S representing this functor.

This is a more interesting functor for us because it yields a simple way of thinking about

Pax-links: they give rise to the product of locally projective schemes X1 × . . . ×Xn over

which the closed subscheme corresponding to the interior of the box must be flat. In

particular, this will avoid all necessity of localisation inside Definition 3.27, which we

believe would lead to a more natural model.

Thus, our future work proposal is as follows: first we extend the model for shallow

proofs to one where the Hilbert scheme HT is replaced by the more general Hilbert

scheme HilbX/S above. Then, we would aim to extend the resulting model to all of

MELL. Of course, one could also dream of going even further than MELL; additives,

differential linear logic, etc.

Relating this model to the MLL models given in Chapter 4. We present three

models of MLL in total in this thesis. One gives proofs as linear equations, which

has been extended to shallow proofs inside this chapter, and the other two give proofs

as matrix factorisations, and proofs as quantum error correction codes. Section 4.2.5

relates the algebraic model to the quantum error correction code model via the matrix

factorisation one, and so it would be interesting to see how the Hilbert scheme plays a

role in these other models. For instance, the Hilbert scheme plays the role of a moduli

space, in that it parameterises flat families of closed subschemes. It would be interesting

to consider the moduli space of matrix factorisations as a possible model in the sense of

[16] of the exponential in linear logic.

Classifying the Hilbert functions which arise from proofs. Our model considers

the set H of all Hilbert functions throughout. Surely not all Hilbert functions arise
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from proofs. It would be interesting to find the subset H′ ⊆ H so that h ∈ H′ if and

only if there exists a proof π such that the closed subscheme X(π)Ð→ S(π) has Hilbert
function h.

It has been noted in Remark 2.12 that there is more to the Geometry of Interaction

program than just modelling cut-elimination with a non-trivial effective procedure. One

could also ask for a correctness criterion such as the long trip condition given in the

Sequentialisation Theorem (Theorem 2.23) to be present in our model as well. It is

possible that the classification of the Hilbert functions which arise from proofs has

relevance to this line of research.

Elimination Theory. The algebraic model given in [50] not only gives an interpre-

tation of proofs in MLL but also relates the cut-elimination process to the Buchberger

algorithm. As mentioned in Remark 3.19 it seems possible that this relationship extends

to MELL, at least to shallow proofs. There are many connections to the construction of

the (multigraded) Hilbert scheme of [29] and syzygies, monomial ideals, Gröbner bases,

etc. These connections should be fully developed.



Chapter 4

Modelling Multiplicative Linear

Logic

“The idea should be that -at a very abstract level-, what processes share is a

common border, but that their inner instructions have nothing in common. So

when A receives a message from B, he can only perform global operations on it:

-erasing, duplicating, sending back to B- depending on which gate of the common

border he received it through. When a message is sent back to B, then B receives

again his own stuff, that he can read; but through an unexpected gate etc.”

J.Y.Girard, Towards a Geometry of Interaction

Computation transforms input data into output data in such a way that no truly new

data is created during the process [3]. However, data may be disposed of during this

transformation process. For instance, consider the computation of the Successor of

2 being equal to 3 in linear logic (Appendix B). The sequence of cut-elimination steps

which manipulate the information to eventually yield the output 3 throws away irrelevant

information (the Cut-links in the original proof), but the output 3 is implicit in the

original proof.

We will define a model of MLL and explain how it splits the transformation process

of computation into two distinct stages; first the input data is “reorganised” into the

output alongside the irrelevant data, and then this irrelevant data is erased:

Input Junk +Output Output.
Reorganise Erase junk

(4.1)

This idea has been considered before in other contexts. A historically significant instance

of the idea that computation organises itself in this way was the thought experiment

108
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Maxwell’s Demon [44], where it appears as though heat is being transferred from a cooler

body to a warmer body, apparently contradicting the second law of thermodynamics.

This thought experiment includes an onlooker (the demon) who stands idle and makes

decisions. A proposed solution to the paradox was that the decision process inside the

demon’s mind was to be included as part of the physical system. That is, the computation

being performed by the Demon was a physically relevant part of the experiment.

Rigorous work following this thought experiment includes a result, first proved by Lan-

dauer, that irreversible computation is inherently linked with physical irreversibility [40].

There, it is argued that practical computation fundamentally involves irreversible com-

putation, however Bennett has proven this is not true [3]. Bennett did this by showing

that every terminating computation of a Turing machine can be simulated by a reversible

Turing machine, see [3].

The proof is inspired by the standard way of making a non-injective function injective: to

arbitrary f ∶X Ð→ Y we associate injective Γf ∶X Ð→X×Y which maps xÐ→ (x, f(x)).
That is, Γf is the graph of f . We associate to a Turing machine M a Turing machine N

with three tapes, the second of which is its “history” tape which keeps the record of the

transition function steps used, and then unwinds the performance of M after recording

onto the third tape the output of M . This process is summarised in Figure 4.1.

Figure 4.1: The reverse of a Turing machine

Therefore, non-reversible computation can be thought of as performing the first two

steps of Bennett’s construction, which are reversible, followed by performing the non-

reversible step which throws away the first two tapes. This reflects (4.1).

From the perspective of sequent calculus, constructing a proof is about introducing for-

mulas and then shaping the relations between them with deduction rules. We showed in

[50] how to interpret these relations as equations for proofs in multiplicative linear logic,

and thus as ideals in polynomial rings. In Chapter 3 we took this further, and showed

how shallow proofs in MELL can be interpreted as sets of homogeneous equations, or

what is the same, closed subschemes of projective schemes. This suggests the possibility

of a meaningful connection between proof theory and geometry. However, there is much

more to modern algebraic geometry than sets of equations. For example, homological

algebra plays a fundamental role in much of the modern research in the subject.
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At its root, the role of homological algebra in algebraic geometry is to provide a technical

language for reasoning with equations between equations (sometimes called syzygies).

It is therefore natural, having established a connection between proofs and equations, to

wonder if homological algebra can provide some additional insight into the structure of

proofs in this interpretation. In this chapter we begin an investigation of this question,

by showing how the model of multiplicative linear logic in ideals in [50] can be “lifted”

to a model in matrix factorisations. The cut-elimination process in proofs, which was

modeled by elimination in [50], lifts to something called the cut operation on matrix

factorisations and we show that remarkably this has a natural relation to error correcting

codes in quantum computing. The significance of all of this remains unclear at the time

of writing, but at a conceptual level it does provide some evidence that the investigation

of equations between equations in the setting of geometric models of computation may

be worthwhile.

The model summarised in Section 4.2.4 exists in [50] and the quantum error correction

codes model summarised in Section 4.2.3 exists in [51]. These summaries are included to

provide context for the main contribution of this chapter which is in Section 4.2.5 where

the processes modelling reduction are related to one another by relating each to the

common model of reduction involving the aforementioned cut of matrix factorisations.

4.1 Matrix factorisations

Let k denote a commutative ring. Recall that if A,B are Z-graded k-modules then

Hom(A,B) is also Z-graded, and similarly for Z2-graded modules.

Definition 4.1. Let A,B be Z2-graded k-modules. A homomorphism f ∶ A Ð→ B is

even if f(A0) ⊆ B0 and f(A1) ⊆ B1. The homomorphism f is odd if f(A0) ⊆ B1 and

f(A1) ⊆ B0.

Remark 4.1. If f ∶ A Ð→ B is any module homomorphism then f can be written as a

matrix
⎛
⎝
f00 f01

f10 f11

⎞
⎠
. (4.2)

The morphism f is even if and only if f01 = f10 = 0. It is odd if and only if f00 = f11 = 0.

Definition 4.2. Let f ∈ k be a non-zero divisor. A linear factorisation of f over

k is a pair (X,∂X) consisting of a Z2-graded k-module X = X0 ⊕ X1 and an odd

homomorphism ∂X ∶X Ð→X satisfying

∂2X = f ⋅ idX . (4.3)
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If X is free then (X,∂X) is a matrix factorisation of f over k. If X is of finite rank

then (X,∂X) is a finite rank matrix factorisation.

Definition 4.3. A morphism of linear factorisations α ∶X Ð→ Y of f ∈ k, where

X = (X0 ⊕X1, ∂X), Y = (Y0 ⊕ Y1, ∂Y ), ∂X =
⎛
⎝
0 pX

qX 0

⎞
⎠
, ∂Y =

⎛
⎝
0 pY

qY 0

⎞
⎠

is a degree zero map which commutes with the differential, meaning that both squares

of the following diagram commute.

X0 X1 X0

Y0 Y1 Y0

qX

α0

pX

α1 α0

qY pY

(4.4)

Definition 4.4. Let α,β be morphisms of linear factorisations (X,dX) Ð→ (Y, dY ).
These are homotopic if there exists a degree 1 map h ∶X Ð→ Y such that the following

hold, where h0 ∶X0 Ð→ Y0, h1 ∶X1 Ð→ Y1, h = h0 + h1:

α0 − β0 = pY h0 + h1qX , α1 − β1 = h0pX + qY h1. (4.5)

The relation of homotopy defines an equivalence relation on the set of morphisms of

linear factorisations.

Definition 4.5. The homotopy category of linear factorisations HF(k,W ) is the
category of linear factorisations of f ∈ k modulo homotopy. We denote by HMF(k, f) its
full subcategory of matrix factorisations, and we write hmf(k, f) for the full subcategory
of finite-rank matrix factorisations.

Definition 4.6. Let (X,∂X) be a linear factorisation of f ∈ k over k and (Y, ∂Y ) a
linear factorisation of g ∈ k also over k. Then the tensor product of (X,∂X) and

(Y, ∂Y ) consists of the following data:

X ⊗k Y, ∂X⊗kY = ∂X ⊗ 1 + 1⊗ ∂Y (4.6)

where X ⊗k Y is the graded tensor product: for all x1, x2 ∈ X,y1, y2 ∈ Y , if ∣x2∣, ∣y1∣
respectively denote the degree of x2, y1:

(x1 ⊗ y1)(x2 ⊗ y2) = (−1)∣x2∣∣y1∣(x1x2 ⊗ y1y2). (4.7)

Lemma 4.2. The tensor product (X ⊗k Y, ∂X⊗kY ) is a linear factorisation of f + g.
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Proof. One checks that ∂2X⊗kY = (f + g) ⋅ idX⊗kY . See [33][Page 35] for an explicit

calculation.

4.1.1 Clifford algebras and matrix factorisations

The Introduction of [17] gives the origin of Clifford algebras, but briefly, the state func-

tion ψ of a classical particle in R3 with spin 1/2 having its motion studied in spe-

cial relativity leads one to consider the square root of the 3-dimensional Laplacian

∆ = − ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
. If we assume that P =

√
∆ ought to be a first order differen-

tial operator with constant coefficients, and if we generalise 3 to arbitrary n > 0, then
we are lead to the expression

P =
n

∑
i=1
γi

∂

∂xi
(4.8)

for some coefficients γi. The equation P 2 = ∆ holds if and only if the coefficients γi

satisfy the equations

γ2i = −1, i = 1, . . . , n; γiγj + γjγi = 0, i ≠ j. (4.9)

The algebra generated by elements γ1, . . . , γn satisfying the relations (4.9) always exists,

and it is the Clifford algebra Cn (Appendix E.3).

For example, let H denote the vector space of quaternions and say n = 3. Then γ1, γ2, γ3 ∶
H Ð→ H correspond to multiplication by the quaternions i, j, k ∈ H, respectively. Thus,

the question of whether there exists a square root
√
∆ of the Laplacian leads to the

study of complex representations Cn Ð→ End(V ) of the Clifford algebra.

We briefly recall the basic theory of Clifford algebras and relate their representations to

matrix factorisations, Appendix E.3 has more detail.

There will be two Clifford algebras of particular interest in this thesis, they are given in

Definitions 4.7, 4.9 below.

Definition 4.7. For n ≥ 0 the Clifford algebra Cn is the Z2-graded k-algebra gener-

ated by odd elements γ1, . . . , γn and γ†
1, . . . , γ

†
n subject to Clifford relations, given as

follows:

[γi, γj] = 0 [γ†
i , γ

†
j ] = 0 [γi, γ†

j ] = δij , 1 ≤ i, j ≤ n (4.10)

where δij = 1 if i = j and δij = 0 if i ≠ j. Note that our commutators are graded,

[a, b] = ab − (−1)∣a∣∣b∣ba. We set C0 = k.

Remark 4.3. Clifford algebras can be defined as Z2-graded k-algebras generated by odd

elements subject to the Clifford relations, or as universal algebras satisfying a condition
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with respect to a fixed bilinear form, see Appendix E.3 for a reminder. The bilinear form

associated to the Clifford algebra 4.7 is given as follows: consider a finitely generated

free complex vector space Fn = Cθ1⊕. . .⊕Cθn along with its dual F ∗. We set V = F⊕F ∗.

We begin by defining the following bilinear form on V and consider the following bilinear

form:

B ∶ V × V Ð→ C

((x, ν), (y, µ))z→ 1

2
(ν(y) + µ(x)).

Then Cn of Definition 4.7 is isomorphic to the Clifford algebra associated to this bilinear

form.

Definition 4.8. Let x = {x1, . . . , xn}, y = {y1, . . . , ym} be sets of variables, and define

the polynomials

U(x) =
n

∑
i=1
x2i , V (y) =

m

∑
i=1
y2i . (4.11)

Definition 4.9. We let CV U denote the Z2-graded k-algebra with odd generators

µ1, . . . , µn, ν1, . . . , νm satisfying the relations

[µi, µj] = −2δij [µi, νj] = 0 [νi, νj] = 2δij (4.12)

Remark 4.4. The algebra CV U described in Definition 4.9 is the Clifford algebra corre-

sponding to the bilinear form

B ∶ kn × km Ð→ kn × km

((x1, . . . , xn), (y1, . . . , ym))z→
n

∑
i=1
x2i −

m

∑
i=1
y2i

Definition 4.10. Consider the free k-module

Fn = kθ1 ⊕ . . .⊕ kθn (4.13)

where the θi are formal variables of odd degree, and set

Sn =⋀Fn =⋀(kθ1 ⊕ . . .⊕ kθn). (4.14)

Definition 4.11. Left multiplication in the exterior algebra defines an odd operator

θi ∧ (−) ∶ Sn Ð→ Sn

θj1 . . . θjr z→ θiθj1 . . . θjr
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Contraction from the left defines an odd operator

θ∗i ⌟(−) ∶ Sn Ð→ Sn

θj1 . . . θjr z→
r

∑
l=1
(−1)(l−1)δi,jlθj1 . . . θ̂jl . . . θjr .

We will simply write θi for the operator θi ∧ (−) and θ∗i for the operators θ∗i ⌟(−).

Lemma 4.5. The map Cn Ð→ Endk(Sn) defined by

γ†
i z→ θi ∧ (−), γi z→ θ∗i ⌟(−) (4.15)

is an isomorphism of Z2-graded k-algebras.

Proof. See Lemma E.28.

The next lemma shows how Clifford actions give rise to matrix factorisations.

Lemma 4.6. Let X̃ be a Z2-graded CV U -module which is free and finitely generated

over k. Then X ∶= X̃ ⊗k k[x, y] coupled with the map

∂X =
n

∑
i=1
µixi +

m

∑
j=1

νjyj (4.16)

is a matrix factorisation of V (y) −U(x) ∈ k[x, y].

Proof. One checks that ∂2X = V (y) −U(x). See [33][Lemma 5.6.1].

Remark 4.7. The map (4.16) is odd because we consider k[x, y] as equipped with the

Z2-grading where k[x, y] is taken entirely in degree 0. For example, if x = {x}, y = {y}
are singleton sets then for p ∈ X̃:

deg(∂X(p⊗ 1)) = deg(µp⊗ x + νp⊗ y)

= deg(µp) (= deg(νp))

= deg(p) + 1.

Example 4.1. Let R be a commutative k-algebra and t = (t1, . . . , tn) a regular sequence

of elements in R. Then the Koszul complex K(t) of (t1, . . . , tn) is

0 R Rn ⋀2(Rn) . . . ⋀m(Rn) . . .
d0t d1t d2t dm−1t dmt

where for all j ≥ 0 the operator djt is multiplication by t.
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The underlying Z2-graded k-module of the differential graded k-algebra corresponding to

this chain complex is ⋀(Rn), which admits a CV U -action once we fix a basis θ1, . . . , θn

for Rn. Recall Sn of (4.14):

Sn =⋀(kθ1 ⊕ . . .⊕ kθn). (4.17)

This is Sn of (4.14). The operators θi, θ
∗
i satisfy the canonical anticommutation relations

(see [33, Lemma 4.2.2] for a proof), given in Definition 4.12 below. In general, any Z2-

graded k-algebra equipped with linear operators satisfying the canonical anticommutation

relations admit the structure of a CV U -representation, given as follows:

µi = θi + θ∗i νi = θi − θ∗i . (4.18)

We thus have a corresponding matrix factorisation of V (y) −U(x):

(Sn ⊗k k[x, y],
n

∑
i=1
(θi + θ∗i )xi +

n

∑
j=1
(θj − θ∗j )yj). (4.19)

Definition 4.12. Let E be a Z2-graded ring, not assumed to be commutative, and

consider odd elements θ1, . . . , θn, θ
∗
1 , . . . , θ

∗
n ∈ E. These elements satisfy the canonical

anticommutation relations if:

• θiθj + θjθi = 0.

• θ∗i θ
∗
j + θ∗j θ∗i = 0.

• θiθ
∗
j + θ∗j θi = δij .

Definition 4.13. The matrix factorisation (4.19) is the Koszul matrix factorisation

of the regular sequence t. It will be denoted MF(t).

4.1.2 The bicategory of Landau-Ginzburg models

We organise finite rank matrix factorisations into a bicategory. Recall the homotopy

category hmf(k[x],W ) of Definition 4.5, for W ∈ k[x]. The hom-categories will consist

of the idempotent completion (hmf(k[x],W ))ωof hmf(k[x],W ), for certain polynomi-

alsW called potentials (Definition 4.14 below). We recall the basic theory of idempotent

completions in Appendix F. We consider the idempotent completion because in general,

the composition of two finite rank matrix factorisations need not be finite rank. For ex-

ample, consider X = C[x, y], Y = C[y, z] with Z2-grading given by even and odd degrees.
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Consider also the polynomials y2 + x2 ∈ X,z2 + y2 ∈ Y with respective potentials ∂X , ∂Y

defined by the following matrices

∂X =
⎛
⎝

0 y − ix
y + ix 0

⎞
⎠

∂Y =
⎛
⎝

0 z − iy
z + iy 0

⎞
⎠
. (4.20)

Then (X,∂X) is a finitely generated C[x, y]-matrix factorisation of y2+x2 and (Y, ∂Y ) is
a finitely generated C[y, z]-matrix factorisation of z2 + y2. However, the tensor product

X ⊗C[y] Y ≅ C[x, y, z] is not finitely generated as a C[x, z]-module.

However, if the full subcategory is idempotent complete, then it can be shown that the

composite is always homotopy equivalent to a finite rank matrix factorisation [12, 33,

37, 48].

Definition 4.14. A polynomial W ∈ k[x1, . . . , xn] is a potential if (writing fi = ∂xiW
for the formal partial derivative of W with respect to xi):

• f1, . . . , fn is a quasi-regular sequence.

• k[x1, . . . , xn]/(f1, . . . , fn) is a finitely generated free k-module.

• The Koszul complex of f1, . . . , fn is exact except in degree zero.

Given potentials U ∈ k[x] and V ∈ k[y] we denote the idempotent completion of the

homotopy category of finite rank matrix factorisations of V −U over k[x, y] by

LGk(U,V ) = hmf (k[x, y], V −U)ω. (4.21)

Proposition 4.8. The following data gives a bicategory, which we call the bicategory of

Landau-Ginzburg models over k, denoted LGk.

• The objects of LGk are pairs (k[x], U) where k[x] is a polynomial ring and U ∈
k[x] is a potential.

• The category of 1-morphisms (k[x], U)Ð→ (k[y], V ) is LGk(U,V ).

• Composition of the 1-morphisms

(k[x], U) (k[y], V ) (k[z],W )(X,dX) (Y,dY )
(4.22)

is given by taking the tensor product of linear factorisations over k[y]:

(X,dX)⊗k[y] (Y, dY ) = (X ⊗k[y] Y, dX ⊗ 1 + 1⊗ dY ). (4.23)



Algebraic Geometry and Linear Logic 117

• Given a polynomial ring R = k[x1, . . . , xn] we write Re = R ⊗k R = k[x,x′] where
xi = xi⊗1 and x′i = 1⊗xi. Given W ∈ R we define the unit matrix factorisation

∆W ∈ hmf(Re, W̃ ) where W̃ =W ⊗ 1 − 1⊗W . Using formal symbols θi we define

the Re-module

∆W =⋀ (
n

⊕
i=1
Reθi) (4.24)

with the Z2-grading given by θ-degree (where deg θi = 1). Typically we will omit

the wedge product and write e.g. θi ∧ θj simply as θiθj. To describe the differential

d∆W
we further need the variable changing maps ti(−) which in any polynomial

replace the variable xi by the variable x′i,

ti(−) ∶ k[x,x′]Ð→ k[x,x′], f z→ f ∣xiz→x′i (4.25)

in terms of which we define the following

∂
x,x′

[i] ∶ k[x,x′]Ð→ k[x,x′], f z→
t1...ti−1f −t1...ti f

xi − x′i
. (4.26)

Sometimes we write ∂[i] for ∂
x,x′

[i] . Viewing W as an element in k[x] ⊆ k[x,x′],
the differential on ∆W is then given by

dδW = δ+ + δ−, δ+ =
n

∑
i=1
∂
x,x′

[i] W ⋅ θi ∧ (−), δ− =
n

∑
i=1
(xi − x′i) ⋅ θ∗i . (4.27)

• The associator is the familiar collection of maps αXY Z ∶ (X⊗Y )⊗Z Ð→X⊗(Y ⊗
Z).

• Let a 1-morphism X ∈ LGk(W1,W2) = hmf(R1 ⊗k R2,W2 −W1)ω be given. There

are natural maps

λX = π ⊗ 1X ∶∆W2 ⊗R2 X z→X

ρX = 1X ⊗ π ∶X ⊗R1 ∆W1 Ð→X

which are morphisms in LGk(W1,W2) = hmf(R1 ⊗k R2,W2 −W1)ω.

Proof. See [7, Proposition 2.7].

Remark 4.9. The bicategory of Landau-Ginzburn models has much more structure than

what has been given here; it is a monoidal pivotal superbicategory. This extra structure

will not be needed for this thesis, but see [7, 27, 48].
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4.1.3 The cut operation of matrix factorisations

As was shown at the start of Section 4.1.2, it is possible to take the tensor product of two

finite rank matrix factorisations and have the result not be finitely generated. However,

composition in the bicategory of Landau-Ginzburg models is well defined because the

composition of two finite rank matrix factorisations is always homotopy equivalent to

a finite rank matrix factorisation [12, 33, 37, 48]. We will not concern ourselves with

the proof here, but instead we will consider a key object used in the proof: the cut of

two finite rank matrix factorisations. Away from the proof that composition in LGk is

well defined, the cut is an interesting object in its own right. For us, it is central to the

models of multiplicative linear logic which we defined in [50, 51], and which we relate to

one another in Section 4.2.5.

Throughout this section, let U(x) ∈ k[x1, . . . , xn], V (y) ∈ k[y1, . . . , ym],W (z) ∈ k[z1, . . . , zl]
be potentials, let X be a finite rank matrix factorisation of V (y) − U(x), and let Y a

finite rank matrix factorisation of W (z) − V (y).

Definition 4.15. Let ∂yiV (y) denote the formal partial derivative of V (y) with respect

to yi. Denote by JV (y) the following k[y]-module.

JV (y) ∶= k[y]/(∂y1V (y), . . . , ∂ynV (y)). (4.28)

The cut of (X,∂X), (Y, ∂Y ) is the data of

Y ∣X ∶= (X ⊗k[y] JV (y) ⊗k[y] Y ), ∂X ∣Y = ∂X ⊗ 1⊗ 1 + 1⊗ 1⊗ ∂Y . (4.29)

Lemma 4.10. The cut Y ∣X is a matrix factorisation of W −U and is finite rank if X

and Y both are.

Proof. The differential of the cut Y ∣X is the same as that of the tensor product X⊗Y ,

so it follows from 4.2 that Y ∣ X is a matrix factorisation. That Y ∣ X is finite rank

follows immediately from the definition and the fact that JV (y) is finite rank, as V (y)
is a potential.

Definition 4.16. AClifford action on Y ∣X is a family of odd operators γ1, . . . , γm, γ
†
1, . . . γ

†
m

satisfying the Clifford relations (Definition 4.7) up to homotopy.

The remainder of this section is dedicated to defining a Clifford action on Y ∣X.

Recall the Z2-graded k-module Sm = ⋀(kθ1 ⊕ . . . ⊕ kθm) of Section 4.1.1 and its Cm-

action γ1, . . . , γm, γ
†
1, . . . , γ

†
m, where γ

†
i acts as θi ∧ (−) and γi as θ∗i ⌟(−). This Cm-action
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induces an action on the matrix factorisation

(Sm ⊗kX ⊗k[y] Y,1⊗ ∂X ⊗ 1 + 1⊗ 1⊗ ∂Y ). (4.30)

In [48] a deformation retraction is constructed:

(Y ∣X,∂Y ∣X) (Sm ⊗kX ⊗k[y] Y,1⊗ ∂X⊗Y ).
Φ

Φ′
(4.31)

See [33, §5.4] also for more details.

Definition 4.17. By abuse of notation, for i = 1, . . . ,m let γi denote the map Φ′γiΦ on

Y ∣X, and let γ†
i denote the map Φ′γ†

iΦ.

Notice that since {γi, γ†
i }mi=1 acting on Sm forms a Clifford action, it follows that {γi, γ†

i }mi=1
acting on Y ∣X forms a Clifford action up to homotopy. Explicit equations for the Cm-

action on Y ∣ X can be given. A complete treatment is given in [48] with more details

developed in [33], so we provide only a brief summary.

We fix a commutative k-algebra R and a quasi-regular sequence t = (t1, . . . , tn) in R.

Let I = (t1, . . . , tn) be the ideal generated by the elements of t. Let R̂ be the I-adic

completion of R and suppose we have a k-linear section σ ∶ R/I Ð→ R of the quotient

map π ∶ R Ð→ R/I such that σ(1) = 1.

Lemma 4.11. Assume there exists a k-linear section σ ∶ R/I Ð→ R of the quotient map

π ∶ R Ð→ R/I. Then every f ∈ R̂ can be written uniquely as a convergent series of the

form

f = ∑
u∈Nn

σ(ru)tu (4.32)

where ru ∈ R/I and tu = tu11 . . . tunn .

Proof. See [33, Lemma 3.1.6].

Definition 4.18. For each ti define a map ∂ti ∶ R̂ Ð→ R̂ as follows. Given f ∈ R̂, by
Lemma 4.11 we can write f uniquely in the form f = ∑u∈Nn σ(ru)tu. We define

∂ti(f) = ∑
u∈Nn∖{0}

uiσ(ru)tu−ei (4.33)

where ei = (0, . . . ,1, . . . ,0) has a one in its ith entry and zeros elsewhere.

The maps ∂t1 , . . . , ∂tn extend to k[x, z]-linear maps on X⊗̂Y ∶=X ⊗ Y ⊗ (k[y])∧, where
(k[y])∧ denotes the completion of k[y], in a way which depends on a fixed choice of

basis.
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Definition 4.19. Choose a k[x, z]-basis {ea ⊗ fb}a,b for X⊗̂Y and define

∂ti ∶X⊗̂Y Ð→X⊗̂Y

ea ⊗ h⊗ fb z→ ea ⊗ ∂ti(h)⊗ fb

for all basis elements ea ⊗ fb and h ∈ (k[y])∧, and then extend k[x, z]-linearly. We also

denote this map ∂ti .

Let I = (∂y1V, . . . , ∂ymV ) be the ideal generated by the quasi-regular (as V is a potential)

sequence of partial derivatives of V . Denote by I(X⊗̂Y ) the ideal in X⊗̂Y generated

by I. Then

(X⊗̂Y /I(X⊗̂Y )) ≅X ⊗k[y] ((k[y])∧/I(k[y])∧)⊗k[y] Y

≅ Y ∣X.

Lemma 4.12. The map [∂X⊗̂Y , ∂ti] induces a k[x, z]-linear map on Y ∣X.

Proof. This is shown by proving

[∂X⊗̂Y , ∂ti](I(X⊗̂Y )) ⊆ I(X⊗̂Y ). (4.34)

see [33, Lemma 5.5.3].

Definition 4.20. For each i = 1, . . . n let

Ati ∶ Y ∣X Ð→ Y ∣X (4.35)

denote the map induced by [∂X⊗̂Y , ∂ti]. We call Ati the i
th Atiyah class.

Lemma 4.13. Let (Z,∂Z) be a finite rank matrix factorisation of a polynomial T ∈
k[w1, . . . ,wk]. Multiplication by a partial derivative ∂wiZ is a null-homotopic map on

(Z,∂Z).

Proof. See [33, Lemma 5.2.1]

Let λi be a homotopy λi ∶ ∂yiV (y) ≃ 0 on the cut Y ∣X.

Definition 4.21. On the cut Y ∣X we define k[x, y]-linear maps

γi = Ati and γ†
i = −λi −

1

2

m

∑
p=1

∂yp(ti)Atp (4.36)

for i = 1, . . . ,m. Note that these are odd.
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The next result is proven in [48, §4.2] and [33, §5.5].

Proposition 4.14. The γ1, . . . , γm, γ
†
1, . . . , γ

†
m defined in Definition 4.21 agree with those

of the same name given in Definition 4.17.

Consider the operators γ1, . . . , γm, γ
†
1, . . . , γ

†
m acting on Sm. The composition

e ∶ γ1 . . . γmγ†
m . . . γ

†
1 (4.37)

of these is a projection Sm Ð→ k. It follows that the induced operator (which we also

call e) on the matrix factorisation Sm ⊗k ⊗X ⊗k[y] Y splits as

Sm ⊗k ⊗X ⊗k[y] Y Ð→X ⊗k[y] Y Ð→ Sm ⊗k ⊗X ⊗k[y] Y. (4.38)

Passing e through the homotopy (4.31) induces an operator (which we yet again call e)

e = γ1 . . . γmγ†
m . . . γ

†
1 ∶ Y ∣X Ð→ Y ∣X. (4.39)

Recall the algebra CV U of Definition 4.9 with odd generators µ1, . . . , µn, ν1, . . . , νm. Let

CWV denote the Clifford algebra with odd generators ν1, . . . , νm, ω1, . . . , ωl subject to

[νi, νj] = −2δij [νi, ωj] = 0 [ωi, ωj] = 2δij . (4.40)

The underlying Z2-graded k[x, z]-module of Y ∣X, noting

JV = k[y1, . . . , ym]/(y1, . . . , ym)

is:

Y ∣X = Ỹ ⊗k k[z, y]⊗k[y] k⊗k[y] k[y, x]⊗k X̃

≅ Ỹ ⊗k X̃ ⊗k k[x, z].

The differential is given as follows, where we write (−) for reduction modulo (y1, . . . , ym)

∂Y ⊗X =
l

∑
k=1

zkµk +
n

∑
i=1
xiωi. (4.41)
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Now we compute the representation {γi, γ†
i }mi=1 of Cm, note that ti = ∂

∂yi
(V ) = 2yi so

∂ti = 1
2∂yi and so

γi = Ati = [∂Y ⊗X , ∂ti]

= 1

2
[
n

∑
i=1
xiωi +

m

∑
j=1

yjνj +
m

∑
j=1

yjνj +
l

∑
k=1

zkµk, ∂yu]

= 1

2

m

∑
j=1
[yj , ∂yu]νj +

1

2

m

∑
j=1
[yj , ∂yu]νj

= −1
2
(νi + νi)

while

γ†
i = −∂yi(∂X) −

1

2
∑
q

∂yq∂yi(V )Atq

= −νi −
1

2
∂2yi(V )Ati

= −νi −Ati

= −νi +
1

2
νi +

1

2
νi

= 1

2
νi −

1

2
νi

= −1
2
(νi − νi)

Remark 4.15. There are two different Clifford algebras at work here and they play two

different roles. One is the Z2-graded k-algebra CV U , which is used to induce the matrix

factorisations X,Y of interest. The other is the Z2-graded k-algebra Cm, which acts on

the cut Y ∣ X. The Cm-action on Y ∣ X is described in terms of the CV U -action on X

and the CVW -action on Y , and is used to describe an idempotent e.

The idempotent e is:

e = γ1 . . . γmγ†
m . . . γ

†
1

= 1

22m
(ν1 + ν1) . . . (νm + νm)(νm − νm) . . . (ν1 − ν1).

Note that {γi, γ†
i }mi=1 is a strict Clifford representation, not just up to homotopy. Recall

from Lemma F.3 that im(e) ≅ ker(id−e). Since id−γiγ†
i = γ

†
i γi and Ker(γ†

i γi) = ker(γi)
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it follows that

im(e) ≅ ker(id−e)

≅
m

⋂
i=1

ker(γi)

≅
m

⋂
i=1

ker(νi + νi).

Say e has been split as Y ∣X Ð→ Y ∗X Ð→ Y ∣X for some matrix factorisation Y ∗X.

Since (4.31) is (by construction) an equivalence of Clifford representations, it follows

that Y ∗X is isomorphic to Y ⊗kX. If k is Noetherian, then, since Y ∣X is finite rank,

it would follow that Y ∗X is also finite rank.

Thus, we have outlined a process of extracting a finite rank representing object of the

composite of two finite rank matrix factorisations. First, the cut Y ∣ X is formed, and

then the idempotent e is split, which will result in a finite rank matrix factorisation

isomorphic to the composite Y ○X.

4.2 Geometry of interaction models, MLL

We associate to each proof in multiplicative linear logic, sequent calculus presentation,

a composable family of bordisms which in turn give rise to matrix factorisations via a

pair of strong functors.

4.2.1 Atoms, bordisms, Clifford algebras, matrix factorisations and

MLL proofs

We take k = C in this section. We can associate to each link a matrix factorisation,

and then view a proof π as a pattern of composition of matrix factorisations. Each of

these compositions can be computed by first considering the cut and then splitting an

idempotent as per the end of Section 4.1.3. We will define two bicategories Atom,AlgZ2

along with two functors F ∶ AtomÐ→ AlgZ2 ,G ∶ AlgZ2 Ð→ LGC. The interpretation of π

will then be defined as the image under G ○F of a family of composites of 1-morphisms

in Atom.

Definition 4.22. Let X = (X1, x1), . . . , (Xn, xn) be a sequence of oriented atoms. The

associated 0-manifoldMX consists of n connected components, with the orientation

of each connected component i agreeing with xi.
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A morphism X Ð→ Y , where X,Y are both sequences of oriented atoms, is a compact

oriented 1-manifold M with ∂M ≅Mop
X ∐MY .

Definition 4.23. The collection of manifolds MX ranging over all finite sequences of

oriented atoms X along with morphisms MX Ð→ MY form a category Atom where

composition is the usual composition of bordisms (given by glueing).

Example 4.2. Consider the sequences of oriented atoms X = (X,¬X,Y,Z) and Y =
(W,¬W ). Then the following is a morphism X Ð→ Y in Atom, with orientations

implied by the arrow heads. We notice that loops are allowed in our morphisms.

We define a bicategory AlgZ2 of finite-dimensional Z2-graded C-algebras and their finite-

dimensional Z2-graded bimodules, along with a strong functor F (ie, a pseudofunctor

between bicategories Atom Ð→ AlgZ2 where all morphisms involved in coherence dia-

grams are invertible):

F ∶ AtomÐ→ AlgZ2 . (4.42)

Definition 4.24. Given X = (X1, x1), . . . , (Xn, xn) let F (X) be the Clifford algebra

with odd generators δX1, . . . , δXn subject to anti-commutation relations

[δXi, δXj] = 0, i ≠ j, [δXi, δXi] = 2xi. (4.43)

That is, if WX denotes the polynomial ∑ni=1 xiX2
i , where xi is read as a 1 if xi = + and

a −1 if xi = −, then [δXi, δXj] = ∂2

∂Xi∂Xj
(WX)∣x=0 ⋅ 1.

We define F to send the empty sequence to C (in degree 0).

Definition 4.25. Given a morphism M ∶X Ð→ Y between sequences

X = (X1, x1), . . . , Y = (Xn, xn), (Y1, y1), . . . , (Ym, ym)

we associate to it a Z2-graded F (Y )-F (X)-bimodule F (M) as follows: letM = L1∐ . . .∐Lr∐C
be written as a disjoint union of oriented intervals Li and loops C, and set

F (M) =⋀(Cψ1 ⊕ . . .⊕Cψr). (4.44)
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That is, F (M) is the exterior algebra on the free C-vector space on the set of oriented

intervals of M . We define δXa, δYb acting on the left of F (M) as follows:

δXa = ψi − xaψ∗i
δYb = ψj + ybψ∗j

where Li (resp Lj) is the unique component of M with the point labelled Xa (resp Yb)

on its boundary. We define F (M) as a right F (X)-module via

η ⋅ δXa = (−1)∣η∣δXa ⋅ η, η ∈ F (M). (4.45)

Lemma 4.16. F (M) is a Z2-graded F (Y )-F (X)-bimodule.

Proof. See Appendix H.

Proposition 4.17. The functor F ∶ AtomÐ→ AlgZ2 is a strong functor.

Proof. See Appendix H

Now we show how to obtain a morphism in the bicategory of Landau-Ginzburg models

LGk from a Clifford algebra representation associated to a sequence of oriented atoms.

Definition 4.26. Let Clf denote the bicategory with the same objects as Atom and

where

Clf(X,Y ) = AlgZ2(F (X), F (Y )) (4.46)

with composition defined as in AlgZ2 .

That is, we take the image of F and remember X after forming F (X). We can of course

interpret F as a strong functor F ∶ AtomÐ→ Clf.

Proposition 4.18. There is a strong functor G ∶ Clf Ð→ LGC defined on an object

X = (X1, x1), . . . , (Xn, xn) by
G(X) =

n

∑
i=1
xiX

2
i (4.47)

and on a 1-morphism V ∶X Ð→ Y , with Y = (Y1, y1), . . . , (Ym, ym) by

G(V ) = (V ⊗C C[X1, . . . ,Xn, Y1, . . . , Ym], ∂ =
n

∑
i=1
XiδXi +

m

∑
j=1

YjδYj) (4.48)

where δXi stands for left multiplication δXi ⋅ (−), and δYj stands for left multiplication

δYj ⋅ (−).
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Proof. See Appendix H.

Definition 4.27. Let A,B be formulas with oriented atoms UA = (X1, x1), . . . , (Xn, xn)
and UB = (Y1, y1), . . . , (Ym, ym) respectively. We write MA ◻MB for the sequence of

oriented atoms (X1, x1), . . . , (Xn, xn), (Y1, y1), . . . , (Ym, ym) given by concatenating the

two sequences UA, UB.

Remark 4.19. The operator ◻ extends to a monoidal product on the bicategory of

Landau-Ginzburg models. This level of generality is not needed for the current pur-

poses though so we omit this abstraction.

We can now give a definition of the matrix factorisation associated to a proof π in the

multiplicative fragment of linear logic, sequent calculus presentation, which is given by

omitting the exponential rules from Definition 2.3.

Let π be a proof in MLL sequent calculus. We define a morphism in Atom for each

deduction rule, the structure of π then determines a composite of these morphisms

which we take to be the interpretation of π in Atom.

Definition 4.28. Let π be a proof in MLL sequent calculus. We associate to π a

morphism JπK in the category Atom. Let A,B be formulas with sequences of unoriented

atoms ((X1, x1), . . . , (Xn, xn)), ((Y1, y1), . . . , (Ym, ym)) respectively.

Axiom-rule.

Ax⊢ ¬A,A

We associate the following morphism 1 Ð→M¬A ◻MA. The notation xi denotes + if

xi = −, and denotes − if xi = +.

x1● . . .
xn● xn● . . .

x1● (4.49)

Cut-rule.

⊢ Γ,¬A ⊢ A,∆
Cut⊢ Γ,∆

We associate the following bordism fromMΓ ◻M¬A ◻MA ◻M∆ Ð→MΓ ◻M∆.

● . . . ● x1● . . .
xn● xn● . . .

x1● ● . . . ●

● ● ● ●
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Tensor-rule. Say A has unoriented atoms (X1, x1), . . . , (Xn, xn) and B has unoriented

atoms (Y1, y1), . . . , (Ym, ym).

π
...

⊢ Γ,A

π′

...
⊢∆,B ⊗⊢ Γ,∆,A⊗B

Then we have the following morphism (MΓ◻MA)◻(M∆◻MB)Ð→MΓ◻M∆◻MA⊗B.

● . . . ● x1● . . .
xn● ● . . . ● y1● . . .

ym●

● . . . ● ● . . . ● x1● . . .
xn● y1● . . .

ym●

`-rule.

⊢ Γ,A,B `⊢ Γ,A`B

We have the following bordismMΓ ◻MA ◻MB Ð→MΓ ◻MA ◻MB.

● . . . ● x1● . . .
xn● y1● . . .

ym●

● . . . ● x1● . . .
xn● y1● . . .

ym●

Exchange-rule.

⊢ Γ,A,B,∆
Ex⊢ Γ,B,A,∆

We have the following morphismMΓ ◻MA ◻MB ◻M∆ Ð→MΓ ◻MB ◻MA ◻M∆.

● . . . ● x1● . . .
xn● y1● . . .

ym● ● . . . ●

● . . . ● y1● . . .
ym● x1● . . .

xn● ● . . . ●
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Definition 4.29. The matrix factorisation of a proof π is the image of JπK under

G ○ F .

Example 4.3. Consider the following proof π, with artificial labels.

Ax⊢ ¬X1,X2
Ax⊢ ¬X3,X4 ⊗⊢ ¬X7,X8 ⊗ ¬X9,X10

Ax⊢ ¬X5,X6 `⊢ ¬X11 `X12
Cut⊢ ¬X13,X14

This is interpreted as a composite in Atom

∅

MX1 ◻M¬X2 ◻MX3 ◻M¬X4 ◻MX5 ◻M¬X6

MX7 ◻MX8⊗¬X9 ◻MX10 ◻M¬X11`X12

MX13 ◻M¬X14

given by the following bordisms.

−● +● −● +● −● +●

−● +● −● +● −● +●

−● +●

Now we consider what happens when we apply the functor F . Associated to each of the

sequences of oriented atoms is a Clifford algebra. For example, we have F (X ) is the Clif-
ford algebra generated by δX1, . . . , δX6 subject to [δXi, δXj] = 0, i ≠ j and [δXi, δXi] = 2
for i = 2,4,6 and [δXi, δXi] = −2 for i = 1,3,5. Associated to the bordismMX1◻M¬X2◻
MX3 ◻M¬X4 ◻MX5 ◻M¬X6 is the Z2-graded F (¬X1,X2,¬X3,X4,¬X5,X6)-C-module



Algebraic Geometry and Linear Logic 129

⋀(Cα1 ⊕Cα2 ⊕Cα3). All of this information is summarised by the following diagram.

C

⋀(Cα1 ⊕Cα2 ⊕Cα3)

F (¬X1,X2,¬X3,X4,¬X5,X6)

⋀(Cθ1 ⊕Cθ2 ⊕Cθ3 ⊕Cθ4 ⊕Cθ5 ⊕Cθ6)

F (¬X7,X8,¬X9,X10,¬X11,X12)

⋀(Cψ1 ⊕Cψ2 ⊕Cψ3 ⊕Cψ4)

F (¬X13,X14)

Left

Right

Left

Right

Left

The list of actions is given as follows. First the left actions:

δX1 = α1 + α∗1 δX2 = α1 − α∗1 δX3 = α2 + α∗2 δX4 = α2 − α∗2
δX5 = α3 + α∗3 δX6 = α3 − α∗3 δX7 = θ1 + θ∗1 δX8 = θ2 − θ∗2
δX9 = θ3 + θ∗3 δX10 = θ4 − θ∗4 δX11 = θ5 + θ∗5 δX12 = θ6 − θ6
δX13 = ψ1 + ψ∗1 δX14 = ψ4 − ψ∗4

and the right actions (written as left actions):

δX1 = θ1 − θ∗1 δX2 = θ2 + θ∗2 δX3 = θ3 − θ∗3 δX4 = θ4 + θ∗4
δX5 = θ5 − θ∗5 δX6 = θ6 + θ∗6 δX7 = ψ1 − ψ∗1 δX8 = ψ2 + ψ∗2
δX9 = ψ3 − ψ∗3 δX10 = ψ4 + ψ∗4 δX11 = ψ2 − ψ∗2 δX12 = ψ3 + ψ∗3
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The image of this under G is given in the following diagram.

(∅,0)

(⋀(Cα1 ⊕Cα2 ⊕Cα3)⊗C[X1, . . . ,X6],∑6
i=1XiδXi)

−X2
1 +X2

2 −X2
3 +X2

4 −X2
5 +X2

6

(⋀(Cθ1 ⊕ . . .⊕Cθ6)⊗C[X7, . . . ,X12],∑12
i=1XiδXi)

−X2
7 +X2

8 −X2
9 +X2

10 −X2
11 +X2

12

(⋀(Cψ1 ⊕Cψ2 ⊕Cψ3 ⊕Cψ4)⊗C[X13,X14],∑14
i=7XiδXi)

−X2
13 +X2

14

4.2.2 The cut operation and stabiliser codes

We explore the cut operation and its associated Clifford action in the special case of

composing identity matrix factorisations. As a bordism, this looks as follows

+● . . .
+●

+● . . .
+●

+● . . .
+●

where each row has n vertices, for some n > 0.

This is the situation of Section 4.1.3 with X̃ = Ỹ = ⋀(Cn). For clarity we assume bases

{θ1, . . . , θn},{ψ1, . . . , ψn} have been chosen for two copies of Cn. We write

X̃ =⋀(Cθ1 ⊕ . . .⊕Cθn) Ỹ =⋀(Cψ1 ⊕ . . .⊕Cψn). (4.50)

In the notation of Section 4.1.1 we consider a polynomial U(x) = ∑ni=1 x2i and a CU(y)U(x)-

module X̃ and a CU(z)U(y)-module Ỹ , where x = {x1, . . . , xn}, y = {y1, . . . , yn}, z =
{z1, . . . , zn} are sets of variables.
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We thus have associated matrix factorisations of U(y) −U(x) and U(z) −U(y) respec-
tively.

(X,∂X) = (X̃⊗Ck[x, y],
n

∑
i=1
(xiµi+yiνi)) (Y, ∂Y ) = (Ỹ ⊗CC[y, z],

n

∑
i=1
(yiνi+ziωi)) (4.51)

where

µi = θi − θ∗i , νi = θi + θ∗i
νi = ψi − ψ∗i , ω = ψi + ψ∗i

The cut is

Y ∣X = (⋀(
n

⊕
i=1

Cθi)⊗C⋀(
n

⊕
i=1

Cψi)⊗C C[x, z],
n

∑
i=1
((θi + θ∗i )xi + (ψi + ψ∗i )zi))) (4.52)

with Clifford action given by

γi = −
1

2
(νi + νi) γ†

i = −
1

2
(νi − νi)

= −1
2
(θi + θ∗i + ψi − ψ∗i ) = −1

2
(θi + θ∗i − ψi + ψ∗i )

Next, we consider the idempotent e = γ1 . . . γnγ†
n . . . γ

†
1. Splitting e amounts to computing

the following image:

im(e) ≅
n

⋂
i=1

ker(θi + θ∗i + ψi − ψ∗i ). (4.53)

To understand these operators, we observe that ⋀(Cθ1⊕ . . .⊕Cθn) is the C-linearisation
of the set {0,1}n of length n bit-strings, where we associate with a string a = a1 . . . an ∈
{0,1}n the basis vector θa = θa11 . . . θann . The operator θi + θ∗i from this point of view is a

bitflip, with some signs.

Lemma 4.20. Let Bi ∶ {0,1}n Ð→ {0,1}n send a1 . . . an to a1 . . . ai . . . an where 0 = 1,1 =
0. Then

(θi + θ∗i )θa = (−1)a1+...+ai−1θBi(a)

(θi − θ∗i )θa = (−1)a1+...+aiθBi(a)

Proof. If ai = 0 then θ∗i θ
a = 0 and θiθ

a = (−1)a1+...+ai−1θBi(a) whereas if ai = 1 then

ψiθ
a = 0 and ψ∗i θ

a = (−1)a1+...+ai−1θBi(a).

This motivates a recasting of composition of identity matrix factorisations via splitting

an idempotent acting on the cut into the language of quantum computing. The resulting

geometry of interaction model of MLL is the contents of [51].
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To understand this recasting, we will need the basic theory of quantum error correction

codes. We provide this in Appendix G.

4.2.3 Proofs as codes

This section features the joint work of the current author and Daniel Murfet [51], to

which both authors made equal contributions.

Consider the following proof net π, where we have added labels to the atoms.

Ax Ax Ax

c ⊗ c `

Cut

¬X1
X2 ¬X9

X10

X3⊗¬X8

X6 ¬X5

X7`¬X4

(4.54)

Inspired by the model of proofs in MLL sequent calculus, we can associated to π the

following

(⋀(Cθ1 ⊕ . . .⊕Cθ9)⊗C C[X1, . . . ,X10],
9

∑
i=1
XiδXi) (4.55)

which is a matrix factorisation of X2
10 −X2

1 . This proof π admits one positively oriented

persistent path given by the sequence (X10, . . . ,X1). This persistent path corresponds

to a sequence of compositions of identity matrix factorisations:

X1 X2 . . . X10
id1 id2 id9 (4.56)

where idi ∶Xi Ð→Xi+1 is the matrix factorisation (⋀Cθi,XiδXi +Xi+1δXi+1).

A finite representative can be calculated by considering the cut I1 ∣ . . . ∣ I9 and idempo-

tent e = γ1 . . . γ9γ†
9 . . . γ

†
9 where γi, γ

†
i is the Clifford action on this cut.

Now, we can write

e = γ1 . . . γ9γ†
9 . . . γ

†
9 (4.57)

= γ1γ†
1 . . . γ9γ

†
9 (4.58)

and so we can re-write (4.56) as follows:

θ1 θ2 θ9

X1 ∣ X2 ∣ . . . ∣ X8 ∣ X9

(4.59)
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Each γiγ
†
i is a projector onto some subspace of ⋀Cθi. We make another observation,

recall from Lemma 4.20 that the operators θi +θ∗i can be viewed as a bitflip operator Xi

(recall Definition G.10, Notation G.12).

γiγ
†
i =

1

4
(νi + νi)(νi − νi) (4.60)

= 1

2
(1 + (θi + θ∗i )(θi+1 + θ∗i+1)) (4.61)

= 1

2
(1 +XiXi+1) (4.62)

Warning: the notation X is now overloaded, as Xi may refer to the variable in the proof

π, or it may refer to the bitflip operator acting on ⋀Cθi.

Recall from the proof of Theorem G.17 that there is a standard projector onto the

stabiliser code of {XiXi+1 ∣ i = 1, . . . ,8} given by

8

∏
i=1

1 +XiXi+1
2

(4.63)

which by (4.58) and (4.62) is our idempotent e. Thus, our encoding (4.59) of π can

again be re-written, now as a lattice

θ1,θ
∗
1●

θ2,θ
∗
2● . . .

θ9,θ
∗
9●X1X2 X2X3 X8X9

where at each vertex is a qubit, and each edge is a check operator.

Remark 4.21. This notation may look a bit bizarre. Consider the composition of two

identity morphisms

X1 X2 X3
id1 id2

Then id1 = (⋀Cθ1,X1δX1+X2δX2) and id2 = (⋀Cθ2,X2δX2+X3δX3). Then the tensor

product is isomorphic to

(⋀(Cθ1 ⊕Cθ2,X1δX1 +X2δX2 ⊗ 1 + 1⊗X2δX2 +X3δX3) (4.64)

which seemingly contains two copies of the operator δX2. However, one of these copies

acts on θ1 on the left, and the other acts on θ2 on the right. So really this sum just

extends the operator δX2. Thus we can write the composite as

(⋀(Cθ1 ⊕Cθ2),X1δX1 +X2δX2 +X3δX3). (4.65)

In this section π is a proof structure and Lπ the set of links in π.
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Definition 4.30 (Unoriented atoms of a link). To each link l in Lπ we associate

a set of unoriented atoms Ul. If l is a Conclusion link then Ul = ∅. For Axiom and

Cut-links

Ax
...

...

...
... Cut

¬A A

A ¬A

involving formulas A,¬A with the same set of unoriented atoms {X1, ...,Xn}. We define

Ul = {X1, ...,Xn} .

For Tensor and Par-links involving formulas A,B

...
...

...
...

⊗ `

...
...

A B

A⊗B

A B

A`B

where A has unoriented atoms {X1, ...,Xn} and B has unoriented atoms {Y1, ..., Ym},

Ul = {X1, ...,Xn, Y1, ..., Ym} .

Definition 4.31. The set of qubits Qπ of π is the disjoint union

Qπ =∐
l∈L
Ul . (4.66)

A qubit ordering for π is a sequence U1, . . . , Un where Qπ = {U1, . . . , Un}.

In [50, Definition 3.16] we defined a set Uπ of unoriented atoms of π by taking a disjoint

union over edges. In this section our unoriented atoms are associated to links, and to

avoid confusion we tend to refer to them as the qubits of π rather than the “unoriented

atoms of π”.

Lemma 4.22. There is a bijection between the set of qubits Qπ and the set of unordered

pairs V,V ′ ∈ Uπ of unoriented atoms of π with V ∼ V ′.

Proof. See [51, Lemma 3.3].



Algebraic Geometry and Linear Logic 135

Definition 4.32. The Hilbert space Hl of a link l ∈ L is

Hl =⋀ ⊕
X∈Ul

CψlX (4.67)

where ψlX is a formal generator corresponding to X ∈ Ul. The Hilbert space of π is

Hπ =⋀⊕
l∈L
⊕
X∈Ul

CψlX . (4.68)

We refer to the ψlX as link fermions. Sometimes we denote ψlX by ψX , keeping in mind

each generator is associated with a unique link. If we choose an ordering on the links

then we get an isomorphism Hπ ≅⊗lHl.

Remark 4.23. Recall that there is an equivalence relation ≈ on Uπ generated by a relation

∼ [50, Definition 4.8]. Two unoriented atoms V,V ′ satisfy V ∼ V ′ if they occur in formulas

on edges incident at a common link l which is not a Conclusion-link [50, Definition 3.18,

3.19].

Suppose A = U ⊗U with U atomic, then with Ui = U for 1 ≤ i ≤ 4

¬A = ¬(U1 ⊗U2) = ¬U3 ` ¬U4

we have

Ax

¬U3 ` ¬U4 U1 ⊗U2

¬U3 ` ¬U4 U1 ⊗U2

Cut

(4.69)

The content of these links is U1 = U4, U2 = U3 (see [50]) and we represent these equations

by link fermions ψ1, ψ2 respectively. The correspondence between fermions and equations

can be represented informally as ψ1 ↝ U1 −U4, ψ2 ↝ U2 −U3.

Definition 4.33. Let U1, . . . , Un be a qubit ordering for π. The associated isomorphism

of Hilbert spaces Γ ∶ (C2)⊗n Ð→Hπ is

Γ ∣a1⋯an⟩ = ψa1U1
∧⋯ ∧ ψanUn

(4.70)

where ∣a1, . . . , an⟩ ∈ (C2)⊗n denotes the element a1 ⊗ . . .⊗ an

Let π be a proof structure with Hilbert space Hπ. The structure of π lies in the fact that

there is redundancy in the set of qubits: some unoriented atoms are represented twice

in the set of qubits Qπ. To be more precise, let (U, yU) be an oriented atom appearing
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in a formula A on an edge in π connecting two links l Ð→ l′ which are not conclusions:

⋯ l
A // l′ ⋯ (4.71)

The unoriented atom U appears in both Ul and Ul′ and there are consequently two

qubits ψlU , ψ
l′

U in Hπ that are associated to U . We introduce a self-adjoint operator ΘU

which represents the statement “U = U” for these two copies, and derive from these

operators an error-correcting code. We write ψU for ψlU and ψ′U for ψl
′

U . Associated to

these generators are operators on Hπ

ψU = ψU ∧ (−) , ψ∗U = ψ∗U ⌟(−)

and similarly for ψ′U .

Definition 4.34. The edge operator on Hπ associated to (U, yU) is

ΘlÐ→l′
(U,yU ) = yU(ψ

′
U − yUψ′∗U )(ψU + yUψ∗U) . (4.72)

While the edge operator depends on the pair consisting of an oriented atom and the

edge in π on which it appears, to simplify the notation we often write ΘlÐ→l′
U or even

just ΘU where it will not cause confusion.

Lemma 4.24. ΘU is a self-adjoint operator on Hπ.

Proof. See [51, Lemma 3.8]

Recall the isomorphism of Hilbert spaces Γ from Definition 4.33.

Proposition 4.25. Let π be a proof structure with qubit ordering U1, . . . , Un. As above

let a particular oriented atom (U, yU) be chosen, let Ui be the copy of U in Ul and Uj

the copy in Ul′. Then there is a commutative diagram

(C2)⊗n Hπ

(C2)⊗n Hπ

Γ

F ΘU

Γ

(4.73)

where

• If yU = + and j < i then F =XjZj+1⋯Zi−1Xi. If i = j + 1 then F =XjXi.

• If yU = + and j > i then F = −XiZi⋯ZjXj.
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• If yU = − and j > i then F =XiZi+1⋯Zj−1Xj. If i = j − 1 then F =XiXj.

• If yU = − and j < i then F =XjZj⋯ZiXi.

Proof. See [51, Proposition 3.9].

Corollary 4.35. For any oriented atom (U, yU) the operator ΘU belongs to the Pauli

group Gn (see Appendix G) when viewed as an operator on (C2)⊗n using any qubit

ordering.

Recall that π is an arbitrary proof structure.

Definition 4.36. The stabiliser quantum error-correcting code of π is the pair

JπK = (Hπ, Sπ) (4.74)

where Sπ is the subgroup of the Pauli group generated by the operators Gπ = {ΘU}U ,
with U ranging over oriented atoms appearing in formulas decorating edges in π con-

necting links which are not Conclusion-links. The codespace of π is the invariant

subspace

HSπ
π = {φ ∈Hπ ∣Xφ = φ for all X ∈ Sπ} . (4.75)

The main theorem of [51] is the following.

Theorem 4.37 (The Reduction Theorem). For each reduction γ ∶ π Ð→ π′ there exists

a subset Cπ ⊆ Sπ and an isomorphism:

γ̂ ∶Hπ′ Ð→HCπ
π (4.76)

such that for every g ∈ Sπ ∖Cπ there is a unique g′ ∈ Sπ′ making the following diagram

commute:

Hπ′ HCπ
π

Hπ′ HCπ
π

γ̂

g′ g

γ̂

(4.77)

and this map g z→ g′ is a bijection Sπ ∖Cπ Ð→ Sπ′.

Proof. See [51, Reduction Theorem]

The interesting part of Theorem 4.37 is the definition of γ̂ (given below) as it represents

entanglement, motivating the slogan “proofs are patterns of entanglement”. We conclude

this section by presenting the definition of γ̂.
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Given a reduction π Ð→ π′ we will define a map γ ∶ JπKÐ→ Jπ′K depending on what type

of reduction γ is.

Definition 4.38. First we define γ in the context where π Ð→ π′ is an Ax /Cut-
reduction of the form given as follows, the other case is similar. We label the relevant

links of π,π′ according to the following diagram.

lAx

Ax
l●

...
lCut

Cut

¬A
A

¬A

Ð→

l●

...

¬A

For each oriented atom (U, y) of ¬A we define a Z2-degree zero map for y = + by:

γU ∶⋀CψlU Ð→⋀CψlU ⊗⋀CψlCut
U ⊗⋀CψlAx

U (4.78)

∣j⟩z→ 1√
2
(∣+ + +⟩ + (−1)j ∣− − −⟩) (4.79)

If y = − then γU has the same domain and formula, but its codomain is:

⋀CψlAx
U ⊗⋀CψlCut

U ⊗⋀CψlU . (4.80)

If m ≠ l is a link of π′ and V an unoriented atom of m, then m is in π and we define

γV ∶ ⋀CψmV Ð→ ⋀CψmV to be the identity.

Assume now that we have a linear order U1 < ⋯ < Ur of π. Then in all cases of U,V

above, post composing with an inclusion induces a morphism with codomain:

⋀CψU1 ⊗⋯⊗⋀CψUr . (4.81)

Assuming now that V1 < ⋯ < Vr′ is a linear order of π′, we tensor over all morphisms

considered to thus obtain a morphism:

⋀CψV1 ⊗⋯⊗⋀CψVr′ Ð→⋀CψU1 ⊗⋯⊗⋀CψUr . (4.82)

Finally, pre and post composing with the respective isomorphisms we obtain the mor-

phism of interest:

γ ∶Hπ′ Ð→Hπ. (4.83)

Now we define the subset Cπ ⊆ Sπ. Let A be the unoriented atoms of ¬A and hence also

of A. Define

Cπ = {ΘlAxÐ→lCut
U }U∈A ∪ {ΘlÐ→lCut

U }U∈A. (4.84)



Algebraic Geometry and Linear Logic 139

Next, we define γ̂ in the case when π Ð→ π′ is a ⊗/`-reduction. For convenience, we

label the links involved in the reduction according to the following Diagram (note: there

may be some equalities among m1,m2,m3,m4).

m1● m2● m3● m4●

l⊗⊗
l``

m
Cut

Ð→

m1● m2● m3● m4●

a
Cut

b
Cut

A B ¬A ¬B

A⊗B ¬A`¬B

A ¬B

For each oriented atom (U, yu) of A and (V, yv) of B we define Z2-degree zero maps:

γU ∶⋀CψaU Ð→⋀CψÙ ⊗⋀CψCut
U ⊗⋀Cψ⊗U , yu = + (4.85)

γU ∶⋀CψaU Ð→⋀Cψ⊗U ⊗⋀CψCut
U ⊗⋀CψÙ , yu = − (4.86)

γV ∶⋀CψbV Ð→⋀CψV̀ ⊗⋀CψCut
V ⊗⋀Cψ⊗V , yv = + (4.87)

γV ∶⋀CψbV Ð→⋀Cψ⊗V ⊗⋀CψCut
V ⊗⋀CψV̀ , yv = − (4.88)

all by the following formula:

∣j⟩z→ 1√
2
(∣+ + +⟩ + (−1)j ∣− − −⟩). (4.89)

Following the same procedure as in the case when the reduction π Ð→ π′ reduced an

a-redex, we tensor over all links with respect to the order given by the linear order on

π and then compose with the relevant isomorphisms to obtain the following, injective,

Z2-degree zero map of interest:

γ ∶Hπ′ Ð→Hπ. (4.90)

Let A denote the unoriented atoms of A (and hence of ¬A) and B that of B (and hence

of ¬B).

Cπ = {Θl⊗Ð→lCut

U ,Θl⊗Ð→lCut

V }U∈A,V ∈B ∪ {Θl`Ð→lCut

U ,Θl`Ð→lCut

V }U∈A,V ∈B. (4.91)
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4.2.4 Cut-elimination and the Falling Roofs algorithm

This section features the joint work of the current author and Daniel Murfet [50], to

which both authors made equal contributions.

In Section 4.1.1 we described how, given a commutative ring R, an element f ∈ R,
and elements a1, . . . , an, b1, . . . , bn ∈ R such that f = ∑ni=1 aibi, one can construct a ma-

trix factorisation for f in the presence of a Z2-graded R-module M with odd R-linear

maps θi, θ
∗
i ∶ M Ð→ M, i = 1, . . . , n satisfying the canonical anticommutation relations

(Definition 4.12).

This matrix factorisation has underlying Z2-graded R-module ⋀(Rn) and has differential

∑ni=1 aiθi +∑ni=1 biθ∗i . In the special case where R = k[x] = k[x1, . . . , xn] is a polynomial

ring, we have an isomorphism

⋀(k[x]n) ≅⋀(kn)⊗k k[x] (4.92)

which relates the matrix factorisations considered in Section 4.2.2 to the identity mor-

phisms of the bicategory of Landau-Ginzburg models.

Notation 4.39. The matrix factorisation of f induced by sequences a = (a1, . . . , an), b =
(b1, . . . , bn) as above and maps θi, θ

∗
i is denoted {a, b}.

The matrix factorisation {a, b} is independent of a up to homotopy if a is a regular

sequence (see [6, §D.1] and take X to be the identity matrix factorisation). Thus, we

can consider the model of Section 4.2.1 where each proof π is given an associated matrix

factorisation, but we forget all the information other than the sequences b involved. This

leads to the model given in [50], where to each proof π is an associated polynomial ring

Pπ determined by the formulas occurring in π, an ideal Iπ determined by the links in π,

and finally a coordinate ring Pπ/Iπ.

For example, consider again the proof net π of (4.54) with corresponding matrix fac-

torisation (4.55). Corresponding to the regular sequence t = (Xi+1 − Xi)9i=1 there is,

as defined generally in Example 4.1, an associated matrix factorisation MF(t) which is

(4.55). Since MF(t) can be reconstructed from t, we can forget all the information other

than the set of polynomials

Gπ = {X2 −X1, . . . ,X10 −X9} ⊆ k[X1, . . . ,X10] = Pπ. (4.93)

The defining ideal Iπ of π is the ideal generated by Gπ, and the coordinate ring Rπ

is defined to be the quotient Rπ = Pπ/Iπ. Defining this model and relating the cut-

elimination process to elimination theory was done in [50], though the connection to
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matrix factorisations was never given there. We reveal here though that these ideas

were present the entire time.

Continuing with the above example, since the formulas ¬X1,X10 are the only two which

are above Conclusion-links, whereas the others are above Cut-links, it is the remaining

variablesX2,¬X9,X3⊗¬X8,X7`¬X4,X5,¬X6 which will not survive the cut-elimination

process.

On the algebraic side, this corresponds to introducing an order

X9 > . . . >X2 >X10 >X1 (4.94)

on the indeterminants and then considering the induced lexicographic monomial order

< on Pπ. The exact order of (4.94) is not important, as long as the variables which lie

above Conclusion-links are all greater than those which lie above Cut-links.

In general, a set of polynomials S form a Gröbner basis for the ideal ⟨S⟩ generated
by S if ⟨LTS⟩ = ⟨LT⟨S⟩⟩, where LTS is the set of leading terms of the polynomials in S

and LT⟨S⟩ is the set of leading terms of all polynomials in the ideal ⟨S⟩.

For instance, LTGπ = {X2,X3, . . . ,X9} whereas ∑g∈Gπ
g = X10 −X1 which has leading

term X10. Thus X10 ∈ ⟨LT⟨Gπ⟩⟩ but X10 /∈ ⟨LTGπ⟩. That is, Gπ is not a Gröbner basis

for Iπ.

The Buchberger algorithm constructs a Gröbner basis for ⟨S⟩ given S and is recalled in

[8, Theorem 2]. The Buchberger algorithm will not be needed here, but we state that

the result B(Gπ,<) of extending Gπ to a Gröbner basis is given as follows:

B(Gπ,<) = {X2 −X1, . . . ,X10 −X9,X10 −X1}. (4.95)

Now, the proof π cut-reduces to the proof net π̃ consisting of only a single Axiom-link

as follows
Ax

c c

X10¬X1

This has corresponding defining ideal generated by the following:

Gπ̃ = {X10 −X1} (4.96)

which we see is also given by the following, where P+π̃ = k[X1,X10]:

B(Gπ,<) ∩ Pπ̃. (4.97)
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That this can be done for arbitrary proof nets is [50, Theorem 7.11].

There, we also considered how elimination theory handles single-step cut-reduction, this

involves making a small adaptation to the Buchberger algorithm, but the general ideal is

the same. See [50, Theorem 7.2] for a precise statement. Both single-step cut-reduction

as well as single-step normalisation (where all cuts are removed in a single step) are

modeled using elimination theory in a related way when the Falling Roofs algorithm [50]

is employed. The operations of this algorithm are studied carefully in its original paper,

but how this algorithm relates to quantum error correcting codes is not explained in

either of [50] nor [51]. We make this connection precise in Section 4.2.5. For the reader’s

convenience, we write down the Falling Roofs algorithm again here, see Algorithm 1.

The following is an alternate (but equivalent) definition of the matrix factorisation of a

proof net with single conclusion A which does not require the functors F,G.

Definition 4.40. Let A be a formula with oriented atoms UA = {(x1,X1), . . . , (xn,Xn)}.
The potential of A is

(UA,WA) = ({X1, . . . ,Xn},
n

∑
i=1
xiX

2
i ) (4.101)

where xi is read as 1 if xi = + and read as −1 if xi = −.

Recall that associated to each link l ∈ L of π, there is a set of polynomials Gl = (f li)
nl
i=1,

whose union ⋃l∈LGl gives a set of generators for the defining ideal Iπ of π. The sets

Gl are defined in [50, Definitions 3.18, 3.19]. The polynomial ring Pπ is defined in [50,

Definition 3.14] and the defining ideal Iπ of π in [50, Definition 3.21]. We also make

use of the Hilbert space Hπ associated to π which is given in Definition 4.32 and [51,

Definition 3.4]. We use also the fact that there is a bijection b between the set of qubits

Qπ and the set of unoriented pairs V,V ′ ∈ Uπ of unoriented atoms of π with V ∼ V ′, this

is Lemma [51, Lemma 3.3].

Definition 4.41. Let π be a multiplicative proof net with conclusion A, set of links Lπ.
We define a matrix factorisation of WA ∈ PA

Xπ ∶= (Hπ ⊗k Pπ, ∂π) ∈ hmf(Pπ,WA) (4.102)

with the following differential, where we write gli for X − Y if f li is X + Y

∂π = ∑
l∈Lπ

nl

∑
i=1
(f lb(i)θ

∗
i + glb(i)θi). (4.103)

Lemma 4.26. The pair Xπ = (Pπ ⊗k Hπ, ∂π) is a matrix factorisation of WA over PA.
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Algorithm 1 Falling Roofs

Require: Linear graph S
N ←S
Mark all edges in N as live
while N contains a live roof do
(e, e′)← the first live roof in N
Mark e, e′ as dead
If it does not exist, add to N a live edge d as shown below:

●

●

e
??

d
// ●

e′
__ (4.98)

while d is part of a live roof in N do
if (d, e′′) is a live roof in N then

Mark e′′ as dead
If it does not exist, add to N a live edge d′ as shown below:

●

●

d
??

d′
// ●

e′′
__ (4.99)

Remove d from N
d← d′

else if (e′′, d) is a live roof in N then
Mark e′′ as dead
If it does not exist, add to N a live edge d′ as shown below:

●

●

e′′
??

d′
// ●

d
__ (4.100)

Remove d from N
d← d′

end if
end while

end while
return N
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Figure 4.2: The trefoil knot and the Hopf link

Figure 4.3: The unknot

Proof. It suffices to show that ∑l∈Lπ ∑
nl
i=1 f

l
b(i)g

l
b(i) =WA. This is a telescoping sum with

only surviving variables those appearing in A.

Remark 4.27. The matrix factorisation here agrees with that defined in Definition 4.29.

Remark 4.28. We conclude this section with a brief explanation of where the idea to

attribute matrix factorisations to proof nets came from in the first place. We do this by

briefly explaining another context where matrix factorisations have been used to great

utility.

A knot is a smoothly embedded circle in R3; a link is a disjoint union of non-intersecting

knots. The trefoil knot and Hopf link are shown in Figure 4.2. The basic problem in knot

theory is to distinguish knots by computing topological invariants. One such invariant

is Khovanov-Rozansky link homology, which involves projecting a knot onto the two-

dimensional plane and replacing each crossing with a resolution of matrix factorisations.

We keep the present discussion intentionally vague, but the interested reader can consult

[6] for precise definitions.

The most trivial knot is the unknot which involves no crossings, displayed in Figure

4.3. Khovanov and Rozansky’s link homology applied to the unknot involves artificially

attributing nodes to the projection of the unknot onto the plane, and then attributing
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to each arc a polynomial xNi , for some N > 0.

xN+11 xN+12

To each node we then attribute the identity matrix factorisation, which is that associated

to xN+11 − xN+12 . At this point, we can simply replace knots by proof nets and see what

results from the theory. This is what we do and the result is the model defined in

Definition 4.41. Though the matrix factorisations we have associated to the unknot are

not interesting mathematically, we claim that this proof invariant is interesting due to

its relationship to cut-elimination and the resulting relationship to elimination theory.

4.2.5 From error correction to Falling Roofs

A typical step of the Falling Roofs algorithm looks as follows. Consider the polynomial

ring k[x, y, z] with total order x < z < y on the indeterminants {x, y, z} which endows

k[x, y, z] with a monomial order via lexicographic ordering. Consider also the polyno-

mials y − z, y − x. We can present this graphically as follows, where a formula is higher

up the page if it is larger with respect to <.

y

z

x

(4.104)

Denote this graph S. The Falling Roofs algorithm applied to S is

y

z

x

(4.105)

from which we extract the sequence (y−z, y−x, z−x), whose underlying set is a Gröbner

basis for the ideal ⟨y − z, y − x⟩ ⊆ k[x, y, z]1, though it is not a regular sequence. We

can write the smaller of the two polynomials y − z, y − x (which is y − x) in terms of the

1In this section, there will be many sequences and many ideals generated by explicit generators.
Throughout this thesis we have used parentheses (⋅) to denote both of these. In this section though, we
will use parentheses for sequences, and angle brackets ⟨⋅⟩ for ideals.
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polynomials y − z, z − x, and so we can just consider the sequence (y − z, z − x) which
generates the same ideal, and is now a regular sequence (in fact, it is also a Gröbner

basis too).

In this way, the Falling Roofs algorithm has generated a map of sequences

(y − z, y − x)z→ (y − z, z − x) (4.106)

which we claim induces an isomorphism of matrix factorisations (recall Notation 4.39)

{(−y − z, y + x), (y − z, y − x)}Ð→ {(x − z,−y + x), (y − z, z − x)} (4.107)

of z2 − x2. We adopt the convention that the regular sequence is the one determined

by writing the polynomials pertaining to the edges in the Falling Roofs algorithm from

largest to smallest, for the variables associated to the θ∗ operators.

Denote by A the matrix A =
⎛
⎝
1 0

−1 1

⎞
⎠
and notice that

A
⎛
⎝
y − z
y − x

⎞
⎠
=
⎛
⎝
y − z
z − x

⎞
⎠

(4.108)

Since every matrix factorisation of the form {a, b} is independent of a up to homotopy

[6, §D.1] provided a is a regular sequence, we are free to pick any strategy which updates

the sequences a as long as we maintain a matrix factorisation of z2−x2, and as long as we

result in an isomorphism of matrix factorisations. Since the updating of the sequences

b given by the matrix A, we can use the inverse transpose (A−1)T to update a.

z2 − x2 = b1 ⋅ a1 = bT1 a1 = (Ab1)T ((A−1)Ta1) = bT2 ((A−1)Ta1). (4.109)

In the above example, we have (A−1)T =
⎛
⎝
1 1

0 1

⎞
⎠
and so

(A−1)T
⎛
⎝
y + z
−y − x

⎞
⎠
=
⎛
⎝
z − x
−y − x

⎞
⎠
. (4.110)

Since A is invertible, it follows easily that if A induces a morphism of matrix factori-

sations, then it is an isomorphism. Thus, it remains to check that A induces such a

morphism.

Let R denote the k[x, y]-algebra k[x, y]θ1 ⊕ k[x, y]θ2. Then we can view AT as a

linear transformation R2 Ð→ R2 with respect to the basis θ1, θ2. This induces an R-

algebra homomorphism ⋀AT ∶ ⋀R Ð→ ⋀R. The exterior algebra ⋀R is the underlying
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R-algebra of the Koszul complex K(y − z, y − x) associated to the regular sequence

(y − z, y − x) ∈ R. We now show the map ⋀AT is a morphism of Koszul complexes

K(y − z, y − x)Ð→K(y − z, z − x).

Explicitly, we need to show commutativity of the following diagram.

0 R R2 ⋀2R2 0

0 R R2 ⋀2R2 0

(y−z,y−x) (y−z,y−x)

(y−z,z−x) (y−z,z−x)
idR AT ⋀2AT

This follows from simple calculations. For example, if p ∈ R2 then

(
2

⋀AT ○ (y − z, y − x))(p) = (y − z, y − x − (y − z)) ∧AT (p)

= (y − z, z − x) ∧AT (p)

= ((y − z, z − x) ○AT )(p)

showing commutativity of the rightmost square.

To obtain the morphism of matrix factorisations (4.107) it remains to check that ⋀AT

commutes with the differentials. That is, we need

⋀AT ○ ∂2 = ∂1 ○⋀AT (4.111)

where

∂1 = (y + z)θ1 + (−y − x)θ2 + (y − z)θ∗1 + (y − x)θ∗2
∂2 = (z − x)θ1 + (−y − x)θ2 + (y − z)θ∗1 + (z − x)θ∗2

As an R-module, ⋀R2 is free generated by 1, θ1, θ2, θ1θ2, so given p ∈ ⋀R2 there exists

a, b, c, d ∈ R such that p = a + bθ1 + cθ2 + dθ1θ2. The image of p under ⋀AT is:

⋀AT (p) = a + (b − c)θ1 + cθ2 + dθ1θ2. (4.112)
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We can now check (4.111) explicitly as follows.

∂1 ○⋀AT (p) = (b − c)(y − z) + c(y − x)

+ θ1(a(y + z) − d(y − x)) + θ2(a(−y − x) + d(y − z))

+ θ1θ2( − (b − c)(−y − x) + c(y + z))

= b(y − z) + c(z − x)

+ θ1(a(y + z) − d(y − x)) + θ2(a(−y − x) + d(y − z))

+ θ1θ2(b(y + x) + c(z − x))

and

⋀AT ○ ∂2(p) =⋀AT [b(y − z) + c(z − x)

+ θ1(a(z − x) − d(z − x)) + θ2(a(−y − x) + d(y − z))

+ θ1θ2( − b(−y − x) + c(y + z))]

= b(y − z) + c(z − x)

+ θ1(a(z − x) − d(z − x) − a(−y − x) − d(y − z)) + θ2(a(−y − x) + d(y − z))

+ θ1θ2(b(y + x) + c(z − x))

= b(y − z) + c(z − x)

+ θ1(a(y + z) − d(y − x)) + θ2(a(−y − x) + d(y − z))

+ θ1θ2(b(y + x) + c(z − x))

which are equal.

In Section 4.2.3 we split the idempotent e pertaining to the cut of the matrix factorisation

associated to a proof net immediately, without utilising any isomorphisms of matrix

factorisations beforehand. As we have just seen, the Falling Roofs algorithm provides a

family of such isomorphisms. What happens if we split the idempotent corresponding

to the matrix factorisation corresponding to the result of the Falling Roofs algorithm?

In the case where a single roof is collapsed we end with an idempotent which is easier

to split. In general though, since the Falling Roofs algorithm only deals with one side of

the matrix factorisations, more work is required to tame the other side. It is clear that

the Falling Roofs algorithm is performing simplification in general, but precisely how

will only be explained here for the case where a single step is performed. In summary,

we have the following commuting diagram, where {â, b̂} denotes the matrix factorisation
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corresponding to the output of the Falling Roofs algorithm.

I2 ○ I1 {â, b̂}

I2 ∣ I1 I2 ∗ I1

Falling Roofs

Cut Idempotent pushforward

Error correction

Diagram (4.104) describes the matrix factorisation corresponding to the sequence y−z, y−
x. Up to trivial isomorphism, we may multiply either of these polynomials by a minus

sign and result in an isomorphic matrix factorisation. In essence, this diagram therefore

implicitly describes the Koszul matrix factorisation corresponding to the Koszul complex

(Example 4.1) K(z −y, y−x) ≅K(z −y)⊗K(y−x). This matrix factorisation is exactly

the composite id ○ id of two identity matrix factorisations. Considering the cut id ∣ id, we
can then study the corresponding Clifford action as described in Section 4.1.3. We will

suppress the isomorphism K(y − z, y − x) ≅ K(z − y, y − x). Let f
1
denote the sequence

(y−z, y−x) and let g
2
denote the sequence (y+z,−y−x) so that the matrix factorisation

implicitly described by Diagram (4.104) is {g
1
, f

1
}. The cut of this composite is

{g
1
, f

1
} ∶= (⋀(kθ1 ⊕ kθ2)⊗k k[x, z], zθ1 − xθ2 − zθ∗1 − xθ∗2). (4.113)

Similarly, let f
2
= (y − z, z − x), g

2
= (z − x,−y − x). The cut is

{g
2
, f

2
} ∶= (⋀(kθ1 ⊕ kθ2)⊗k k[x, z], (z − x)θ1 − xθ2 − zθ∗1 + (z − x)θ∗2). (4.114)

The C1-action on {g
1
, f

1
} is given by describing the action on two generators γ(1), γ(1)†,

but only the action on the generator γ(1) will be needed.

γ(1) = −1
2
[ ∂
∂y
, ∂1] = −

1

2
(θ1 − θ2 + θ∗1 + θ∗2). (4.115)

On the other hand, the corresponding operator γ(2) of the C1-action on {g
2
, f

2
} is:

γ(2) = −1
2
[ ∂
∂y
, ∂2] = −

1

2
(−θ2 + θ∗1). (4.116)

Written with respect to the ordered R-basis B ∶= (1, θ1, θ2, θ1θ2), the operators −2γ(1) =
θ1 − θ2 + θ∗1 + θ∗2 and −2γ(2) = −θ2 + θ∗1 respectively are given by the following matrices:

[−2γ(1)]B =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 1 0

1 0 0 −1
−1 0 0 1

0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

[−2γ(2)]B =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0

0 0 0 0

−1 0 0 1

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (4.117)
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The second matrix is simpler to calculate the kernel of than the first as a row of zeros has

been introduced. This is the formal sense in which the Falling Roofs algorithm makes

the idempotent e easier to compute.

Remark 4.29. If we let C denote the ordered basis (1, θ1,−θ1 + θ2, θ1θ2) then

[−2γ(1)]C = [−2γ(2)]B. (4.118)

So the Falling Roofs algorithm should be thought of as a change of basis (θ1, θ2) ↝
(θ1,−θ1 + θ2) of R inducing the change of basis B ↝ C of ⋀R.

We have

Ker(−2γ(2)) = {a + cθ2 + aθ1θ2 ∣ a, c ∈ k}

= {cθ2 + a(1 + θ1θ2) ∣ a, c ∈ k}

Recall that the differential associated to {g
2
, f

2
}, which we denote here by ∂2, is given

by ∂2 = (z −x)θ1 −xθ2 − zθ∗1 + (z −x)θ∗2 . When we restrict this to Ker(−2γ(2)) and write

it with respect to the ordered basis B′ ∶= (θ2,1 + θ1θ2) we obtain the following matrix

[∂2∣Ker(−2γ(2))]B′ =
⎛
⎝

0 −z − x
z − x 0

⎞
⎠
. (4.119)

which means we have successfully split the idempotent. We have

im(e) ≅ {z − x,−z − x} (4.120)

via the graded isomorphism induced by k[x, z]-linearity and the following rule

⋀(kψ)⊗k k[x, z]z→ im(e)

1z→ 1 + θ1θ2
ψ z→ θ2

We can split the idempotent γ(1)†γ(1) on {g
1
, f

1
} using what we have done.

γ(2) = −1
2
[ ∂
∂y
, ∂2]

= −1
2
[ ∂
∂y
,⋀(AT )−1 ○ ∂1 ○⋀(AT )]

= −1
2
⋀(AT )−1 ○ [

∂

∂y
, ∂1] ○⋀AT

=⋀(AT )−1 ○ γ(1) ○⋀AT
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Hence

Ker(γ(1)) = {w ∣ γ(1) = 0}

= {w ∣⋀AT ○ γ(2) ○⋀(AT )−1(w) = 0}

= {w ∣⋀(AT )−1(w) ∈ Ker(γ(2))}

=⋀AT (Ker(γ(2)))

= Spank{⋀AT (θ2),⋀AT (1 + θ1θ2)}

= Spank{−θ1 + θ2,1 + θ1θ2}

Noticing that ∂1(−θ1 + θ2) = z − x and ∂1(1 + θ1θ2) = (−z − x)(−θ1 + θ2), we find that if

B′′ = (−θ1 + θ2,1+ θ1θ2) then [∂1∣Ker(−2γ(1))]B′′ is again the matrix (4.119). We see that

the resulting vectors −θ1 + θ2 and 1 + θ1θ2 respectively correspond (up to sign) to the

entangled states ∣10⟩ + ∣01⟩ , ∣00⟩ + ∣11⟩ considered in Section 4.2.3.



Appendix A

The Untyped and Simply Typed

λ-Calculus

We follow [62, §3.3].

A.1 Untyped λ-calculus

Definition A.1. Let V be a (countably) infinite set of variables, and let L be the

language consisting of V along with the special symbols:

λ . ( )

Let L ∗ be the set of words of L , more precisely, an element w ∈L ∗ is a finite sequence

(w1, ...,wn) where each wi is in L . Such an element will be written as w1...wn. Now let

Λp denote the smallest subset of L ∗ such that:

• If x ∈ V then x ∈ Λp.

• If M,N ∈ Λp then (MN) ∈ Λp.

• If x ∈ V and M ∈ Λp then (λx.M) ∈ Λp.

Λp is the set of preterms. A pretermM such thatM ∈ V is a variable, ifM = (M1M2)
for some preterms M1,M2, then M is an application, and if M = (λx,M ′) for some

x ∈ V and M ′ ∈ Λp then M is an abstraction.

We adopt the following notation:
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• For preterms M1,M2,M3, the preterm M1M2M3 means ((M1M2)M3)).

• For variables x, y and a preterm M , the preterm λxy.M means (λx.(λy.M)).

The variables x which appear in the subpreterm M of a preterm λx.M are viewed as

“markers for substitution”, (see Remark A.3). For this reason, a distinction is made

between the variable x and the variable y in, for example, the preterm λx.xy:

Definition A.2. Given a preterm M , let FV(M) be the following set of variables,

defined recursively as follows:

• If M = x where x is a variable then FV(M) = {x}.

• If M =M1M2 then FV(M) = FV(M1) ∪ FV(M2).

• If M = λx.M ′ then FV(M) = FV(M ′) ∖ {x}.

A variable x ∈ FV(M) is a free variable of M , a variable x which appears in M but is

not a free variable is a bound variable.

Definition A.3. For any term M , let M[x ∶= y] be the preterm given by replacing

every bound occurrence of x in M with y. Define the following equivalence relation on

Λp: M ∼α M ′ if there exists x, y ∈ V such that M[x ∶= y] =M ′, where no free variable of

M becomes bound in M[x ∶= y]. In such a case, we say that M is α-equivalent to M ′.

Definition A.4. The substitution operation on preterms is a function

subst ∶ V ×Λp ×Λp Ð→ Λp.

We write M[x ∶= N] for subst(x,N,M) and this term is defined inductively (on the

structure of M) as follows:

• If M is a variable then either M = x in which case M[x ∶= N] = N , or M ≠ x in

which case M[x ∶= N] =M .

• If M = (M1M2) then M[x ∶= N] = (M1[x ∶= N]M2[x ∶= N]).

• If M = λy.L we may assume by α-equivalence that y ≠ x and that y does not occur

in N and set M[x ∶= N] = λy.L[x ∶= N].

Note that if x ∉ FV(M) then M[x ∶= N] =M .

Remark A.1. The reason why we need to let x and y be such that no free variable of M

becomes bound in M[x ∶= y] is so that a preterm such as λx.y does not get identified

with the preterm λy.y.
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We are now in a position to define the underlying language of λ-calculus.

Definition A.5. Let Λ = Λp/ ∼α be the set of λ-terms. The set of free variables of

a λ-term [M] is FV(M), which can be shown to be well defined. For convenience, M

will be written instead of [M].

Definition A.6. Single step β-reduction →β is the smallest relation on Λ satisfying:

• The reduction axiom:

– For all variables x and λ-terms M,M ′, (λx.M)M ′ →β M[x ∶=M ′].

• The following compatibility axioms:

– If M →β M ′ then (MN)→β (M ′N) and (NM)→β (NM ′).

– If M →β M ′ then for any variable x, λx.M →β λxM ′.

A subterm of the form (λx.M)M ′ is a β-redex, and (λx.M)M ′ single step β-reduces

to M[x ∶=M ′].

Remark A.2. Strictly, single step β reduction should be defined on preterms and then

shown that a well defined relation is induced on terms, but this level of detail has been

omitted for the sake of clarity.

Remark A.3. The reduction axiom shows precisely in what sense a bound variable is a

“marker for substitution”. For example, (λx.x)M →β M and (λy.y)M →β M , which is

why λx.x is identified with λy.y.

It is through single step β-reduction that computation may be performed. In fact,

λ-calculus is capable of performing natural number addition:

Example A.1. Define the following λ-terms:

• One := λfx.fx,

• Two := λfx.ffx,

• Three := λfx.fffx,

• Plus := λmnfx.mf(nfx)
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then

Plus One Two = (λmnfx.mf(nfx))(λfx.fx)(λfx.ffx)

→β (λnfx.(λfx.fx)f(nfx))(λfx.ffx)

→β (λnfx.(λx.fx)(nfx))(λfx.ffx)

→β (λnfx.fnfx)(λfx.ffx)

→β (λfx.f(λfx.ffx)fx)

→β (λfx.f(λx.ffx)x)

→β (λfx.fffx) = Three

where each step is obtained by substituting the right most underlined λ-term in-place of

the left most underlined variable.

A.2 Simply typed λ-calculus

Definition A.7. In the simply typed lambda calculus [62, Chapter 3] there is an infinite

set of atomic types and the set Φ→ of simple types is built up from the atomic types

using →. Let Λp denote the set of untyped λ-calculus preterms in these variables, as

defined in [62, Chapter 1] or in the previous section. We define a subset Λ′wt ⊆ Λp of

well-typed preterms, together with a function t ∶ Λ′wt Ð→ Φ→ by induction:

• All variables x ∶ σ are well-typed and t(x) = σ.

• If M = (P Q) and P,Q are well-typed with t(P ) = σ → τ and t(Q) = σ for some

σ, τ then M is well-typed and t(M) = τ .

• IfM = λx . . .N with N well-typed, thenM is well-typed and T (M) = t(x)→ t(N).

We define Λ′σ = {M ∈ Λ′wt Ð→ t(M) = σ} and call these preterms of type σ. Next we

observe that Λ′wt ⊆ Λ′ is closed under the relation of α-equivalence on Λ′, as long as we

understand α-equivalence type by type, that is, we take

λx . . .M =α λy . . .M[x ∶= y]

as long as t(x) = t(y). Denoting this relation by ∼α, we may therefore define the sets of

well-typed lambda terms and well-typed lambda terms of type σ, respectively:

Λwt ∼ Λ′wt/ =α (A.1)

Λσ ∼ Λ′σ/ =α . (A.2)
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Note that Λwt is the disjoint union over all σ ∈ Φ→ of Λσ. We write M ∶ σ as a synonym

for [M] ∈ Λσ, and call these equivalence classes terms of type σ. Since terms are,

by definition, α-equivalence classes, the expression M = N henceforth means M ∼α N
unless indicated otherwise. We denote the set of free variables of a term M by FV(M).

Definition A.8. The substitution operation on λ-terms is a family of functions

{ substσ ∶ Yσ ×Λσ ×Λwt Ð→ Λwt}σ∈Φ→ .

We write M[x ∶= N] for substσ(x,N,M) and this term is defined inductively (on the

structure of M) as follows:

• If M is a variable then either M = x in which case M[x ∶= N] = N , or M ≠ x in

which case M[x ∶= N] =M .

• If M = (M1M2) then M[x ∶= N] = (M1[x ∶= N]M2[x ∶= N]).

• If M = λy.L we may assume by α-equivalence that y ≠ x and that y does not occur

in N and set M[x ∶= N] = λy.L[x ∶= N].

Note that if x ∉ FV(M) then M[x ∶= N] =M .



Appendix B

Computing the Successor of 2 in

linear logic

The following is the proof 1X :

Ax Ax

⊗

?

`

`

c

X

¬X

¬X

X

X⊗¬X

?(¬X⊗X)`(X`¬X)
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The following is the proof 2X :

Ax Ax Ax

⊗ ⊗

? ?

Ctr

`

`

c

X

¬X

¬X X ¬X

X

X⊗¬X X⊗¬X

?(X⊗¬X)

?(¬X⊗X)`(X`¬X)

The following is the proof 3X :

Ax Ax Ax Ax

⊗ ⊗ ⊗

? ? ?

Ctr

Ctr

`

`

c

X

¬X

¬X X

¬X X ¬X

X

¬X⊗X X⊗¬X X⊗¬X

?(¬X⊗X)

?(¬X⊗X)`(X`¬X)
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The following is the proof SuccX :

Ax Ax Ax Ax

⊗ `

⊗

⊗ ?

Ctr

`

c c

!(¬X`X)

?(¬X⊗X)

X

¬X

¬X X ¬X

X

¬X⊗X

!(¬X`X)⊗(X⊗¬X)

?(¬X⊗X)`(X`¬X)

The following is 2X side by side with SuccX :

Ax Ax Ax Ax Ax Ax Ax

⊗ ⊗ ⊗ `

? ? ⊗

Ctr ⊗ ?

` Ctr

` `

c c c

X

¬X

¬X X ¬X

X

!(¬X`X)

?(¬X⊗X)

X

¬X

¬X X ¬X

XX⊗¬X X⊗¬X

?(X⊗¬X)
¬X⊗X

!(¬X`X)⊗(X⊗¬X)

?(¬X⊗X)`(X`¬X) ?(¬X⊗X)`(X`¬X)
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Creating a Cut-link yields the following:

Ax Ax Ax Ax Ax Ax Ax

⊗ ⊗ ⊗ `

? ? ⊗

Ctr ⊗ ?

` Ctr

` `

Cut c

X

¬X

¬X X ¬X

X

!(¬X`X)

?(¬X⊗X)

X

¬X

¬X X ¬X

XX⊗¬X X⊗¬X

?(X⊗¬X)
¬X⊗X

!(¬X`X)⊗(X⊗¬X)

?(X⊗¬X)`(¬X`X)
?(¬X⊗X)`(X`¬X)

The following sequence of proofs is the product of one (random and arbitrary) sequence

of cut-eliminations steps:

Ax Ax Ax Ax Ax Ax

⊗ ⊗ ⊗ `

? ? ⊗

Ctr Ax ?

` Cut Cut

`

Cut c

X

¬X

¬X X ¬X

X

X

¬X

¬X X ¬X

XX⊗¬X X⊗¬X

?(X⊗¬X)
¬X⊗X

?(X⊗¬X)
!(X`¬X) ?(¬X⊗X)

?(¬X⊗X)

¬X`X
?(¬X⊗X)`(X`¬X)
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Ax Ax Ax Ax Ax Ax

⊗ ⊗ ⊗ `

? ? ⊗

Ctr ?

` Ctr

`

Cut c

X

¬X

¬X X ¬X

X

X

¬X

¬X X ¬X

XX⊗¬X X⊗¬X

?(X⊗¬X)
¬X⊗X

?(X⊗¬X)
?(¬X⊗X)

¬X`X
?(¬X⊗X)`(X`¬X)

Ax Ax Ax Ax Ax Ax

⊗ ⊗ `

? ? Cut ⊗

Ctr ?

Ctr

Cut `

c

X ¬X X ¬X

X ¬X

X

X

¬X

¬X

XX⊗¬X X⊗¬X

?(X⊗¬X)
¬X⊗X

?(X⊗¬X)
?(¬X⊗X)

?(¬X⊗X)`(X`¬X)
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Ax

Ax Ax Ax Ax

⊗ ⊗ `

? ? ⊗

Ctr ?

Ctr

Cut `

c

¬X X

X ¬X X

¬X

X

¬X

XX⊗¬X X⊗¬X

?(X⊗¬X)
¬X⊗X

?(X⊗¬X)
?(¬X⊗X)

?(¬X⊗X)`(X`¬X)

Ax Ax

Ax Ax

⊗ ⊗ `

? ? ⊗

Ctr ?

Ctr

`

c

X ¬X¬X X

¬X X ¬X

XX⊗¬X X⊗¬X

?(X⊗¬X)
¬X⊗X

?(X⊗¬X)
?(¬X⊗X)

?(¬X⊗X)`(X`¬X)
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Which has no more Cut-links, and can be re-written as follows:

Ax Ax Ax Ax

⊗ ⊗ ⊗

? ? ?

Ctr

Ctr

`

`

c

X

¬X

¬X X

¬X X ¬X

X

¬X⊗X X⊗¬X X⊗¬X

?(¬X⊗X)

?(¬X⊗X)`(X`¬X)

That is, the cut of 2X and SuccX reduces to 3X .



Appendix C

Girard’s Normal Form Theorem

In this section we prove Girard’s Normal Form Theorem, which was instrumental in his

model of the untyped λ-calculus using normal functors first given in [23].

Definition C.1. Let A,B be fixed sets. A functor F ∶ SetA → SetB is normal if

it preserves direct colimits and wide pullbacks. More generally, a functor SetA1 ×⋯ ×
SetAn → SetB is normal if it is so in each argument, or equivalently if it is normal as a

functor SetA1⊔⋯⊔An → SetB.

Definition C.2. A direct system in SetA is a collection of objects {Fi}i∈I of SetA,

where I is a set equipped with a partial order < along with a collection of morphisms

{αij ∶ Fi → Fj}i,j∈I subject to the following conditions:

• ∀i, j ∈ I, ∃k ∈ I such that αik ∶ Fi → Fk, and αjk ∶ Fj → Fk exist.

• ∀i, j, k ∈ I, αjkαij = αik.

• ∀i ∈ I αii = idFi .

A functor F ∶ SetA → SetB preserves direct limits if every direct system in SetA admitting

a limit in SetA is preserved by F .

The image of F under any normal functor F ∶ SetA → SetB is determined by finite data,

even when F takes values in infinite sets. To illustrate this point, consider the special

case A = B = {∗}, so F is a normal functor Set→ Set. Given a set X, let {Xi}i∈I be the
collection of its finite subsets. Then X can be written as the direct colimit colimi∈I Xi.

We have the following:

F (X) =F (colimi∈I Xi) = colimi∈I F (Xi).
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We can think of the collection {F (Xi)}i∈I as the collection of approximations of F (X)
by its finite subobjects.

The colimit is a direct union. Moreover, if y ∈ F (X) and Xi,Xj ⊆ X are such that

y ∈F (Xi) and y ∈F (Xj) then,

y ∈F (Xi) ∩F (Xj) =F (Xi ∩Xj) (C.1)

This implies that there exists a minimal finite subset Xk ⊆X, depending on y, such that

y ∈F (Xk). Note that we only needed finite pullbacks here because A were a singleton,

but wide pullbacks are needed when A is infinite.

The theory presented in the remainder of this section can be thought of as a general-

isation of the phenomena just observed. First, we must identify the analogue of finite

sets.

Definition C.3. Let X ∈ Set be a set and F ∈ SetA a functor. We introduce the

terminology:

• X is an integer if it is a Von Neumann integer (0 ∶= ∅,1 ∶= {0}, . . . , n ∶= {0, . . . , n−
1}, . . . ).

• F is finite if for all a ∈ A the set F (a) is finite, and all but finitely many of the

F (a) are equal to ∅.
• F is integral if it is finite and for all a ∈ A the set F (a) is an integer.

For an arbitrary set A we denote by Int(A) the set of integral functors in SetA.

The main reason that we need to restrict to integral functors rather than finite functors

is to provide a set of representatives to serve as indices in the following definition.

Definition C.4. A functor F ∶ SetA → SetB is analytic if there exists a family of

functors {CG}G∈Int(A) in SetB such that for all objects F ∈ SetA and all morphisms

µ ∶ F → F ′:

F (F ) = ∐
G∈Int(A)

(CG × SetA(G,F )) F (µ) = ∐
G∈Int(A)

(CG × SetA(G,µ)).

Girard presented the formulas in the definition of analytic functors as a kind of power

series, hence the choice of name. To compare normal functors and analytic functors, we

consider ‘normal forms’.

Definition C.5. Let F ∶ SetA → SetB and b ∈ B. Let El(Fb) denote the category of

elements of Fb (cf. Remark C.1) and (F,x) an object of this category, so F ∈ SetA and
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x ∈ F (F )(b). A form of F with respect to (F,x) is an object of the slice category

El(Fb)/(F,x). Given a form η ∶ (G,y)→ (F,x), we say:

• η is finite if G is finite.

• η is integral if G is integral.

• η is normal if it is an initial object in El(Fb)/(F,x).

With these notions established, we can introduce a third property of functors which

mediates between normal and analytic functors.

Remark C.1. The collection of normal functors is closed under composition, by inspec-

tion. For b ∈ B, the evaluation functor evb ∶ SetB → Set is a normal functor. As such,

given a functor F ∶ SetA → SetB we write Fb for the composite functor evb ○F , which

will be normal whenever F is.

Definition C.6. A functor F ∶ SetA → SetB is said to satisfy the finite normal form

property if for every b ∈ B and object (F,x) in El(Fb) there exists a finite normal

form η ∶ (G,y) → (F,x). The functor F is said to satisfy the integral normal form

property if in the above the form η can be taken to be integral.

Girard’s main theorem states that the three properties of functors are equivalent. Notice

that the statement from the original article contains a minor error, the correct statement

is as follows.

Theorem C.7. Let F ∶ SetA → SetB be a functor. The following are equivalent:

1. F is normal.

2. F satisfies the finite normal form property.

3. F is isomorphic to an analytic functor.

Clearly, every integral functor is finite. Conversely, every finite functor is isomorphic

to an integral functor. It follows that the finite normal form property is equivalent to

the integral normal form property. Moreover, this holds even when A is an arbitrary

category, even though this case was not considered in Girard’s original paper [23].

We now show that if a functor F ∶ SetA → Set admits the finite normal form property

then it is isomorphic to an analytic functor. This result can be thought of as recovering

the functor F from its collection of normal forms. In short, given a functor F ∈ SetA

and an element x ∈ F (F ), a normal form η ∶ (G,y) → (F,x) will induce the data of

a triple (G,η, y′) ∈ ∐G∈Int(A)(SetA(G,F ) × CG) where y′ is equivalent to y under an

appropriate equivalence relation. To finish the proof, we must define the equivalence

relation defining the classes which form CG. This will require an alternate classification

of when an integral form is normal without reference to its codomain.
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Lemma C.2. Let η ∶ (G,y) → (F,x) be an integral form (not necessarily normal) and

say F satisfies the integral normal form property. Then η is normal if and only if

idG ∶ (G,y)→ (G,y) is.

Proof. Let η′ ∶ (G,y′) → (F,x) be an integral normal form associated to (F,x). Then

by normality there exists a morphism γ ∶ G→ G so that the following is a commutative

diagram in El(F ).
(G,y′) (F,x)

(G,y)

γ

η′

ηγ′ (C.2)

Since id is normal, there exists a section γ′ rendering (C.2) commutative.

Since γγ′ = idG and η is normal, it follows that η′ is normal. On the other hand, say

η is normal. Let ϵ ∶ (H,w) → (G,y) be arbitrary. Consider the composition ηϵ. By

normality of η, there exists a unique γ ∶ (G,y) → (H,w) so that the following diagram

commutes:
(F,x)

(G,y) (H,w)

η

γ

ηϵ (C.3)

If γ′ was another such map, then ηϵγ = ηϵγ′ so by normality of η we have that γ = γ′.

Lemma C.3. If a functor F ∶ SetA → Set satisfies the finite normal form property, then

F is isomorphic to an analytic functor.

Proof. The main step in the proof will be to define for each G ∈ Int(A) a set CG and for

each F ∈ SetA a bijection

hF ∶ F (F )→ ∐
G∈Int(A)

(SetA(G,F ) ×CG). (C.4)

In fact, in the current setting where A admits only identity morphisms, this will complete

the proof.

For any element (F,x) of El(F ) there is some finite normal form η ∶ (G,y) → (F,x),
isomorphic to an integral normal form. Thus, it suffices to consider the case where F

satisfies the integral normal form property.

An integral normal form η ∶ (G,y) → (F,x) is not uniquely determined by (F,x),
however, given another integral normal form η′ ∶ (G′, y′) → (F,x) we have that G′ ≅ G
by normality and thus G′ = G by integrality. So at least the domain of the object is

uniquely determined by (F,x).
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Let XG denote the elements y ∈F (G) for which idG ∶ (G,y)→ (G,y) is normal, since F

satisfies the integral form property, there is always at least one such y. Let CG denote

a set of choices of representatives of the isomorphism classes of XG.

Thus, to each x ∈F (F ) we have associated an integral normal form η ∶ (G,y) → (F,x)
and fixed particular choices so that this map hF (x) = (G,η, y) is a bijection.

The converse to Lemma C.3 also holds, which we now move onto proving.

In general, if µ ∶ H → G is a natural transformation and η ∶ (G,y) → (F,x) is a

normal form, then the composite ηµ is need not be a normal form. However, if F

satisfies the finite normal form property the normal forms can be carried through natural

transformations. This is the content of the next Lemma.

Lemma C.4. Let F ∶ SetA → Set be a functor satisfying the normal form property.

Then if η ∶ (G,y)→ (F,x) is a normal form and µ ∶ G→H is a natural transformation,

then µη ∶ (G,y)→ (H,F (µ)(x)) is a normal form.

Proof. Let ϵ ∶ (K,z)→ (H,F (µ)(x)) be an arbitrary form. We show that there exists a

unique morphism (G,y)→ (K,z) in the category El(F )/(H,F (µ)(x)). Since F satis-

fies the normal form property there exists some normal form γ ∶ (L,w)→ (H,F (µ)(x)).
It is convenient to draw this situation out in the category El(F ), ignore the dashed

arrows for now.

(G,y) (F,x)

(L,w) (H,F (µ)(x))

(K,z)

η

γ′ µ

γ

β

γ

ϵ

(C.5)

Since µη ∶ (G,y) → (H,F (µ)(x)) is a form with respect to (H,F (µ)(x)) we have by

initiality of γ ∶ (L,w) → (H,F (µ)(x)) that there exists a morphism γ ∶ (L,w) → (G,y)
fitting into (C.5).

The morphism ηγ ∶ (L,w) → (F,x) induces the morphism γ′ and composing this with

the morphism β (which is induce by initiality of γ ∶ (L,w) → (H,F (µ)(x)) induces

a morphism (G,y) → (K,z) which is the unique morphism rending the full diagram

commutative. Thus µη ∶ (G,y)→ (H,F (µ)(x)) is initial.

Lemma C.5. Let F ∶ SetA → Set be analytic. Then F satisfies the normal form

property.
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Proof. Let F ∈ SetA be arbitrary and consider an element

(G,η, y) ∈F (F ) = ∐
G′∈Int(A)

(SetA(G′, F ) ×CG′).

We can then consider the set

F (G) = ∐
G′∈Int(A)

SetA(G′,G) ×CG′ .

A particular element of this set is (G, idG, y). We show that η ∶ (G, (G, idG, y)) →
(F, (G,η, y)) is normal.

Say ϵ ∶ (H, (G′, η′, y′))→ (F, (G,η, y)) is a form, then

F (ϵ)(G′, η′, y′) = (G,η, y). (C.6)

We unpack the definition of the function F (ϵ) =∐G∈Int(A)(SetA(G, ϵ)×CG). This func-
tion makes the following Diagram commute, where the vertical morphisms are canonical

inclusion maps.

∐G∈Int(A)(SetA(G,H) ×CG) ∐G∈Int(A)(SetA(G,F ))

SetA(G,H) ×CG SetA(G,F ) ×CG

F(µ)

(−))○ϵ×idCG

(C.7)

So (C.6) implies ((−) ○ ϵ) × id)(η′, y′) = (η, y). We thus have:

G′ = G, ϵη′ = η, y′ = y. (C.8)

Thus, the domain of the morphism ϵ ∶ (H, (G′, η′, y′)) → (F, (G,η, y)) is equal to

(H, (G,η′, y)). We need a unique morphism (G, (G, idG, y)) → (H, (G,η′, y)). Clearly

η′ is such a morphism, and it is the unique such because for any morphism µ ∶ G → G

we have (SetA(G,µ) ×CG)(µ) = µ, and so η′ is the unique morphism µ determined by

the condition (SetA(G,µ) ×CG)(µ) = η′.

Everything so far also holds in the setting where A is an arbitrary category, even though

the assumption was made in [23] that A is a set.

Lemma C.6. Any functor F ∈ SetA is the colimit of finite functors in SetA.

Lemma C.6 is useful for proving that certain subobjects are finite. In short, one can

prove a set Y is finite by defining a surjective function f ∶X → Y where X is finite. This
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suggest a relaxing of the finite normal form condition to the saturated form condition,

which is to say that every appropriate pair (F,x) admits a saturated form.

Definition C.8. A form η ∶ (G,y)→ (F,x) is saturated if any other form ϵ ∶ (H,z)→
(G,y) is an epimorphism.

Lemma C.7. If F is normal, then every saturated form is finite.

Proof. Let η ∶ (G,y) → (F,x) be a saturated form. We have by Lemma C.6 that G

is the colimit of its finite subobjects, so we write G ≅ Colim{Gi}i∈I . Hence, F (G) ≅
F Colim({Gi}) ≅ Colim{F (Gi)}, using normality.

Thus, we can view y as an element of Colim{F (Gi)} and consider i ∈ I along with

y′ ∈ F (Gi) which maps onto y ∈ Colim{F (Gi)} under the corresponding morphism of

the colimit. We thus have a commutative diagram.

F (G) Colim{F (Gi)}

F (Gi)

≅

(C.9)

Thus, (Gi, y′)→ (G,y) is a form which is surjective by saturation of η. Since Gi is finite,

this implies G is finite.

The proof of the next lemma will use the fact that any functor preserving pullbacks

preserves equalisers.

Lemma C.8. Let η ∶ (G,y) → (F,x) be saturated and η′ ∶ (G,y) → (F,x) an arbitrary

form. Then η = η′.

Proof. Consider the equaliser Eq(F (η),F (η′)). Since F (η)(y) = F (η′)(y) we have

that y ∈ Eq(F (η),F (η′)). Since Eq(F (η),F (η′)) ≅ F (Eq(η, η′)) it follows that

(Eq(η, η′), y) → (G,y) is a form, which in fact is surjective by saturation of η. It

follows that η = η′.

Lemma C.9. If F ∶ SetA → Set is normal then it satisfies the normal form property.

Proof. Let (F,x) be a pair consisting of a functor F ∈ SetA and an element x ∈ F (F ).
Consider all the saturated forms with codomain (F,x) and take the pullback of this
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entire diagram. We use the labelling as given by (C.10).

(Si, yi)

PullBack
... (F,x)

(Sj , yj)

σiηi

ηj σj

(C.10)

There exists y ∈ F (PullBack) so that Fηi(y) = yi for all i. We consider a saturated

form ϵ ∶ (G,z) → (PullBack, y). We claim that this is a normal form with respect to

(F,x).

Assume there is a form γ ∶ (H,w)→ (F,x) and consider a saturated form γ′ ∶ (H ′,w′)→
(H,w). A saturated form is one such that any form into it is surjective. Thus γγ′ ∶
(H ′,w′)→ (F,x) is saturated as γ′ ∶ (H ′,w′)→ (H,w) is.

It follows that (H,w) = (Si, yi) for some i. Thus we have a morphism ηiϵ ∶ (G,z) →
(Si, yi) = (H,w). It follows from Lemma C.8 that this is the unique morphism in the

appropriate sense. This completes the proof.

The remaining result to be proved is the converse to Lemma C.9.

Lemma C.10. A functor F ∶ SetA → Set satisfying the finite normal form property is

normal.

Proof. We must show that F preserves direct colimits and wide pullbacks.

F preserves direct colimits: consider a direct system {Fi}i∈I in SetA. Let C ∈ SetA

denote the direct colimit of {Fi}i∈I in the category and let {µi ∶ Fi → C} denote the

associated morphisms into C. Consider also the direct colimit (C ′,{gi ∶ F (Fi)→ C ′}i∈I)
of the direct system {F (Fi)}i∈I in the category Set.

By the universal property of C ′, there exists a unique function f ∶ C ′ → F (C) so that

for all i ∈ I the following diagram commutes.

F (Fi)

C ′ F (C)

gi
F(µi)

f

(C.11)

We need to prove that f is an isomorphism (ie, a bijection). We do this by proving that

it is injective and surjective.
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First we prove surjectivity. Let z ∈ F (C). By the finite normal form property, there

exists a finite normal form ϵ ∶ (G,w) → (C, z). Now, for each a ∈ A there is a function

ϵa ∶ G(a) → C(a). Hence, there exists some i ∈ I and function ϵ′a,i ∶ G(a) → Fi(a)
through which the function ϵa factors. Since G is finite, and the colimit is direct, there

exists an i ∈ I such that for each a ∈ A there is a morphism G(a)→ Fi(a), which we call

ϵ′a, which makes the following diagram commute.

G(a) Fi(a)

C(a)

ϵ′a

ϵa
(C.12)

We claim the collection ϵ′ ∶= {ϵ′a ∶ G(a) → Fi(a)} is a natural transformation, however

since A is discrete (ie, has no non-identity morphisms), there is no condition to check,

so this is vacuously satisfied.

Note: even in the case where A is an arbitrary category, we still obtain naturality, it is

inhereted from naturality of the morphisms involved in the following diagram:

G Fi′ Fi

Fj

αi′i

αji (C.13)

We have constructed a natural transformation ϵ′ ∶ G→ Fi so that the following diagram

commutes.

G Fi

C

ϵ′

ϵ
(C.14)

Let z′ denote F (ϵ′)(w). We have commutativity of the following diagram

F (Fi)

C ′ F (C)

gi
F(µi)

f

(C.15)

Hence, gi(z′) is an element of C ′ such that f(gi(z′)) = z, establishing surjectivity.

Now we prove injectivity. Let x1, x2 ∈ C ′ be such that f(x1) = f(x2). Let z denote this

element of F (C). The functions {gi}i∈I form a surjective family over C ′ and so there

exists i, i′ ∈ I and x′1 ∈F (Fi), x′2 ∈F (Fi′) so that gi(x′1) = x1, gi′(x′2) = x2. In fact, since

the diagram the colimit is over is direct, we can assume without loss of generality that

i = i′.
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Turning our consideration to z, which is an element of F (C), we choose a normal form

ϵ ∶ (G,y) → (C, z). We have already seen in the proof of surjectivity how from this we

obtain a j ∈ I along with a natural transformation ϵ′ ∶ G → Fj so that the following

diagram commutes.

G Fj

C

ϵ′

ϵ
µj (C.16)

We have that F (µi)(x′1) =F (µi)(x′2) = z. So, since (G,y) is initial, there exists unique
morphisms γ1, γ2 ∶ G→ Fi so that the following diagram commutes

G

Fi C

ϵγ2 γ1

µi

(C.17)

and so that F (γ1)(y) = x1 and F (γ2)(y) = x2.

Combining (C.16) and (C.17) we obtain commutativity of the following diagram.

G Fj

Fi C

ϵ′

γ1γ2 µj

µi

(C.18)

Now, let a ∈ A be an arbitrary element of A and consider (C.18) with everything evalu-

ated at a, this gives a commuting diagram in Set. We notice that if G(a) is non-empty,

then there exists a pair of elements d, d′ ∈ Fi(a) so that µia(d) = µia(d′) and so there

exists some k ∈ I such that αika ∶ Fi(a)→ Fk(a) so that αika(d) = αika(d′). By finiteness

of G (in particular, since all but finitely many a ∈ A are such that G(a) is non-empty)

there thus exists k ∈ I and αik ∶ Fi → Fk so that for all a ∈ A there exists d, d′ ∈ Fi(a)
so that αika(d) = αika(d′). Lastly, since we are dealing with a direct colimit, we may

assume k = j. The result is the following commutative diagram in SetA.

Fk

Fi C

µj
αik

µi

(C.19)
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Finally, we can consider the following commuting diagram in Set.

F (G)

F (Fi) F (Fj)

F(ϵ′)
F(γ1) F(γ2)

F(αij)

(C.20)

Thus, FαijFγ1(y) =F (αij)F (γ2)(y), ie, F (αij)(x′1) =F (αij)(x′2), ie, x1 = x2. This
establishes injectivity.



Appendix D

Schemes

D.1 Affine schemes

All of the following is standard material. For a textbook treatment see [30].

Let X be a scheme and let f ∈ OX(X). Define the following set

Xf = {x ∈X ∣ fx satisfies fx /∈ mx ⊆ OX,x}. (D.1)

Assume X is quasi-compact. Cover X with finitely many affine schemes SpecAi, i =
1, . . . , n. Fix 1 ≤ i ≤ n. Then f ∣SpecAi ∈ OSpecAi(SpecAi) ≅ Ai. Let f

i ∈ Ai be the image

of f ∣SpecAi . Since f ∈Xf we have

fx = f
i
x /∈ mx ⊆ OX,x = OSpecAi,x = (Ai)x (D.2)

for all x ∈ Ai. This implies SpecAi ∩Xf = D(f
i) = Spec(Ai)f i . So say g ∈ OX(X) such

that g∣Xf
= 0. We have

g∣Xf∩SpecAi = g∣D(f i)
= 0,∀i = 1, . . . , n

Ô⇒ ∃ni > 0, (f
i)nigi = 0 ∈ Ai.

Since there are only finitely many i, a uniform n can be chosen. The sheaf condition on

OX then implies fng = 0 in OX(X).

Now say g ∈ OXf
(Xf) = OX(Xf) is arbitrary. Consider

g∣SpecAi∩Xf
= gi ∈D(f i) = Spec(Ai)f i . (D.3)

175
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This implies ∃ni > 0, (f i)nigi ∈ Ai. Let j ≠ i and consider SpecAi ∩ SpecAj ∩ Xf =
D(f if j) = Spec(Ai)f i ∩ Spec(Aj)fj . Let Y denote Spec(Ai)f i ∩ Spec(Aj)fj . Setting

m =max{ni, nj} we have

((f i)mgi)∣Y = ((f
j)mgj)∣Y . (D.4)

Since there are only finitely many affine schemes covering each intersection, and because

there are finitely many affine schemes covering X, a uniform n > 0 can be taken for fng

once and for all.

By the scheme condition on OX , we have an element h ∈ OX(X) such that

h∣Xf
= fng. (D.5)

We have shown

OXf
(Xf) ≅ OX(X)f . (D.6)

Recall that for each ring A and scheme X,OX there is a natural bijection

Hom(X,SpecA) ≅ Hom(A,OX(X)) (D.7)

Taking A = OX(X) we have associated to the identity homomorphism idOX(X) a mor-

phism of schemes

X Ð→ SpecOX(X). (D.8)

If f1, . . . , fr ∈ OX(X) generate OX(X) then the open, affine sets Xfi cover X. For each

i = 1, . . . , r we have a commuting diagram

X SpecOX(X)

Xfi OX(X)fi

(D.9)

where the bottom row is an isomorphism. It follows that X Ð→ SpecOX(X) is an

isomorphism. We thus have the following criterion for affineness.

Lemma D.1. A scheme X is affine if and only if there exists f1, . . . , fr ∈ OX(X) so
that each Xfi is affine.

D.2 Closed subschemes

Definition D.1. A closed immersion is a morphism f ∶ Y Ð→ X of schemes such

that f induces a homeomorphism of sp(Y ) (which denotes the underlying topological
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space of Y ) onto a closed subset of sp(X), and furthermore the map f# ∶ OX Ð→ f∗OY
is surjective.

Let Y Ð→ X be a closed immersion of an affine scheme X = SpecA. Since X is affine,

it is quasi-compact, a fact we now prove. Let {fi}i∈I be a set which generates A. Then

SpecA is covered by the collection {D(fi)}i∈I . This means SpecA = ⋃i∈I D(fi).

⇒⋂
i∈I
V (fi) = V (∑

i∈I
(fi)) = ∅

⇒∑
i∈I
(fi) = A

⇒ ∃I ′ ⊆ I finite such that 1 = ∑
i∈I′

αifi, αi ∈ A

⇒ ∑
i∈I′
(fi) = A

⇒ SpecA = ⋃
i∈I′

D(fi).

Since every open cover can be refined to a cover by sets of the form D(f), we are done.

Let φ ∶ A Ð→ B be a homomorphism of rings, and let f ∶ SpecB Ð→ SpecA be the

induced morphism of affine schemes. Say f is a closed immersion. There is a commuting

diagram

A A/kerφ

B

φ

φ′
(D.10)

and there is a bijection between open sets U ⊆ SpecA such that ∀p ∈ U , kerφ ⊆ p and

open sets U ⊆ Spec(A/kerφ). It follows that there is an equality

f ′∗OSpecB(U) = f∗OSpecB(U). (D.11)

Thus for such open sets we have a commuting diagram:

OSpecA(U) f∗OSpecB(U)

OSpecA/kerφ(U) f ′∗OSpecB(U)

= = (D.12)

where the top row is surjective as f is a closed immersion, and the bottom row is injective

as φ′ is. Thus, the bottom row is an isomorphism. This is sufficient to show φ′ is an

isomorphism, and im f ≅ SpecA/kerφ. We have proven the following lemma.

Lemma D.2. Every closed subscheme of an affine scheme is affine and given by the

quotient of some ideal.
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D.3 Glueing and representability

Lemma D.3. Let X,Y be schemes over a scheme S and {Ui}i∈I be an open covering of

X. Then morphisms f ∶ X Ð→ Y are in one-to-one correspondence with collections of

morphisms {fi ∶ Ui Ð→ Y ∣ ∀i, j, fi∣Ui∩Uj = fj ∣Uu∩Uj}.

Proof. Amorphism of schemes consists of a pair (φ,φ#) where φ is a continuous function

and φ# ∶ OY Ð→ φ∗OX a natural transformation. We define

f ∶X Ð→ Y

xz→ fi(x), for any Ui ∋ x

which is well defined and continuous due to the hyptheses on the fi.

Next, consider the collection of natural transformations {f#i ∶ OY Ð→ f−1i OUi}. Let

W ⊆ Y be open. We have a collection

f#i,W ∶ OY (W )Ð→ f−1i OUi(W ) = OUi(f−1(W )).

We define for each open Z ⊆X the following

OU(Z) =⋃
i∈I
OUi(Z ∩Ui) (D.13)

then each f#i,W can be composed with an inclusion to form:

OY (W )Ð→ OUi(f−1(W ))Ð→ OU(f−1(W )). (D.14)

It remains to check that for each p ∈X the induced map OY,f(p) Ð→ OX,p is a morphism

of local rings. However, if Ui ∋ p then

OY,f(p) OX,p

OUi,p

≅ (D.15)

commutes and OY,f(p) Ð→ OUi,p is a morphism of local rings.

Definition D.2. Given a scheme X an open subscheme U consists of an open subset

U ⊆ X along with the sheaf OU = OX ∣U given by OX ∣U(V ) = OX(U ∩ V ) for any open

V ∩U ⊆ U .
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Lemma D.4 (Glueing Lemma). Let {Xi}i∈I be a family of schemes. For each i ≠ j
suppose given an open subset Uij ⊆ Xi and let it have the induced subscheme structure.

Suppose also given for i ≠ j an isomorphism of schemes φ ∶ Uij Ð→ Uji such that:

• For each i, j we have φji = φ−1ij .

• For each i, j, k we have φij(Uij ∩Uji) = Uji ∩Ujk and φik = φjkφij.

Then there exists a scheme X together with morphisms ψi ∶ Xi Ð→ X for each i such

that:

• Each ψi is an isomorphism of Xi onto an open subscheme of X.

• The ψi(Xi) cover X.

• ψi(Uij) = ψi(Xi) ∩ ψj(Xj).

• ψi = ψjφij on Uij.

Proof. First, consider the diagram of topological spaces consisting of all the Xi along

with all the inclusions Uij ⊆ Xi and the morphisms φ ∶ Uij Ð→ Uji. Let X denote the

colimit in the category of topological spaces of this diagram.

Every scheme Xi comes equipped with a sheaf OXi . We define the following set OX(U)
for any open subset U ⊆X:

OX(U) = {(ui)i∈I ∈∏
i∈I
ιi∗OXi(U) ∣ φ

#
ij(ui∣Uij) = uj ∣Uji ,∀i, j ∈ I}. (D.16)

One shows easily that this is a sheaf.

The Glueing Lemma implies that the category of schemes admits colimits.

Lemma D.5. Let F ∶ Schop Ð→ Set be a functor. Then there exists a scheme Z such

that F ≅ HomSch(−, Z) if the following hold:

• F is a Zariski sheaf.

• There exists a set I and a collection of subfunctors Fi ⊆ F such that:

– Each Fi ≅ HomSch(−,Xi), for some scheme Xi.

– Each Fi ⊆ F is represented by open immersions.

– The collection {Fi}i∈I covers F .
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Proof. For each i ∈ I let Xi be the scheme representing Fi. For each pair i, j let Xij be

the scheme representing Fi ×F Fj . By hypothesis, the map Xij Ð→Xi corresponding to

hXij Ð→ hXi is an open immersion, so let Uij ↣Xi denote the open subscheme rendering

the following diagram commutative:

Xij Xi

Uij

(D.17)

Our goal is to glue the Xi along the Uij . For each i, let ξi ∈ Fi(Xi) be the represent-

ing element of the isomorphism Fi ≅ hXi . That is, the image of ξi under Fi(Xi) Ð→
Hom(Xi,Xi) is idXi .

Consider the following diagram

hUij ×F hUji hUij

Fi ×F Fj Fi

hUji Fj F

with dashed line induced by the universal property of the fibred product Fi ×F Fj .

We consider a pair i, j satisfying the following property: there exists αij ∈ (hUij ×
hUji)(Xi) whose image under

(hUij ×F hUji)Ð→ (Fi ×F Fj)(Xi)Ð→ Fi(Xi) (D.18)

is ξi, a claim we now prove. There is a canonical isomorphism

Ψij ∶ hFi ×F hFj Ð→ hFj ×F hFi (D.19)

which under the Yoneda Lemma corresponds to a morphism of sheaves

Xij Ð→Xji (D.20)



Algebraic Geometry and Linear Logic 181

representing Ψij . We actually have a commuting diagram of isomorphisms:

hXij(Xij) hXji(Xij)

(hFi ×F hFj)(Xij) (hFj ×F hFi)(Xij)

(hFi ×F hFj)(Xji) (hFj ×F hFi)(Xji)

hXij(Xji) hXji(Xji)

The claim that ξi∣Xij z→ ξj ∣Xji follows.

The image of αij under

(hUij ×F hUji)(Xi)Ð→ hUji(Xi) (D.21)

is a morphism which can be restricted to yield φij ∶ Uji Ð→ Uij .

There is a canonical isomorphism in the top row of:

hUij ×F hUji hUji ×F hUij

hXij hXji

(D.22)

which induces an isomorphism on the bottom row. This in turn induces a bijection

hXij(Xij)Ð→ hXji(Xji) (D.23)

mapping ξi∣Xij z→ ξj ∣Xji . Thus we have a commuting diagram

(hUij ×F hUji)(Uij)

(hUji ×F hUij)(Uij) hUji(Uij)

hUji(Uji)

−○φji

The image of αij one way around this diagram is φij ○ φji and the other is idUji . This

argument is symmetric in i and j, so we have that each φij is an isomorphism with φji

as its inverse.
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Thus we can apply the Glueing Lemma to obtain a scheme X along with a family of

inclusions Xi ↣X. It remains to show that F is represented by X. Since F is a Zariski

sheaf, it suffices to check that F and hX agree on all restrictions to the Xi, but this is

clear by construction of X.

D.4 The Grassmann variety

Let R be a commutative ring and

0 U V W 0α β
(D.24)

a short exact sequence of free R-modules of ranks k,n,n − k respectively.

Recall that for any R-module X there is an R-module homomorphism for any l ≥ 0

πX ∶
l

⋀X ⊗X Ð→
l+1
⋀X

(x1 ∧ . . . ∧ xl)⊗ xz→ x1 ∧ . . . ∧ xl ∧ x

The collection {πX ∣X is an R −module} is a natural transformation.

Applying this to the above situation, we have commutativity of the following:

⋀k V ⊗ V ⋀k+1 V

⋀k U ⊗U ⋀k+1U

πV

⋀k α⊗α
πU

⋀k+1 α (D.25)

Since dimU = k we have ⋀k+1U = 0 and so πV (⋀k α⊗ α) = 0.

We can decompose the morphism ⋀k α ⊗ α further to obtain the following commuting

diagram:

⋀k V ⊗ V

⋀k U ⊗ V

⋀k U ⊗U

⋀k α⊗1

1⊗α

⋀k α⊗α (D.26)

The above shows that the composite

U V

0 ⋀k U ⊗U ⋀k U ⊗ V ⋀k+1 V

α

≅ ≅

1⊗α π(⋀k α⊗1)
(D.27)
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is 0. We now show this is in fact an exact sequence.

Since W is free, the short exact sequence (D.24) is split: V ≅ U ⊕ V /U . Let l,m ∈ Z≥0
be such that l +m ≤ n. Let v ∈ ⋀n V , let v1, . . . , vn be a basis for V . Write

v = ∑
1≤i1<...<in≤k

αi1,...,ilvi1 ∧ . . . ∧ vil . (D.28)

Then for each vi1∧. . .∧vil let j1 < . . . < jm be such that {i1, . . . , il, j1, . . . , jm} = {1, . . . , n}.
Then v ∧ vj1 ∧ . . . ∧ vjm = 0Ô⇒ αi1,...,il = 0. We have shown

⋀l V ⊗⋀m V ⋀n V ≅ RProduct (D.29)

is a non-degenerate pairing.

We note also that this product is associative, in the sense that the following diagram

commutes:

⋀n V ⊗⋀m V ⊗⋀k V ⋀n V ⊗⋀m+k V

⋀n+m V ⊗⋀k V ⋀n+m+k V

1⊗Product

Product⊗1 Product

Product

(D.30)

This all comes together in the proof of the following Lemma

Lemma D.6. The sequence (D.27) is exact.

Proof. Say t⊗η ∈ ⋀k U ⊗V lies in kerπ ○⋀k α⊗ 1. Then the following composite (which

we call B)

⋀k U ⊗ V ⊗⋀n−k−1 V ⋀k+1 V ⊗⋀n−k−1 V

⋀n V ≅ R

π○(⋀k α⊗1)⊗1

Product (D.31)

vanishes on t ⊗ η ⊗ ω for all ω ∈ ⋀n−k−1 V . Choosing a splitting V ≅ U ⊕ V /U with

corresponding decomposition η = (ηU , ηV /U) we find that

B(t⊗ ηV /U ⊗ ω) = 0, ∀ω ∈
n−k−1
⋀ V (D.32)

By associativity we have the following commuting diagram:

⋀k U ⊗ V ⊗⋀n−k−1 V ⋀k+1 V ⊗⋀n−k−1 V ⋀n V

⋀k U ⊗ V /U ⊗⋀n−k−1 V /U ⋀k U ⊗⋀n−k V /U ⋀k V ⊗⋀n−k V /U

π○(⋀k α⊗1)⊗1 Product

1⊗Prod ⋀k α⊗1
Product ○ Inclusion

Since V /U ⊗⋀n−k−1 V /U Ð→ ⋀n−k V /U is also non-degenerate, ηV /U = 0 and η ∈ U .
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Given a line l ⊆ ⋀k V denote by Ul the kernel of

Φ ∶ V ≅ l ⊗ V Ð→ ⋀k V ⊗ V ⋀k+1 V.Product (D.33)

We define

G(k, V ) = {k − dim subspaces U
αÐ→ V }. (D.34)

By Lemma D.6, if l = im⋀k α then there is an exact sequence and commuting diagram:

Ul l ⊗ V ⋀k+1 V

⋀k U ⊗U ⋀k U ⊗ V

R⊗U

U

≅

≅

(D.35)

Which implies the function:

P ∶ G(k, V )Ð→ P(
k

⋀V )

(U αÐ→ V )z→ im
k

⋀α

is injective.

Assume now that R = k is a field.

The function P maps span{u1, . . . , uk} to [α(u1) ∧ . . . ∧ α(uk)], so x ∈ P(⋀k V ) is in

the image of P if and only if x can be written as a pure wedge x = v1 ∧ . . . ∧ vk for

v1, . . . , vk ∈ V .

Remark D.7. The map P can be given explicitly by

( span{v1, . . . , vk}
αÐ→ U)z→ [α(v1) ∧ . . . ∧ α(vk)]. (D.36)
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That this is well defined follows from a calculation: say span{u1, . . . , uk} = span{v1, . . . , vk},
then ui = ∑kj=1 αijvj , so

u1 ∧ . . . ∧ uk = (
k

∑
j=1

α1jvj) ∧ . . . ∧ (
k

∑
j=1

αkjvj)

=
k

∑
j1,...,jk=1

α1j1 . . . αkjkvj1 ∧ . . . ∧ vjk

= ∑
j1<...<jk

∑
σ∈Sk

(−1)∣σ∣α1jσ1 . . . αkjσk
vj1 ∧ . . . ∧ vjk

= ∑
σ∈Sk

(−1)∣σ∣α1jσ1 . . . αkjσk
v1 ∧ . . . ∧ vk.

Lemma D.8. The image of P is closed in P(⋀k V ).

Proof. Given x ∈ ⋀k V we have x⋀(−) ∶ V Ð→ ⋀k+1 V defined in coordinates by x =
∑I cI(x)eI (where e1, . . . , en is an ordered basis for V and I = {i1 < . . . < ik}). We have:

x ∧ ej =∑
I

cI(x)ei ∧ ej =∑
j/∈I

±cI(x)eI∪{j}. (D.37)

We may assume e1, . . . , es span kerx ∧ (−) ⊆ V . Thus, if j /∈ I and 1 ≤ j ≤ s, we have

cI(x) = 0. This shows that x = e1 ∧ . . . ∧ es ∧ y for some y ∈ ⋀k−s V and that:

dimker(x ∧ (−)) = k⇔ x is decomposable. (D.38)

So we have:

x ∈ imP ⇔ x is decomposable

⇔ dimker(x ∧ (−)) > k − 1

⇔ dim im(x ∧ (−)) < n − k + 1

⇔ every (n − k + 1) × (n − k + 1) minor

of the matrix of x ∧ (−) in M( n
k+1
),n(k) vanishes.

The linear transformation x ∧ (−) maps

x ∧ (−) ∶ V Ð→
k+1
⋀ V (as x ∈

k

⋀V ). (D.39)

If I1, . . . , IN is an enumeration of the set of sequences {1 ≤ i1 < . . . ik ≤ n} then x ∧ (−)
has matrix

(x ∧ (−))ej ,Ii∪{j} = cIi(x) (D.40)

with all other entries 0.
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Thus we have a matrix where each entry is a linear form from the set {cIi}i=1,...,N . So

an element in imP can be described as a zero to a set of homogeneous polynomials in

variables {yIi}i=1,...,N .

This turns G(k, V ) into a projective variety so that G(k, V ) ≅ imP ⊆ P(⋀k V ).

The general aim of this is to turn a subspace into a point. The answer is to use the

exterior algebra and the map P .

We can write an element of P(⋀k V ) as [. . . ∶ xI ∶ . . .] with I ranging over {I ⊆ {1, . . . , n} ∣
∣I ∣ = k}. Then the standard open affines are

UJ = {[. . . ∶ xI ∶ . . .] ∣ xJ ≠ 0}. (D.41)

Say U ∈ P −1(UJ) is a subspace of dimension k spanned by u1, . . . , uk. Then

P (U) = [u1 ∧ . . . ∧ uk]

= [
n

∑
i1<...<ik

∑
σ∈Sk

(−1)∣σ∣u1iσ1 . . . ukiσk
ei1 ∧ . . . ∧ eik]

= [∑
∣I ∣=k

det [U]IBeI]

where det [U]IB is the k × k minor of [U]B corresponding to I, where

[U]B =
⎛
⎜⎜⎜⎜
⎝

uT1
...

uTk

⎞
⎟⎟⎟⎟
⎠

B

=
⎛
⎜⎜⎜⎜
⎝

u11 . . . u1n
...

. . .
...

uk1 . . . ukn

⎞
⎟⎟⎟⎟
⎠

B

(D.42)

Example D.1. Say J = {1, . . . , k}. Then by Gaussian elimination, there exists a unique

basis BU,J of U such that

[U]BU,J
=
⎛
⎜⎜⎜⎜
⎝

1 . . . 0 ∗ . . . ∗
...

. . .
...

...
. . .

...

0 . . . 1 ∗ . . . ∗

⎞
⎟⎟⎟⎟
⎠
= (Ik ∣ ΛU,J) (D.43)

where Ik is the k × k identity matrix, and ΛU,J is (n − k) × k. Given a set I ⊆ {1, . . . , n}
of size k we notate by [U]IB,J the submatrix given by taking the columns corresponding

to I.

We have

(ΛI,J)i,j = −det[U]({1,...,k}∖{i})∪{j}BU,J
. (D.44)
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There exists a constant γBU,J ,B so that

(ΛI,J)i,j = −γBU,J ,B det[U]({1,...,k}∖{i})∪{j}B . (D.45)

We can extract γBU,J
from the following

1 = det([U]{1,...,k})BU,J
= γBU,J ,B det([U]{1,...,k}B )

Ô⇒ γBU,J ,B = det([U]
{1,...,k}
B )−1.

Hence in terms of our original basis

(ΛU,J)i,j = −
det([U]({1,...,k}∖{i})∪{k+j})

det([U]{1,...,k}B )
(D.46)

These are the parameters which may vary freely. All other determinants must be equal to

0 as we need these to list linearly dependent vectors. Thus, P −1(UJ) ≅Ak(n−k) and this

sits inside a large space of all determinants of all size k submatrices of (D.43) (except

for the one determined by J , which must be equal to 1). This is the space A(
n
k
)−1, which

is a standard open of P(
n
k
)−1. That is, we have the following commuting diagram

U ∈ G(k, V ) P
(n
k
)−1 ≅ P(⋀k V ) ∋ [⋀k α]

ΛU,J ∈Mk,n−k(k) ≅ P −1(UJ) UJ

A
k(n−k)

A
(n
k
)−1

P

T

≅ ≅

(D.47)

The above example generalises to the cases when J ≠ {1, . . . , k} and so we have proved

that G(k, V ) is a closed subvariety of P(⋀k V ), that is, G(k, V ) is a projective variety.

D.5 Constructing the Grassmann and Hilbert schemes

Definition D.3. A functor F ∶ k −Alg Ð→ Set is a Zariski sheaf if for all k-algebras

R, every finite set of elements f1, . . . , fn ∈ R generating the unit ideal, such that for

every collection of elements αi ∈ F (Rfi) such that αi and αj map to the same element

in F (Rfifj), there is a unique element α ∈ F (R) mapping to each of the αi.

We will prove Proposition 3.7 by showing thatGkn satisfies the hypotheses of the following

proposition.
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Proposition D.9. Let Y be a scheme. Let η ∶ Q Ð→ hY be a natural transformation of

functors k−Alg Ð→ Set and assume Q is a Zariski sheaf. Suppose that Y has a covering

by open subschemes {Uα}α∈A. Let η−1(hUα) denote the subfunctor of Q rendering the

following a pullback square

Q hY

η−1(hUα) hUα

η

(D.48)

Assume further that each subfunctor η−1(hUα) is representable. Then Q is representable

and η corresponds to a morphism of schemes.

Moreover, if the restrictions η∣η−1(U) ∶ η−1(Uα) Ð→ Uα are closed embeddings, then so is

η.

Proof. [Proof of Proposition D.9] Let Xα be a scheme such that hXα ≅ η−1(hUα). Let

πα ∶ Xα Ð→ Uα be the morphism corresponding to the natural transformation

hXα ≅ η−1(hUα)Ð→ hUα . (D.49)

For α,β ∈ A, consider the restriction of πα:

π−1α (Uα ∩Uβ) Uα ∩Uβ

π−1β (Uβ ∩Uα)

πα

φαβ
πβ (D.50)

with the dashed line φαβ is induced. This morphism is an isomorphism because it is the

restriction of the isomorphism

Uα ∩Uβ ≅ Uβ ∩Uα. (D.51)

The remaining check is commutativity of the following

π−1β (Uβ ∩Uγ ∩Uα) π−1γ (Uγ ∩Uβ ∩Uα)

π−1α (Uα) ∩Uβ ∩Uγ) π−1β (Uβ ∩Uα ∩Uγ)

π−1α (Uα ∩Uγ ∩Uα) π−1γ (Uγ ∩Uα ∩Uβ)

=

φβγ∣Uα

=
φαβ∣Uγ

=
φαγ∣Uβ

(D.52)

This simply follows from that all ways of intersecting Uα, Uβ, Uγ are equal.



Algebraic Geometry and Linear Logic 189

Thus we can glue to obtain a scheme X and inclusions Xα Ð→ X. This is equipped with a

morphism µ ∶ XÐ→ Y. We now show hX ≅ Q and that there exists a commuting triangle

hX hY

Q

η≅ (D.53)

Let R be a k-algebra and let φ ∈ hX(R), ie, a morphism ϕ ∶ SpecR Ð→ X. Since Xα
form an open cover of X, there exists {fi}i∈I generating R such that ϕ maps SpecRfi

into some Xαi . Diagrammatically:

SpecR X

ϕ−1(Xα) Xα

SpecRfi

ϕ

ϕ∣ϕ−1(Xα)

ϕi

(D.54)

Let ϕi ∶ SpecRfi Ð→ Xαi be the restriction of ϕ. We have ϕi ∈ hXαi
(Rfi) ⊆ Q(Rfi). For

each i, j the elements ϕi, ϕj restrict to the same morphism SpecRfifj Ð→ Xαi ∩Xαj and

therefore have the same image in Q(Rfifj). Since Q is a Zariski sheaf, the elements ϕi

are induced by a unique element ϕ̂ ∈ Q(R). This defines a morphism

ξ ∶ hX Ð→ Q

ξR ∶ hX(R)Ð→ Q(R)

ϕz→ ϕ̂

This map is injective because both ϕ̂ and ϕ are determined by the {ϕi}i. For surjectivity,
say λ ∈ Q(R). Then ηR(λ) ∈ hY(R), ie,

ηR(λ) ∶ SpecR Ð→ Y. (D.55)

We consider restrictions:

SpecR Y hY(R)

SpecRgi Uαi hUαi
(Rgi)

ηR(λ)

Restriction
ηRgi

(λ)∣SpecRgi

(D.56)

so ηRgi
(λ∣Rgi

) ∈ hUαi
(Rgi). This implies

λ∣Rgi
∈ η−1(hUαi

(Rgi)) = hXαi
(Rgi)Ð→ Q(R). (D.57)
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But hX is itself a Zariski sheaf. Thus ∃ν ∈ hX(R) such that ν∣Rgi = λ∣Rgi
,∀i.

The final statement of the proof follows from fact that η being a closed embedding is a

local condition on Y.

Proof of Proposition 3.7. First we define a natural transformation Gkn Ð→ h
P
(
n
m)−1

.

Let L ∈ Gnk(R) and let m1, . . . ,mk be a basis for Rn/L. Consider m1 ∧ . . . ∧mk ∈ ⋀k L.
Writing m1, . . . ,mk with respect to the standard basis e1, . . . , en

∀i = 1, . . . ,m, mi =
n

∑
j=1

mi
jej (D.58)

leads to the following matrix

M =
⎛
⎜⎜⎜⎜
⎝

m1
1 . . . mn

1

...
. . .

...

m1
k . . . mn

k

⎞
⎟⎟⎟⎟
⎠

(D.59)

Writing det[M]I for the determinant of the square submatrix ofM given by the columns

and rows corresponding to the elements of I leads to the following

m1 ∧ . . . ∧mk = ∑
∣I ∣=k

det [M]IeI (D.60)

where if I = {i1 < . . . < ik} then lI = ei1 ∧ . . .∧eik . Notice that det [M]I ∈ R. This induces
a ring homomorphism Φ ∶ k[{xI ∣ I ⊆ {1, . . . , n}, ∣I ∣ = k}] Ð→ R induced by k-linearity

and the rule xI z→ det [M]I . Notice that this map depends on the choice of spanning

set m1, . . . ,mk.

Now assume Rn/L has basis {[e1], . . . , [ek]}. Let J = {1, . . . , k}. Then Φ(xJ) is invert-
ible, and so Φ factorises through k[{xI}]xJ , the localisation of k[{xI}] at the multi-

plicative set {1, xJ , x2J , . . .}.
k[{xI}I] R

k[{xI}I]xJ

Φ

(D.61)

We restrict the latter to the degree zero elements k[{xI}I](xJ) to arrive at a morphism

of affine schemes:

SpecR Ð→ Spec(k[{xI}I](xJ)). (D.62)
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So far we have described a map Gkn/J(R)Ð→ h
A
(
n
k)−1
(R) which depends on the choice of

spanning set {m1, . . . ,mk} for Rn/L. To remove this dependency, we map h
A
(
n
k)−1
(R)

into h
P
(
n
k)−1
(R).

The former is a standard open chart of P(
n
k
) − 1 and so we arrive at a morphism:

SpecR Ð→ Projk[{xI}] ∈ h
P
(
n
k)−1

k

(R) (D.63)

We have described a map Gkn/J(R)Ð→ h
P
(
n
k)−1
(R). A similar procedure induces a map

Gkn/I(R)Ð→ h
P
(
n
k)−1
(R) for any size k subset I ⊆ {e1, . . . , en}. These maps glue together

to form a natural transformation

µ ∶ Gkn Ð→ h
P
(
n
k)−1

k

. (D.64)

By pulling back the canonical cover {Speck[{xI}I ∖{xJ}]}J of Projk[{xI}] along µ, we
obtain a collection of functors Gkn∩hAt

J
, where t = (nk)−1 and At

J = Speck[{xI}I ∖{xJ}].

To apply Proposition D.9 it remains to show that Gn/B
k ≅ Gkn∩hAt

J
, that Gkn is a Zariski

sheaf, and that the restrictions are closed embeddings, which we do not do here.

Thus, by Proposition D.9 the functor Gkn is represented by some scheme (which we

denote by Gkn) and µ corresponds to a closed embedding µ̂ ∶ Gkn Ð→ P(
n
k
)−1.

D.6 Hilbert scheme construction

Definition D.4. Say N is a finitely generated k-module. Let k > 0 and let φ ∶ km Ð→ N

be a surjective map such that km/ imφ ≅ N . Let J denote imφ. For any k-algebra R,

the module R ⊗N is isomorphic to Rm/RJ . Define the functor which acts on objects

by:

GkN(R) = {L ⊆ R⊗N ≅ Rm/RJ ∣
Rm/RJ

L
is a locally free R-module of rank k}. (D.65)

We have

GkN(R) ≅ {L ∈ Gkn(R) ∣ RJ ⊆ L} ⊆ Gkn(R). (D.66)

Definition D.5. We define the following functor

GkN/B = G
k
N ∩Gkn/B ∶ k −Alg Ð→ Set (D.67)
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which maps a k-algebra R to the set

GkN/B(R) = {L ∈ G
k
n(R) ∣ RJ ⊆ L,Rn/L is a free R-module with basis [B]L}. (D.68)

The condition that RJ ⊆ L can be expressed as follows: ∀u ∈ J write

u =
m

∑
i=1
aui ei ∈ Rm, aui ∈ R (D.69)

For simplicity, assume that B = {e1, . . . , ek}. Writing this modulo L we have

[u]L =
n

∑
j=1

auj [ej]L

=
k

∑
i=1

n

∑
j=1

aujα
j
i [ei]L

where

[ej]L =
k

∑
i=1
αji [ei]L (D.70)

with αji ∈ R,α
j
i = δi,j for 1 ≤ j ≤ k.

So u ∈ L means [u]L = 0 which is true if and only if

k

∑
j=1

aui α
j
i = 0 (D.71)

for all i = 1, . . . , k. The same holds for an arbitrary size k subset I of {e1, . . . , en}, so we

have proven the first half of the following Proposition.

Proposition D.10. For N ≅ km/J a finitely generated k-module, and size k subset B of

{e1, . . . , en} ⊆ Rn the functor GkN/B is representable, and is represented by the following

affine scheme

Spec (
k[{yjb ∣ b ∈ B,1 ≤ j ≤ n − k}]
(∑mj=1 aub y

j
b)b∈B,u∈J

). (D.72)

Proof. Let Rk,N,B denote the above algebra (D.72). We have already shown that a

submodule L ⊆ R ⊗ N induces a set of elements {αjb ∣ b ∈ B, j = 1, . . . , n − k} where

R = Rn/RJ and (R ⊗ N)/L has basis B. These elements are equivalent to a ring

homomorphism Rk,N,B Ð→ R.

We now prove the converse. To tame notation, assume again that B = {e1, . . . , ek}.
Say we have a collection of elements {αji ∣ 1 ≤ i ≤ k, j = 1, . . . , n − k} ⊆ R satisfying the
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equations (D.71) ranging over all u ∈ J . Then consider the submodule

L = span{ej+k −
k

∑
i=1
αji ei ∣ j = 1, . . . , n − k} (D.73)

This submodule satisfies Rn/L is free with basis [B]L, and since these satisfy Equations

(D.71), it follows that RJ ⊆ L.

Lemma D.11. The functor GkN is represented by a closed subscheme of Gkn, which we

call GkN .

Proof. Follows from Proposition D.9.

Definition D.6. letM ⊆ N be a finitely generated k-submodule of N . Denote by GrN/M
the union of all subschemes GkN/B ranging over all size k subsets B ⊆M

GkN/M = ⋃
∣B∣=k

GkN/B (D.74)

This is the relative Grassmann functor.

We remark that for any k-algebra R,

hGk
N/M
(R) ≅ {L ⊆ R⊗N ∣ (R⊗N)/L is a locally free

R-module of rank k with basis in M}.

Lemma D.12. The functor GkN/M is represented by an open subscheme of GkN .

Proof. Follows from Proposition D.9.

Finally, we extend to the case of a graded k-module N =⊕a∈NNa.

Definition D.7. Fix an arbitrary function h ∶ AÐ→ N. Define the following functor:

GhN(R) = {L ⊆ R⊗N ∣ (R⊗Na)/La is locally free of rank h(a),∀a ∈ N}.

To give such a module L it is equivalent to give each La separately. Thus

GhN ≅∏
a∈N

G
h(a)
Na

(D.75)

We define subfunctors too:
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Definition D.8. Given a finitely generated homogeneous k-submodule M ⊆ N , GhN/M

is the subfunctor of GhN/M given by

GhN(R) = {L ⊆ R⊗N ∣ ∀a ∈ N, (R⊗Na)/La is a locally free R-module

of rank h(a) with basis given by a size k subset of Ma}.

Lemma D.13. Assume that h has finite support and set k = ∑a∈N h(a), so that GhN

is a subfunctor of GkN . Similarly, GhN/M is a subfunctor of GkN/M . The corresponding

morphisms of schemes

GhN Ð→ GkN , GhN/M Ð→ GkN/M (D.76)

are closed immersions.

Proof. To see this, observe that GhN is defined locally by the vanishing of the coordinates

αxb on GrN with x ∈ Na, b ∈ Nc, a ≠ c ∈ A. We have used the fact that if TÐ→ S is a closed

immersion and S is covered by open subsets Wj such that each T∩Wj Ð→ S is a closed

immersion then TÐ→ S is a closed immersion.

Proof of Theorem 3.18. We will use Lemma D.9. We proceed in six steps.

Step 1: Hh
T is a Zariski sheaf. Let R be finitely generated and pick generators

f1, . . . , fk. Recall the definition of Hh
T (R):

Hh
T (R) = {F − submodules L ⊆ R⊗ T ∣ ∀d ∈ N, (R⊗ Td)/Ld is

locally free of rank h(d)}

where an F -submodule L is homogeneous and satisfies a compatibility condition with

F . Recall that to give a homogeneous module L ⊆⊕d∈AR⊗ Td it is equivalent to give a

family of modules Ld ⊆ R⊗Td. Notice that if li ∶⊕d∈NR⊗Td Ð→⊕d∈NRfi ⊗Td denotes

the localisation map, then

L =
k

⋃
i=1
l−1u (Lfi). (D.77)

So L can be recovered from its localisations. Moreover, Ld is locally free of rank h(d) if
and only if the same holds for each (Li)d.

Step 2: For all R ∈ k −Alg and L ∈ Hh
T (R), the module M generates (R ⊗ T )/L

as an R-module.

Recall that M ⊆ N ⊆ T is a homogeneous submodule so that for every field K ∈ k −Alg

and every L ∈Hh
T (K), we haveKM = (K⊗T )/L. Localising at each p ∈ SpecR, it suffices
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to prove the claim of this step when (R,p) is a local ring. For all d ∈ N, the R-module

(R⊗Td)/Ld is free of finite rank h(d), so in particular is finitely generated. Consider the

field R/p which is also a k-algebra. We know by hypothesis that KMd = (K ⊗ Td)/Ld,
where K = R/p. Notice that

K ⊗ Td
Ld

= (R⊗ Td)/Ld
(p⊗ Td)/Ld

(D.78)

and the latter is an R-module. Since this is finitely generated by elements in Md, it

follows by Nakayama’s lemma that (R ⊗ Td)/Ld is generated as an R-module by Md.

That is,

RM = (R⊗ T )/L (D.79)

as required.

Step 3: We have a canonical natural transformation η ∶Hh
T Ð→ GhN/M

It follows from step 2 that the canonical homomorphism R⊗N Ð→ (R⊗T )/L is surjec-

tive. If L′ denotes the kernel then

(R⊗N)/L′ ≅ (R⊗ T )/L. (D.80)

So in particular,M generates (R⊗N)/L′. We have assumed thatM,N are homogeneous,

so the morphism R⊗N Ð→ (R⊗ T )/L preserves the grading. This implies L′ is graded

and so

L′ ∈ GhN/M(R). (D.81)

We remark that we have implicitly used the first hypothesis of Theorem 3.18 here in

assuming GhN/M exists.

We have defined a function LÐ→ L′.

Step 4: The functors η−1GhN/B are represented by affine schemes.

Let B ⊆ M be any homogeneous subset with ∣Bd∣ = h(d) for all d ∈ N, so GhN/B is a

standard affine chart in GhN/M . We have

GhN/B(R) = {L
′ ⊆ R⊗N ∣ (R⊗N)/L′ is free with basis [B]L′}

Ô⇒ η−1R G
h
N/B(R) = {L ∈H

h
T (R) ∣ (R⊗ T )/L is free with basis [B]L}
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(as (R⊗N)/L′ Ð→ (R⊗ T )/L is an isomorphism). Let L ∈ η−1R GhN/B(R) and d ∈ N. For
each x ∈ Td ⊆ R⊗ Td, b ∈ Bd, let αxb be a collection of elements in R such that

x − ∑
b∈Bd

αxb b ∈ Ld. (D.82)

We claim that η−1GhN/B is represented by the following (note we suppress a in the

notation yxb even though we have a distinct variable for each d, so strictly we should be

writing yxb,d)

Spec (k[{y
x
b ∣ d ∈ N, x ∈ Td, b ∈ Ba}]

J
) (D.83)

where J is the ideal generated by the following polynomials

{yxb − δx,b ∣ x ∈ Bd}, (D.84)

{∑
x∈Td

cxα
x
b y
x
b ∣ d ∈ N, b ∈ Bd, and every linear relation ∑

x∈Ta
cxx = 0}, (D.85)

{yf(x)b − ∑
b′∈Bd

yxb′y
f(b′)
b ∣ d, c ∈ A,x ∈ Td, f ∈ Fdc, b ∈ B}. (D.86)

Since Bd is a basis, we have

αxb = δx,b, for x ∈ Bd. (D.87)

Also, for every linear relation ∑x∈Td cxx = 0 we have

∑
x∈Td

cxα
x
b = 0, for d ∈ N, b ∈ Bd. (D.88)

This is seen by summing (D.82) over all x and projecting onto (R⊗ Td)/Ld:

∑
x∈Td

cx[x]Ld
= ∑
x∈Td,b∈Bd

αxb cx[b]Ld
= 0

Ô⇒ ∑
x∈Td

cxα
x
b = 0, as {[b]Ld

} is a basis.

Finally, since L is an F -submodule, we have

α
f(x)
b = ∑

b′∈Bd

αxb′α
f(b′)
b , for d, c ∈ A,x ∈ Td, f ∈ Fd,c, b ∈ B. (D.89)

To see this, start with the equation

x = ∑
b∈Bd

αxdb ∈ Ld. (D.90)

Then apply f̂ = 1r ⊗ fd,c:
f̂(x) = ∑

b∈Bd

αxd f̂(b) ∈ Lc. (D.91)
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Write f̂(b) = ∑b′∈Bc
αb
′

b b
′ mod Lc. Then

∑
b′∈Bc

α
f̂(x)
b′ [b]Lc = [f̂(x)]Lc = ∑

b∈Bd,b′∈Bc

αxaα
b′

b [b′]Lc . (D.92)

We deduce the above Equation (D.89).

Conversely, say we have a family of elements αxb ∈ R (ranging over a ∈ A (suppressed

from the notation), x ∈ Ta, and b ∈ Ba) satisfying Equations (D.87), (D.88), (D.89).

Fix a ∈ A. The elements αxb can be viewed as a (typically infinite) matrix defining a

homomorphism of free modules:

ϕd ∶ RTd Ð→ RBd

xz→ ∑
b∈Bd

αxb ⋅ b.

Equation (D.88) implies that this map factors through R⊗ Ta:

RTd RBd f (b↦ ∑x∈Td α
x
b ⋅ f(x))

R⊗ Td ∑x∈Td f(x)⊗ x

Equation (D.87) ensures that ϕd is the identity on Bd, which implies (R⊗ Td)/kerϕd is

free with basis Bd. Considering all degrees again, (D.89) ensures the submodules kerϕd

form an F -submodule.

We have given a correspondence between elements L ∈ η−1R GhN/B(R) and systems of

elements αxb satisfying (D.87), (D.88), (D.89). These correspondences are mutually

inverse and natural in R. This is sufficient to show that η−1GhN/B is affine.

Step 5: glueing.

It now follows from Proposition D.9 that Hh
T is represented by a scheme over GhN/M ,

the morphism Hh
T Ð→ GhN/M being given by η of step 3. Up to this point, we have only

used the first and third hypotheses.

Step 6: The morphism corresponding to η ∶ Hh
T Ð→ GhN/M is a closed embed-

ding.

Recall that GhN/M ↣ GrN/M is a closed embedding. This, plus the local nature of sheaves

means it suffices to consider the restrictions η∣η−1Gh
N/B

for all r element subset B ⊆M .
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In step 4 we showed that η−1GhN/B is represented by an affine scheme given by coordinates

αxb , d ∈ N, x ∈ Td, b ∈ Bd (D.93)

That is,

η−1GhN/B ≅ Hom(Spec(−),k[{y
x
b ∣ d ∈ N, x ∈ Td, b ∈ Bd}]/I) (D.94)

where I is the ideal generated by (D.87), (D.88), (D.89) with the variables yxb replacing

the fixed elements αxb .

The morphism η amounts to mapping these coordinates to the ones with the same name.

We need to show that the corresponding morphism of rings is surjective.

Consider the subalgebra Y generated by {yxb ∣ x ∈ Nd, b ∈ Bd}. Let gd,c ∈ G. Recall

y
g(x)
b = ∑b′∈Bc

yxb y
g(b)
b′ . Now, x ∈ N , b ∈ Bd ⊆Md, and the hypothesis states that GMd ⊆

Nd, so g(b) ∈ N . We deduce that α
g(b)
b ∈ Y . Lastly, G generates F , and N generates T

as an F -module, so we are done.

The representing schemes we have defined fit into the following diagram, where η−1GhN/B
denotes the scheme representing η−1GhN/B.

P(
n
k
)−1

Gkn

GkN

GkN/B ⋃∣B∣=rGkN/B = G
k
N/M

GhN/B GhN/M

η−1GhN/B Hh
T

Closed embedding

Closed embedding

Open embedding
Open embedding

Closed embedding

η Closed embedding

(D.95)



Appendix E

Algebra

E.1 Graded rings, modules, and algebras

Definition E.1. Let G be a totally ordered group (typically the integers). A G-graded

ring is a ring A along with a G-grading, ie, a group isomorphism

A ≅⊕
g∈G

Ag (E.1)

for some collection of subgroups {Ag ⊆ A}g∈G. Furthermore, A is required to be such

that AgAh ⊆ Ag+h for all g, h ∈ G.

An element a ∈ A such that a ∈ Ag is homogeneous of degree g. An ideal which can

be generated by homogeneous elements is a homogeneous ideal.

Let A be a G-graded ring, a G-graded A-module M is an A-module along with a

G-grading, ie a group isomorphism

M ≅⊕
g∈G

Mg (E.2)

for some collection of subgroups {Mg ⊆M}g∈G. Furthermore, M is required to be such

that AgMh ⊆Mg+h for all g, h ∈ G.

Lemma E.1. An ideal I is homogeneous if and only if I =⊕g∈G(Ag ∩ I).

Example E.1. If A ≅ ⊕g∈GAg is a graded algebra and I ⊆ A is a homogeneous ideal,

then A/I is graded as per:

A/I ≅⊕
g∈G

Ag/⊕
g∈G
(Ag ∩ I) ≅⊕

g∈G
Ag/Ag ∩ I. (E.3)

199
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We now take G = Z.

Definition E.2. Let A be a Z-graded ring and M,N two Z-graded A-modules. A

morphism of Z-graded A-modules of degree i ∈ Z is an A-module homomorphism

φ ∶ A Ð→ B satisfying ∀j ∈ Z, f(Aj) ⊆ Bj+i we denote the A-module of such morphisms

by Hom(A,B).

This gives rise to a Z-graded module

Hom(A,B) ∶=⊕
i∈Z

Hom(A,B)i. (E.4)

Moreover, the tensor product is naturally a Z-graded module with grading:

A⊗B ≅ ⊕
i∈Z

n+m=i

An ⊗Bm. (E.5)

What if A,B are Z-graded k-algebras for some commutative ring k? All the definitions

go through as expected except for the tensor product which has multiplication defined

by

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)∣a2∣∣b1∣(a1a2 ⊗ b1b2). (E.6)

This multiplication law is necessary for the differential cases in order to make Hom(A,B)⊗
AÐ→ B given on pure tensors by f ⊗ az→ f(a) a morphism of chain complexes.

Definition E.3. Let A be a ring, a differential, Z-graded A-module is a Z-graded
A-module M along with a differential, ie, a linear map d ∶ A Ð→ A such that for all

m ∈ M we have deg f(m) = degm − 1. A morphism of differential, Z-graded A-

modules M,N is a morphism of Z-graded modules φ ∶M Ð→ N such that for all i ∈ Z
the following diagram commutes:

Mi Ni

Mi−1 Ni−1

φ

dM dN

φ

(E.7)

Every differential graded module is naturally a chain complex.

Definition E.4. Let (A,dA), (B,dB) be differential, graded k-algebras (for some com-

mutative ring k), the tensor product is naturally equipped with the following differential:

dA⊗B(a⊗ b) = dA(a)⊗ b + (−1)∣a∣a⊗ dB(b) (E.8)
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Similarly, Hom(A,B) is naturally equipped with the following differential:

dH(f) = dB(f) − (−1)∣f ∣f(dA). (E.9)

Remark E.2. Let ψ ∶ Hom(A,B)⊗AÐ→ B be the evaluation map, ie, the map given on

pure tensors by ψ(f⊗a) = f(a). We claim this is a chain map. We require commutativity

of the following diagram:

(Hom(A,B)⊗A)n Bn

(Hom(A,B)⊗A)n−1 Bn−1

ψ

dH⊗A dB

ψ

(E.10)

Unpacking definitions, for all pure tensors f ⊗ a ∈ (Hom(A,B)⊗A)n we have

dB(ψ)(f ⊗ a) = dB(f(a)) (E.11)

and

ψdH⊗A(f ⊗ a) = ψ(dHf ⊗ a + (−1)∣f ∣f ⊗ dA(a))

= dHf(a) + (−1)∣f ∣f(dA(a))

= dB(f(a)) − (−1)∣f ∣f(dA(a)) + (−1)∣f ∣f(dA(a))

= dB(f(a))

so indeed we have a morphism of differential, graded algebras.

Consider the Z-graded ring S ∶= k[x0, ..., xn]. We can define a ring homomorphism

φ ∶ S Ð→ S given by multiplication by x0, strictly speaking though this fails to be a

morphism of Z-graded rings as, for example, the degree 0 element 1 is mapped to the

degree 1 element x0.

There is an obvious fix to this, we simply shift the grading of the first copy of S.

Definition E.5. Let A be a G-graded ring. We denote by A(g) the graded ring which

is identical as a ring to A, but with the grading shifted by g, more concretely, if for

an arbitrary G-graded ring B we denote by Bg the subgroup generated by the degree g

elements, then we have

A(g)h = Ag+h. (E.12)

In the special case where G = Z, the differential denoted dA(n) is given by dA(n)(a) =
(−1)ndA(a).

Example E.2. We have a well defined morphism of graded rings S(−1) (x0)Ð→ S.
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E.2 Exterior algebra

Throughout, R is a commutative ring and M a left R-module.

Definition E.6. The exterior algebra associated to M is the pair (⋀M, ι ∶ M Ð→
⋀M) satisfying the following universal property: if N is an R-algebra, and f ∶M Ð→ N

is an R-module homomorphism such that for all m ∈ M,f(m)2 = 0 then there exists a

uniqueR-algebra homomorphism g ∶ ⋀M Ð→ N making the following diagram commute:

M ⋀M

N

ι

f
g (E.13)

Moreover, if N is graded and f(M) ⊆ N1 then g is a morphism of graded modules.

Remark E.3. Existence of the exterior algebra is given by taking ⋀M to be, where m

ranges over all m ∈M :

⋀M ∶=⊗M/m⊗m. (E.14)

Remark E.4. If M is free and of finite rank, and v1, ..., vn is a basis for M , then a basis

for ⋀M as a vector space is given by

{vi1 ∧⋯ ∧ vid ∣ 1 ≤ d ≤ n,1 ≤ i1 < ⋯ < id ≤ n} (E.15)

which is a set of size 2n.

Proposition E.5. Let φ ∶M Ð→ N be an R-module homomorphism. Then there exists

a unique morphism ⋀φ ∶ ⋀M Ð→ ⋀N such that the following diagram commutes:

M N

⋀M ⋀N

φ

⋀φ
(E.16)

Definition E.7. As per Example E.1 we have that the exterior algebra is Z-graded.
We denote the degree d elements of ⋀M by ⋀dM .

There are two canonical operators on the exterior algebra, which we now explain.

Definition E.8. Let x ∈ ⋀M be an arbitrary element. We define

x ∧ (−) ∶⋀M Ð→⋀M

x1 ∧⋯ ∧ xn z→ x ∧ x1 ∧⋯ ∧ xn.
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The second map is in some sense the dual to this. We begin with some preliminary

observations.

Lemma E.6. Let M be free and of finite rank. Then

d

⋀M∗ ≅ (
d

⋀M)∗. (E.17)

Proof. Let λ1, ..., λn be elements of M∗. Define the following functional:

Md Ð→ R

(m1, ...,md)z→ det ((λimj)ij).

We have thus described a homomorphism (M∗)d Ð→ R which is bilinear and maps

tuples with repeated elements to 0, thus we have described a function

φ ∶
d

⋀M∗ Ð→ (
d

⋀M)∗. (E.18)

It remains to show that this is an isomorphism, and for this we use for the first time

that M is free of finite rank. Let vi1 , ..., vid ∈M be a basis. One can show

φ(vi1 ∧⋯ ∧ vid) = (vi1 ∧⋯ ∧ vid)∗ (E.19)

and so φ maps onto a basis for (⋀dM)∗ so in particular φ is surjective. Since φ is a

surjective map between vector spaces of the same, finite dimension, it must therefore

also be injective.

Remark E.7. Another simple but important observation is that ⋀d(−) extends to a

functor.

We can now define the second canonical map.

Definition E.9. Assume that M is free of finite rank. Let η ∈ M∗. There is the

following sequence of compositions

⋀dM ⋀dM∗∗ (⋀dM∗)∗

⋀d−1M ⋀d−1M∗∗ (⋀d−1M∗)∗
(η∧−)∗ (E.20)

The resulting map ⋀dM Ð→ ⋀d−1M is contraction and is denoted by η⌟.

For an element x ∈M we often denote x ∧ (−) by x and x∗⌟ by x∗.
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Remark E.8. We can follow the sequence of homomorphism (E.20) to obtain an explicit

formula for the contraction map. To this end, let v1, ..., vn be a basis for M and observe

the following calculation:

vi1 ∧⋯ ∧ vid z→ v∗∗i1 ∧⋯ ∧ v∗∗id
z→ (v∗i1 ∧⋯ ∧ v∗id)

∗

z→ (v∗i1 ∧⋯ ∧ v∗id)
∗ ○ (η ∧ (−)).

We then have for any basis vector (v∗j1 ∧⋯ ∧ v∗jd−1)
∗ ∈ (⋀d−1M∗)∗ that

(v∗i1 ∧⋯ ∧ v∗id)
∗ ○ (η ∧ (−))(v∗j1 ∧⋯ ∧ v∗jd−1) (E.21)

= (v∗i1 ∧⋯ ∧ v∗id)
∗(η ∧ v∗j1 ∧⋯ ∧ v∗jd−1) (E.22)

By writing η = η(v1)v∗1 +⋯ + η(vn)v∗n we have

η ∧ v∗j1 ∧⋯ ∧ v∗jd−1 = (η(v1)v
∗
1 +⋯ + η(vn)v∗n) ∧ v∗j1 ∧⋯ ∧ v∗jd−1

=
n

∑
k=1

η(vk)v∗k ∧ v∗j1 ∧⋯ ∧ v∗jd−1

so returning to (E.22), we have

(v∗i1 ∧⋯ ∧ v∗id)
∗(

n

∑
k=1

η(vk)v∗k ∧ v∗j1 ∧⋯ ∧ v∗jd−1)

which, if there exists l ∈ {1, ..., d} such that (i1, ..., il̂, ..., id) = (j1, ..., jd−1) is equal to

(−1)l−1η(vil). Hence, traversing the other direction of (E.20) we see that this corre-

sponds to the element

η⌟(vi1 ∧⋯ ∧ vid) =
d

∑
j=1
(−1)j−1η(vij)vi1 ∧⋯ ∧ v̂ij ∧⋯ ∧ vid . (E.23)

Remark E.9. Notice that from (E.20) and the fact that η ∧ η ∧ (−) = 0 it follows that

contraction is a differential. Thus there is a chain complex

L(M) ∶= ⋯Ð→
2

⋀M
η⌟Ð→M

ηÐ→ R Ð→ 0. (E.24)

Definition E.10. A super algebra is a graded, commutative algebra A with the

following properties:

• For all a, b ∈ A we have ab = (−1)∣a∣∣b∣ba.

• If a ∈ A is homogeneous of odd degree, then a2 = 0.
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Example E.3. The exterior algebra ⋀M of a module M is a super algebra.

Definition E.11. We let ModR denote the category of left R-modules, and sAlg
R
the

category of R-super algebras.

We denote by (−)1 ∶ sAlgR Ð→ ModR the functor which takes a super algebra to its

degree 1 component.

Remark E.10. The functor ⋀(−) is left adjoint to (−)1. This follows from Proposition

E.5.

We now use these observations to prove that there is a canonical isomorphism ⋀(M)⊗
⋀(N)Ð→ ⋀(M ⊕N).

Proposition E.11. For any pair of R-algebras M,N there is an isomorphism

Ψ ∶⋀(M ⊕N)Ð→⋀M ⊗⋀N

ψ(m,n) =m⊗ 1 + 1⊗ n.

Proof. By Observation E.10 and that the tensor product acts as a coproduct in the

category of AlgR of commutative R-algebras, we have the following commutative dia-

gram, where the horizontal arrows are composition and all vertical arrows are natural

isomorphisms, note also we simply write H in place of Hom:

H(⋀(M ⊕N),⋀M ⊗⋀N) ×H(⋀M ⊗⋀N,⋀(M ⊕N)) H(⋀(M ⊕N),⋀(M ⊕N))

H(M ⊕N, (⋀M ⊗⋀N)1) ×H(⋀M,⋀(M ⊕N)) ×H(⋀N,⋀(M ⊕N))

H(M ⊕N,M ⊕N) ×H(M,M ⊕N) ×H(N,M ⊕N)

H(M ⊕N,M ⊕N) ×H(M ⊕N,M ⊕N) H(M ⊕N,M ⊕N)

Since the image of idM⊕N under

H(M ⊕N,M ⊕N) ×H(M ⊕N,M ⊕N)Ð→H(M ⊕N,M ⊕N)

Ð→H(∧(M ⊕N),∧(M ⊕N))

is id∧(M⊕N) it follows that there are canonical morphisms ψ ∶ ⋀(M ⊕N)Ð→ ⋀M ⊗⋀N
and ψ′ ∶ ⋀M⊗⋀N Ð→ ⋀(M⊕N) such that ψ′ψ = id⋀(M⊕N). A similar argument shows

ψψ′ = id⋀M⊗⋀N .
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E.3 Clifford Algebras

Throughout, V is a finite dimensional k-vector space, where k is a commutative ring.

This Section considers vector spaces equipped with either a bilinear form or a quadratic

form (which due to E.12 amounts, in the case where k is of characteristic not equal to

2, to the same thing).

Definition E.12. A bilinear map B ∶ V ×V Ð→ k is sometimes called a bilinear form.

If v1, ..., vn is a basis for V then for any u = u1v1 + ⋯unvn,w = w1v1 + ⋯wnvn ∈ V the

value B(u,w) can be calculated by

[w1 ⋯ wn]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

B(v1, v1) ⋯ B(v1, vn)
...

. . .
...

B(vn, v1) ⋯ B(vn, vn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
...

un

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E.25)

and so given a choice of basis for V there exists an isomorphism between the vector

space of bilinear forms and the vector space of n × n matrices with entries in k. If B is

a basis for V , the matrix corresponding to B is denoted [B]B.

A bilinear form B ∶ V ×V Ð→ k is symmetric if for all v, u ∈ V we have B(v, u) = B(u, v).

Definition E.13. A quadratic form is a function Q ∶ V Ð→ k satisfying the following

properties:

• For all a ∈ k and v ∈ V , we have Q(av) = a2Q(v).

• The function B ∶ V ×V Ð→ k given by B(v, u) = Q(v+u)−Q(v)−Q(u) is bilinear.

Proposition E.12. Let B ∶ V × V Ð→ k be a symmetric bilinear form and k a field of

characteristic not equal to 2. Then the function QB ∶ V Ð→ k given by QB(v) = B(v, v)
is a quadratic form.

Also, given a quadratic form Q ∶ V Ð→ k, the function BQ ∶ V × V Ð→ k given by

BQ(v, u) = 1
2
(Q(v + u) −Q(v) −Q(u)) is a bilinear form.

Definition E.14. In the notation of Proposition E.12, BQ is the bilinear form as-

sociated to Q and QB is the quadratic form associated to B. Notice that BQ is

symmetric.

We say that a bilinear form B is diagonalisable if there exists a basis B for V rendering

[B]B diagonal, similarly, we say that Q is diagonalisable.

Proposition E.13. A finite dimensional bilinear form B ∶ V ×V Ð→ k is diagonalisable

if and only if it is symmetric.
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Proof. The bilinear form B is symmetric if and only if there exists a basis with respect

to which the matrix representation of B is symmetric (which would imply the matrix

representation with respect to any basis is symmetric). So since B is diagonalisable we

have that B is symmetric.

Now we prove the converse. If B maps everything to zero then the result is obvious so

assume this is not the case. We first prove that there exists a vector v such that QB(v) =
B(v, v) ≠ 0. Let u1, u2 ∈ V be such that B(u1, u2) ≠ 0. If B(u1, u1) ≠ 0 or B(u2, u2) ≠ 0
then we could take v to be one of u1, u2, so assume B(u1, u1) = B(u2, u2) = 0. We have

Q(u1 + u2) = B(u1 + u2, u1 + u2) = B(u1, u2) +B(u2, u1) = 2B(u1, u2) ≠ 0 (E.26)

where we have used both the assumptions that B is symmetric and that the characteristic

of k is not 2. We can thus take v to be u1 + u2.

We proceed by induction on the dimension of V , with the base case dimV = 1 being

trivial.

Say dimV = n > 1. Consider the map φv ∶ V Ð→ k given by φv(u) = B(u, v). Since

B(v, v) ≠ 0 we have that imφv = k and so kerφv = dimk V − 1. Since we are working

with finite dimensional vector spaces that there exists implies a decomposition V =
kerφv⊕imφv. We have by the inductive hypothesis that B ↾kerφv×kerφv is diagonalisable.

Fix a basis B ∶= {v1, ..., vn−1} of kerφv × kerφv so that the top left n− 1×n− 1 minor of

the matrix representation of B with respect to this basis is diagonal. We extend B to

a basis B′ for V by taking B ∶=B⋃{vn} with v and notice that B(vi, v) = B(v, vi) = 0
for all i = 1, ..., n − 1 (using the decomposition V = kerφv ⊕ imφv from earlier). We

thus have a basis {v1, ..., vn−1, v} with respect to which the matrix representation of V

is diagonal.

Remark E.14. In the proof of Propsition E.13 we used the fact that a linear transforma-

tion φ ∶ V Ð→W between two finite dimensional k-vector spaces induces a decomposition

V ≅ kerφ⊕ imφ (E.27)

for some subspace W . To see this, we use the splitting lemma. There is always a short

exact sequence

0 kerφ V imφ 0.
φ

(E.28)

Now pick a basis B for imφ and make a choice of lifts C ∶= {vb ∣ φ(vb) = b}b∈B. There is

thus a linear transformation ψ ∶ imφÐ→ V which is given on basis vectors by ψ(b) = vb.
Clearly, φψ = idimφ, and so the Splitting Lemma may be applied.
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Proposition E.15. Say V is finite dimensional of dimension n. By Proposition E.13

the quadratic form Q is diagonalisable, in fact, more can be said:

• If k = R then there exists a basis for V and 0 ≤ r ≤ n such that Q with respect to

this basis has diagonal entries

λ1 = ⋯ = λr = 1, λr+1 = ⋯ = λn = −1. (E.29)

• If k = C then there exists a basis for V such that Q with respect to this basis has

diagonal entries

λ1 = ⋯ = λn = 1. (E.30)

Proof. Let v1,⋯, vn be a basis with respect to which Q is diagonal with diagonal entries

λ1,⋯, λn. We proceed by induction on n. Say n = 1 and let e be the chosen basis vector

of V ,and say k = R, we have

BQ(v1, v2) = v2e ⋅ λ1 ⋅ v1e =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

v2
√
λ1e ⋅ 1 ⋅ v1

√
λ1e, λ1 ≥ 0,

v2
√
−λ1e ⋅ −1 ⋅ v1

√
−λ1e, λ1 < 0

(E.31)

so we can replace the basis e by either
√
λ1e or

√
−λ1e and we are done. In the case

when k = C, there always exists a square root of λ1.

The logic of the inductive step is exactly similar.

Proposition E.16. Say V is a real vector space of dimension n. By Proposition E.15

there exists a basis of V for which [B]B is diagonal with all entries equal to either 1 or

−1. The triple (n+, n−, n0) consisting of the number n+ of positive entries, the number n−

of negative entries, and the number n0 of entries equal to zero in a [B]B is independent

of the choice of diagonalising basis B.

Proof. Write

[B]B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ip

−Iq
0r

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(E.32)

Denote by W ⊆ V the largest subspace such that B ↾W×W is positive definite, ie,

B(w,w) > 0 for all w ∈ W . Letting w = w1v1 + ⋯wnvn and calculating B(w,w) us-

ing [B]B we have

wT [B]Bw = w2
1 +⋯w2

p −w2
p+1 −⋯ −w2

p+q (E.33)
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and so wt[B]Bw > 0 if and only if wp+1 = ⋯ = wp+q = 0. We thus have

W ⊆ Span(v1, ..., vp).

Letting W ′ denote this span, we clearly also have W ′ ⊆ W , implying p = dimW . Thus

p has been related to a value which is basis independent and so p is an invariant. The

remaining invariances follow from the rank-nullity Theorem.

Definition E.15. In the notation of Proposition E.16, the triple (n+, n−, n0) is the

signature of B.

If n0 = 0 then the bilinear form is nondegenerate.

Remark E.17. The number of entries equal to 1 in a matrix representation of a symmetric

bilinear form on a finite dimensional complex vector space is also an invariant, this follows

directly from the rank-nullity Theorem.

E.3.1 Clifford algebras

Throughout, we denote by (V,Q) a quadratic form, consisting of a finite dimensional

k-vector space V and a quadratic form Q ∶ V Ð→ k on V . The field k is assumed to have

characteristic not equal to 2.

Definition E.16. A pair (CQ, j) consisting of a k-algebra CQ and a linear transforma-

tion j ∶ V Ð→ CQ such that

∀v ∈ V, j(v)2 = Q(v) ⋅ 1 (E.34)

is a clifford algebra for (V,Q) if it is universal amongst such maps. That is, for every

pair (D,k) consisting of a k-algebra D and a linear transformation k ∶ V Ð→D satisfying

∀v ∈ V, k(v)2 = Q(v) ⋅ 1 (E.35)

there exists a unique k-algebra homomorphism m ∶ CQ Ð→ D such that the following

diagram commutes

V CQ

D

j

k
m (E.36)

Proposition E.18. A Clifford algebra for (V,Q) always exists and is essentially unique

(unique up to unique isomorphism) amongst those algebras satisfying the universal prop-

erty given in Definition E.16.
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Proof (sketch). We construct the tensor algebra

T (V ) ∶=⊕
i≥0
V ⊗i (E.37)

(where V ⊗0 ∶= k) quotiented by the ideal I generated by the set {v ⊗ v −Q(v) ⋅ 1}v∈V .
The map j ∶ V Ð→ CQ is the inclusion V Ð→ T (V ) composed with the projection

T (V )Ð→ T (V )/I.

Notice that j given in the proof of Proposition E.18 is injective.

Proposition E.19. The underlying vector spaces of CQ and ⋀V are isomorphic.

Proposition E.19 will follow from a series of observations which cover a broader scope

of theory, which we now present.

Consider the linear map k ∶ V Ð→ CQ given by k(v) = −j(v) which clearly satisfies

k(v)2 = Q(v) ⋅ 1. There is thus an induced morphism β ∶ CQ Ð→ CQ rendering the

following diagram commutative:

V CQ

CQ

j

k
β (E.38)

We have that β2 = idCQ
.

Definition E.17. The involution β is the involution associated with the Clifford

Algebra (CQ, j).

Recall that for an arbitrary involution f ∶ V Ð→ V (where V is a vector space over a

field of characteristic not equal to 2) we have

∀v ∈ V, v = 1/2(f(v) + v) + v − 1/2(f(v) + v)

= 1/2(f(v) + v) + 1/2(v − f(v))

where we notice

f(1/2(f(v) + v)) = 1/2(f(v) + v), and f(1/2(v − f(v))) = 1/2(f(v) − v) (E.39)

and so

V = E1 +E−1 (E.40)

where Ei is the i
th Eigenspace of f .
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Applying this observation to the situation of Clifford algebras, we have:

C0
Q ∶= {v ∈ C0

Q ∣ β(v) = v}, C1
Q ∶= {v ∈ C1

Q ∣ β(v) = −v} (E.41)

and

CQ = C0
Q ⊕C1

Q (E.42)

Thus the Clifford algebra (CQ, j) associated to a quadratic form Q ∶ V Ð→ k is naturally

a Z2-graded algebra.

Proposition E.20. For quadratic forms Q1 ∶ V1 Ð→ k,Q2 ∶ V2 Ð→ k we have

CQ1⊕Q2 ≅ CQ1 ⊗CQ2 . (E.43)

Proof. Consider the linear transformation

T ∶ V1 ⊕ V2 Ð→ CQ1 ⊗CQ2

(v1, v2)z→ v1 ⊗ 1 + 1⊗ v2

We have:

T (v1, v2)2 = (v1 ⊗ 1 + 1⊗ v2)2

= (v1 ⊗ 1 + 1⊗ v2)(v1 ⊗ 1 + 1⊗ v2)

= v21 ⊗ 1 + v1 ⊗ v2 − v1 ⊗ v2 + 1⊗ v22
= QV1(v1)⊗ 1 + 1⊗QV2(v2)

= (QV1(v1) +QV2(v2))(1⊗ 1)

= QV1⊕V2(v1, v2)(1⊗ 1)

So by the universal property of the Clifford algebra (CQ, j) there exists a k-algebra

homomorphism T̂ ∶ CQ1⊕Q2 Ð→ CQ1 ⊗CQ2 . First we prove surjectivity, it is sufficient to

prove that every pure tensor x⊗ y ∈ CQ1 ⊗CQ2 is mapped onto by some element by T̂ .

Write x⊗ y = v1⋯vn ⊗ u1⋯um for some u1, ..., un ∈ CQ1 , v1, ..., vm ∈ CQ2 . Since

v1⋯vn ⊗ u1⋯um = (v1 ⊗ 1)⋯(vn ⊗ 1)(1⊗ u1)⋯(1⊗ um) (E.44)

it suffices to show that for all pairs (v, u) ∈ V1 × V2 that v ⊗ u ∈ CQ1 ⊗ CQ2 is mapped

onto by some element by T̂ . Indeed:

T((v,0)(0, u)) = (v ⊗ 1 + 1⊗ 0)(0⊗ 1 + 1⊗ u)

= v ⊗ u.
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Definition E.18. A bilinear form or a quadratic form is finite dimensional if V is.

For the next result, recall that a finite dimensional bilinear form is diagonalisable if and

only if it is symmetric (Proposition E.13):

We are now in a position to describe a basis for CQ given one for V :

Proposition E.21. Let v1, ..., vn be a basis for V . The set:

B ∶= {vi1 ...vim ∣m ≤ n, vj ∈ V,0 ≤ i1 < ⋯ < im ≤ n} (E.45)

forms a basis for CQ. In particular,

dimkCQ = 2dimk V . (E.46)

Proof. This set clearly linearly generates CQ and so it suffices to show that (E.46) holds.

By Proposition E.13 we have that Q = Q1 ⊕⋯⊕Qn and by Proposition E.20 it follows

that CQ1⊕⋯⊕Qn ≅ CQ1 ⊗⋯ ⊗ CQn . Thus it suffices to prove the case when dimk V = 1.
This can be directly analysed; we know

CQ ≅ C0
Q ⊕C1

Q (E.47)

and C0
Q = k,C1

Q = k ⋅ e, where e ≠ 0. Thus the dimension of CQ in this case is 2.

Proposition E.22. Say V is finite dimensional and v1, ..., vn is a basis such that

B(vi, vj) = 0 for all i ≠ j. Then the Clifford algebra CQ is multiplicatively generated

by v1, ..., vn which satisfy the relations

v2i = Q(vi), vivj + vjvi = 0, i ≠ j. (E.48)

Proof. The only non-obvious part follows from the calculation

(vi + vj)2 = Q(vi + vj)

= B(vi + vj , vi + vj)

= B(vi, vi) + 2B(vi, vj) +B(vj , vj)

= Q(vi) +Q(vj)

= v2i + v2j
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which implies

vivj + vjvi = 0, i ≠ j. (E.49)

Thus we may think of a Clifford algebra with respect to a finite quadratic form as the

free algebra on dimk V elements subject to the relations (E.48).

E.3.2 Clifford algebras of real or complex bilinear forms

In this Section we sometimes will think of the Clifford algebra as associated to a sym-

metric bilinear form, rather than a quadratic form. There is no difficult difference, but

we note that the correct universal property of (CB, j) is:

∀v1, v2 ∈ V, j(v1)j(v2) + j(v2)j(v1) = 2B(v1, v2) ⋅ 1. (E.50)

We also introduce new notation; the Clifford algebra associated to a bilinear form B ∶
V × V Ð→ k is denoted C(V,B).

We can restate Remark E.17 in terms of Clifford algebras:

Corollary E.19. Let k ∈ {R,C}. All Clifford algebras of quadratic forms over finite

dimensional, k-vector spaces which admit the same signature are isomorphic.

Notation E.20. We denote:

• The Clifford algebra associated to the quadratic form (Rn,−x21 −⋯ − x2n) by Cn.

• The Clifford algebra associated to the quadratic form (Rn, x21 +⋯ + x2n) by C ′
n.

• The Clifford algebra associated to the quadratic form (Cn, z21 +⋯ + z2n) by CC
n .

where these quadratic forms are written with respect to the respective standard bases.

Throughout this Section, V is assumed to be a vector space over k with k ∈ {R,C}, and
B ∶ V × V Ð→ k is a bilinear form. Given a real algebra A, the complexification is the

C-algebra A⊗R C with multiplication given by

((x⊗ z), (y ⊗w))z→ (xy ⊗ zw). (E.51)

Also, given a bilinear form B ∶ V ×V Ð→ k where V is a real vector space, we define the

complexification of B as BC ∶ V ⊗R CÐ→ C given by

BC((v1 ⊗ z1), (v2 ⊗ z2)) = B(v1, v2)z1z2. (E.52)
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The following Proposition shows that the Clifford algebra of a complexification behaves

well:

Proposition E.23. We have

C(V ⊗R C,BC) ≅ C(V,B)⊗R C. (E.53)

Proof. Consider the map φ ∶ V ⊗R C Ð→ C(V,B) ⊗R C given by φ(v ⊗ z) = v ⊗ z. This

is such that

φ(v ⊗ z)2 = (v ⊗ z)2 = v2 ⊗ z2 = B(v, v)z2 ⋅ 1⊗ 1 = BC((v ⊗ z), (v ⊗ z)) ⋅ 1. (E.54)

So φ induces a map φ̂ ∶ C(V ⊗RC)Ð→ C(V,B)⊗RC which is an isomorphism with inverse

induced by the bilinear map C(V,B)×CÐ→ C(V ⊗RC,BC) given by (x, z)z→ x⊗z.

Lemma E.24. We have

CC
n ≅ Cn ⊗R C ≅ C ′

n ⊗R C. (E.55)

Proof. For i = 1, . . . , n let φi ∶ C Ð→ Rn ⊗R C denote the map defined by linearity and

the rule z z→ ei ⊗ z. These induce a map φ ∶ Cn Ð→ Rn ⊗ C which is the unique such

that for all i = 1, . . . , n we have φιi = φi where ιi ∶ CÐ→ Cn is the ith canonical inclusion.

The map φ has an inverse ψ which is given by linearity and the rule ei⊗z z→ (0, . . . , z, . . . ,0)
where every entry is 0 other than the ith slot which is occupied by z.

To see that this is indeed an inverse, notice

φψ(ei ⊗ z) = φ(0, . . . , z, . . . ,0) = ei ⊗ z (E.56)

and

ψφ(z1, . . . , zn) = ψ(
n

∑
i=1
ei ⊗ zi) =

n

∑
i=1
(0, . . . , zi, . . . ,0) = (z1, . . . , zn) (E.57)

Next, given (z1, . . . , zn), (w1, . . . ,wn) ∈ Cn we have

BC′n⊗C(φ(z1, . . . , zn), φ(w1, . . . ,wn)) = BC′n⊗C(
n

∑
i=1
ei ⊗ zi,

n

∑
j=1

ej ⊗wj)

=
n

∑
i,j=1

BC′n(ei, ej)ziwj

=
n

∑
i=1
ziwi.

This implies that φ induces an isomorphism CC
n ≅ C ′

n.
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To obtain an isomorphism CCn

n ≅ Cn⊗R we compose φ with the map Rn⊗CÐ→ Rn⊗C
defined by linear and the rule ei ⊗ z z→ ei ⊗ iz and proceed similarly to before.

Example E.4. We have CC
2 ≅ C2 ⊗R C, and the latter algebra is generated by e1, e2

satisfying

e21 = e22 = −1, e1e2 + e2e1 = 0. (E.58)

On the other hand, the underlying vector space of the complex algebra M2(C) has a basis

I =
⎡⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎦
, g1 =

⎡⎢⎢⎢⎢⎣

i 0

0 −i

⎤⎥⎥⎥⎥⎦
, g2 =

⎡⎢⎢⎢⎢⎣

0 i

i 0

⎤⎥⎥⎥⎥⎦
, T =

⎡⎢⎢⎢⎢⎣

0 −i
i 0

⎤⎥⎥⎥⎥⎦
(E.59)

satisfying:

g21 = g22 = −I, g1g2 + g2g1 = 0, (E.60)

which implies CC
2 ≅M2(C).

A final isomorphism (Proposition E.25) allows for a structure Theorem (Theorem E.22)

Proposition E.25. We have

Cn+2 ≅ C ′
n ⊗R C2, C′

n+2 ≅ Cn ⊗R C
′
2. (E.61)

Here the tensor product is the usual one for algebras.

Proof. We satisfy ourselves with a proof sketch. The key Definition is the following:

u ∶ R2 Ð→ C ′
n ⊗R C2 (E.62)

defined on basis vectors e1, e2 ∈ Rn+2 as:

u(e1) = 1⊗ e1, u(e2) = 1⊗ e2, u(ej) = ej−2 ⊗ e1e2, j = 3, ..., n + 2 (E.63)

and the key calculation is

u(ej)2 = (ej−2 ⊗ e1e2)2

= e2j−2 ⊗ e1e2e1e2
= 1⊗ −e21e22
= −1⊗ 1.

In the penultimate step we have used the fact that e2j−2 = 1 in C ′
n and that e1e2+e2e1 = 0

in C2.
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Remark E.26. Notice that had we mapped u into Cn ⊗R C2 instead of into C ′
n ⊗R C2

then u(ej)2 = 1 which would not induce a map Cn+2 Ð→ Cn ⊗R C2.

Remark E.27. In Proposition E.25, one might suggest (incorrectly) defining u ∶ Cn+2 Ð→
Cn ⊗R C2 by

u(e1) = 1⊗ e1, u(e2) = 1⊗ e2, u(ej) = ej−2 ⊗ 1, j = 3, ..., n + 2 (E.64)

but this does not work as then (for example)

u(e1)u(e3) + u(e3)u(e1) = (1⊗ e1)(e1 ⊗ 1) + (e1 ⊗ 1)(1⊗ e1)

= 2e1 ⊗ e1 ≠ 0.

Corollary E.21. We have

CC
n+2 ≅ CC

n ⊗CM2(C) (E.65)

given explicitly by the following (g1, g2 are as in Example E.4)

e1 z→ 1⊗ e1, e2 z→ 1⊗ e2, ej z→ iej−2 ⊗ g1g2, j = 3, ..., n + 2 (E.66)

Proof. This follows from an algebraic manipulation:

CC
n+2 ≅ Cn+2 ⊗R C

≅ (C ′
n ⊗R C2)⊗R C

≅ (C ′
n ⊗R C)⊗C (C2 ⊗R C)

≅ CC
n ⊗C C

C
2

≅ CC
n ⊗CM2(C).

We note that for j > 2, the element ej is mapped along these isomorphisms in the

following way:

ej z→ ej ⊗R 1 (E.67)

z→ (ej−2 ⊗R e1e2)⊗R 1 (E.68)

z→ (ej−2 ⊗R 1)⊗C (e1e2 ⊗R 1) (E.69)

z→ ej−2 ⊗C ie1e2 (E.70)

z→ iej−2 ⊗C g1g2. (E.71)

Theorem E.22. There is the following decomposition:
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• If n = 2k is even,

CC
n ≅M2(C)⊗⋯⊗M2(C) ≅ End(C2 ⊗⋯⊗C2) ≅ End((C2)⊗k) (E.72)

given explicitly by the following, we make use of the function

α(j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, j odd,

2, jeven

ej z→ I ⊗⋯⊗ I ⊗ gα(j) ⊗ T ⊗⋯⊗ T. (E.73)

• If n = 2k + 1 is odd,

CC
n ≅ End(C2k)⊕End(C2k). (E.74)

Let Sn denote the exterior algebra of Fn.

Sn ∶=⋀Fn =⋀(Cθ1 ⊕ . . .⊕Cθn). (E.75)

Lemma E.28. There is an isomorphism of C-algebras

ψ ∶ Cn(V,B)Ð→ EndC(Sn)

γ† z→ θi ∧ (−)

γ z→ θi⌟(−).

Proof. It is clear that EndC(Sn) is a free vector space and that the set {θi ∧ ( ), θi⌟( )}
is linearly independent.

Consider the Clifford algebra CC
2n. Consider the map φ ∶ CC

2n Ð→ Cn(V,B) defined by

linearity and the rule

ei z→
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i(γ†
i γi − γiγ

†
i ), i = 1, . . . , n

i(γi + γ†
i ), i = n + 1, . . . ,2n.

(E.76)

We notice that (γ†
i γi−γiγ

†
i )(γi+γ

†
i ) = γ

†
i −γi and so the set {i(γ†

i γi−γiγ
†
i ), i(γi+γ

†
i )}i=1,...,n

is a generating set for Cn(V,B). Moreover, this set is linearly independent and so indeed

is a basis. This implies that φ is an isomorphism of the underlying vector spaces, and one

checks that it respects the Bilinear form and so is an isomorphism of Clifford algebras.

Under the isomorphism CC
2n ≅ End((C2)⊗n) we have i(γ†

i γi − γiγ
†
i )z→ I ⊗ . . .⊗ I ⊗ g2 ⊗

T ⊗ . . .⊗ T and i(γi + γ†
i )z→ I ⊗ . . .⊗ I ⊗ g1 ⊗ T ⊗ . . .⊗ T . Thus the result follows from

Theorem E.22.
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Definition E.23. Let Qi ∶ Vi Ð→ k be quadratic forms for i = 1,2. Let f ∶ V1 Ð→ V2 be

a linear map, by composing with the inclusion l ∶ V2 Ð→ CQ2 there is an induced map

φ ∶ V1 Ð→ CQ2 such that for all v ∈ V1 we have

φ(v)2 = f(v)2 = Q2(f(v)) ⋅ 1 (E.77)

and so if Q2(f(v)) = Q1(v) for all v ∈ V we have by the universal property of CQ1 that

there exists a unique morphism CQ1 Ð→ CQ2 which we denote by C(f).

E.4 Hermitian and unitary operators

Throughout, V is a complex vector space.

Definition E.24. A square, complex matrix A is Hermitian if it is self-adjoint, that

is A† = A, where A† denotes the conjugate transpose.

A matrix is normal if AA† = A†A

An operator φ ∶ V Ð→ V is Hermitian (normal) if a (and hence all) matrix represen-

tation(s) of V is Hermitian (normal).

Clearly, all Hermitian matrices are normal.

Theorem E.25 (Spectral decomposition). Let V be a finite dimensional complex inner

product space and A a matrix representation of an operator on V . The matrix A is

normal if and only if it is diagonalisable with respect to some orthonormal basis for V .

Proof. We prove that normal matrices are diagonalisable.

We proceed by induction on the size of the matrix. If the matrix is 1 × 1 then there is

nothing to prove. Now for the inductive step. Let λ be an eigenvalue of A, and P the

matrix which projects onto the λ-eigenspace. We let Q denote I −P , the projector onto

the complement subspace. We notice that

A = (P +Q)A(P +Q) = PAP +QAP + PAQ +QAQ. (E.78)

We have that QAP = 0 because A maps the λ-eigenspace onto itself, and we claim

moreover that PAQ = 0. To see this, let v be an eigenvector with eigenvalue λ, then

AA†v = A†Av = A†λv = λA†v (E.79)
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which means A† maps the λ-eigenspace onto itself. This implies QA†P = 0, taking the

transpose of which we end at PAQ = 0 as claimed.

Thus A = PAP + QAQ. The matrix PAP is diagonalisable with respect to some or-

thonormal basis for P . Since P ∩Q = 0 it remains to show that QAQ is diagonalisable

with respect to some orthonormal basis for Q. The space Q has strictly smaller size

than A and so this follows by induction once we have shown that QAQ is normal. This

is a simple calculation:

QAQQA†Q = QAQA†Q

= QA(P +Q)A†Q

= QAA†Q

= QA†AQ

= QA†(P +Q)AQ

= QA†QAQ

= QA†QQAQ.

Definition E.26. Let H be a possibly inifinite dimensional Hilbert space, an operator

U ∶ HÐ→ H is unitary if U †U = UU † = idn.

Definition E.27. A matrix U is unitary if U †U = I.

Lemma E.29. A square, unitary matrix U satisfies UU † = I.

Proof. Let uij denote the entry of U in row i and column j. The entry in row i and

column j of U †U is ∑nk=1 uikukj which by hypothesis is equal to δij . Hence, ∑nk=1 ukiukj
is equal to ∑nk=1 uikujk which is the entry in row i and column j of UU †.

Corollary E.28. If H is a finite dimensional Hilbert space and U ∶ H Ð→ H is an

operator on H, then U is unitary if and only if for all u, v ∈ H we have ⟨Uu,Uv⟩ = ⟨u, v⟩.
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Proof. First we observe the following calculation, where u ∈ H is arbitary.

∣∣U †Uu − u∣∣ = ⟨U †Uu − u,U †Uu − u⟩

= ⟨U †Uu,U †Uu⟩ − ⟨U †Uu,u⟩ − ⟨u,U †Uu⟩ + ⟨u,u⟩

= ⟨UU †Uu,Uu⟩ − ⟨Uu,Uu⟩ − ⟨Uu,Uu⟩ + ⟨u,u⟩

= ⟨U †Uu,u⟩ − ⟨u,u⟩ − ⟨u,u⟩ + ⟨u,u⟩

= ⟨Uu,Uu⟩ − ⟨u,u⟩

= ⟨u,u⟩ − ⟨u,u⟩

= 0

Hence U †Uu = u for all u ∈ H and so U †U = idH.

Let u1, ..., un be an orthonormal basis for H and let U denote the matrix of U written

with respect to this basis. Since U is unitary we have that U is unitary and so U †U = I
and by Lemma E.29 we have UU † = I. It follows from this that UU † = idH and so U is

unitary.

The converse is obvious.

In fact, it is sufficient to check even less.

Lemma E.30. Let U ∶ HÐ→ H be an operator on a finite dimensional Hilbert space. If

⟨Uu,Uu⟩ = ⟨u,u⟩ for all u ∈ H, then for all u, v ∈ H we have ⟨Uu,Uv⟩ = ⟨u, v⟩.

Proof. It suffices to prove that if C ∶ HÐ→ H is an operator on H such that for all x ∈ H
we have ⟨Cx,x⟩ = 0 then C = 0.

We let x, y ∈ H be arbitrary and consider ⟨C(x + y), x + y⟩. Since this is 0 it follows

that ⟨Cx, y⟩ = −⟨Cy,x⟩. On the other hand, ⟨C(x + iy), x + iy⟩ is also 0, which implies

⟨Cx, y⟩ = ⟨Cx, y⟩. Hence ⟨Cx, y⟩ = ⟨Cy,x⟩ = 0.

Corollary E.29. If U ∶ H Ð→ H is an operator and H is finite dimensional, then U is

unitary if and only if ∀u ∈ H, ⟨Uu,Uu⟩ = ⟨u,u⟩.

Proof. Immediate from Corollary E.28 and Lemma E.30.

Notice that the spectral decomposition (E.25) states that the matrix A is such that

A = U †DU for a diagonal matrix D and a unitary matrix U .

Corollary E.30. A normal matrix A is Hermitian if and only if its eigenvalues are

real.
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Proof. First notice that if a matrix is Hermitian then for any eigenvector v with eigen-

value λ:

λ∣v∣2 = ⟨λv, v⟩ = ⟨Av, v⟩ = ⟨v,Av⟩ = λ̄∣v∣2. (E.80)

Now we prove the other direction. Let D be diagonal and U a unitary matrix such that

A = U−1DU . Then

A† = U †D†U−1† = U−1DU = A. (E.81)

Definition E.31. An operator φ ∶ V Ð→ V is positive if:

∀v ∈ V, ⟨v,φv⟩ ≥ 0 (E.82)

which means, ⟨v,φv⟩ is real and non-negative. If the inequality is strict, then φ is

positive definite.

Example E.5. Let A be any operator. Then for any v ∈ V :

⟨v,A†Av⟩ = ⟨Av,Av⟩ = ∣∣Av∣∣2 ≥ 0 (E.83)

Thus A†A is positive.

Proposition E.31. A positive operator on a finite dimensional vector space is neces-

sarily Hermitian.

Proof. Let A be a matrix representation of the positive operator. Notice the following

calculation:

0 ≤ ⟨v, (A −A†)v⟩ = ⟨(A† −A)v, v⟩

= ⟨v, (A† −A)v⟩

= ⟨v, (A† −A)v⟩

= −⟨v, (A −A†)v⟩ ≥ 0

and so for all v ∈ V we have ⟨v, (A −A†)v⟩ = 0.

Moreover, we notice that A − A† is normal and hence diagonalisable, by the Spectral

decomposition. It follows from these two observations that A −A† = 0.

Definition E.32. Let A,B be matrices, then the commutator is [A,B] ∶= AB −BA.
The anticommutator is {A,B} = AB +BA.

Theorem E.33 (Simultaneous Diagonalisation Theorem). Let A,B be Hermitian op-

erators. Then [A,B] = 0 if and only if A and B are simultaneously diagonalisable.
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Proof. If A and B are simultaneously diagonalisable, then let U be a unitary matrix and

D1,D2 diagonal matrices such that

A = U−1D1U, B = U−1D2U (E.84)

We then have:

AB = U−1D1UU
−1D2U

= U−1D1D2U

= U−1D2D1U

= U−1D2UU
−1D1U

= BA

Conversely, say [A,B] = 0. We have that A is Hermitian and so admits a spectral

decomposition. Let a1, ..., an be the eigenvalues corresponding to this decomposition

and let Vai denote the ai-eigenspace. We first notice that B maps Vai into itself: for any

v ∈ Vai
ABv = BAv = aiBv. (E.85)

Now, since B is Hermitian, it follows that BVai ∶ Vai Ð→ Vai is and so there exists

a spectral decomposition of BVai for each vector space Vai . Denote by bai1 , ..., b
ai
kai

an

orthonormal basis for Vai . We then have that

{bai1 , ..., b
ai
kai
}ni=1 (E.86)

is a basis of eigenvectors of both A and B for the whole space V .

There is another decomposition which is often helpful:

Remark E.32. Let T ∶ V Ð→ V be a linear operator on a finite dimensional vector space

V . We could ask if T can be factored T = UT ′ where U is unitary? Say this was possible,

then

T †T = T ′†U †UT ′ (E.87)

so if T ′ were Hermitian we would have T †T = T ′2 which would imply T ′ =
√
T †T , in fact

T †T is Hermitian (indeed it is positive) and thus so is
√
T †T and so our assumption

that T ′ be Hermitian is not too much to ask for, and if U were to exist it must be that

T ′ =
√
T †T . Thus we are prompted to make the following calculation: let v1, ..., vn be a

basis for V such that (we write Pvi for the projection onto vi)

√
T †T =

n

∑
i=1
λiPvi (E.88)
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then √
T †Tviλi (E.89)

and indeed we want U such that λiUvi = Tvi. One might suggest defining Uvi = Tvi/λi
at this point, however there is no reason for this to be unitary. Instead we define

U =
n

∑
j=1

TvjPvj/
√
λj (E.90)

which indeed is unitary. In fact we read off from this that {Tv1/
√
λ1, ..., T vn/

√
λn} is

an orthonormal basis for V . Notice however that this assumes λi ≠ 0 for all i. This can

be fixed by doing this process first for all λi ≠ 0, and to construct an orthonormal set

{Tv1/
√
λ1, ..., T vj/

√
λj} and then extending this to an orthonormal basis for V via the

Gram-Schmidt process.

We have proven the first half of:

Theorem E.34 (Polar decomposition). Let T ∶ V Ð→ V be a linear operator on an

n-dimensional vector space V . Then there exists a unitary operator U and positive

operators J,K such that

T = UJ =KU (E.91)

with J =
√
T †T ,K =

√
TT †.

To obtain K we simply notice

A = JU = UJU †U (E.92)

so we set K = UJU †, which is a positive operator. Then AA† =KUU †K =K2.

If we have such a decomposition T = UJ , then J is diagonalisable, being positive, thus

T = USDS† for unitary S and diagonal D. Setting V = S† we obtain:

Corollary E.35 (Singular value decomposition). Let T ∶ V Ð→ V be a linear operator on

an n-dimensional vector space, then there exists unitary operators U,V and a diagonal

operator D such that

T = UDV. (E.93)

Remark E.33. We make a remark on notation. Given a vector v ∈ H in some Hilbert

space H (which we assume to be finite dimensional for simplicity), the linear functional

which we have been notating as ⟨v, (−)⟩ can also be written simply as ⟨v∣. Symmetrically,

the vector v can be identified with the linear map k Ð→ H sending 1 z→ v, we notate

this map by ∣v⟩. Hence, given two vectors v, u ∈ V , the notation ⟨v∣ ∣u⟩ denotes the linear
map k Ð→ k sending 1 z→ ⟨v, u⟩. Let U ∶ H Ð→ H be an operator. We have for any
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v ∈ H that:

⟨Uv∣ = ⟨Uv, (−)⟩ = ⟨v,U †(−)⟩ = ⟨v∣U †. (E.94)

Hence, in light of Corollary E.28 we have that U is unitary if and only if for all v ∈ H
we have ⟨v∣U †U ∣v⟩ = ⟨v∣ ∣v⟩.



Appendix F

Splitting idempotents and

idempotent completion

Given a finite-dimensional complex vector space V along with a projection P ∶ V Ð→ V

onto some subspace imP ⊆ V we have that V splits into a direct sum

V ≅ imP ⊕ im(idV −P ). (F.1)

For any Noetherian Q-algebra k, this property of the idempotent P can be generalised

to k-linear categories C. A k-linear category is one where each homset is endowed with

a k-algebra structure.

Definition F.1. Let C be a category. An idempotent in C is an endomorphism e ∶
C Ð→ C such that e2 = e.

An idempotent e is split if there exists a pair of morphisms s ∶ R Ð→ C, r ∶ C Ð→ R such

that sr = e, rs = idR.

Lemma F.1. Let e ∶ C Ð→ C be an idempotent in C. Then the following are equivalent.

• e = sr is split where s ∶ R Ð→ C, r ∶ C Ð→ R.

• The Equaliser Eq(e, ide) exists and is equal to s ∶ R Ð→ C.

• The Coequaliser Coeq(e, ide) exists and is equal to r ∶ C Ð→ R.

Proof. See [33][Lemma B.1].

Lemma F.2. Assume C is the category of vector spaces over some field F. Let e ∶ C Ð→
C be an idempotent. Assume e = sr is split with s ∶ R Ð→ C, r ∶ C Ð→ R and 1 − e = s′r′

225
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is also split with s′ ∶ R′ Ð→ C, r′ ∶ C Ð→ R′. Then there is a split short exact sequence

0Ð→ R
sÐ→ C

r′Ð→ R′ Ð→ 0. (F.2)

Proof. Consider the morphism (r, r′) ∶ C Ð→ R⊕R′. Then ∀x ∈ R we have

(r, r′)s(x) = (rs(x), r′s(x))

= (x, r′s(x))

we claim r′s(x) = 0. By Lemma F.1 we have that r′ ∶ C Ð→ R′ is the coequaliser

Coeq(1 − e, idC). Thus r′s(x) = r′(1 − e)s(x)) = r′s(x) − r′es(x). On the other hand,

s ∶ R Ð→ C is the equaliser Eq(e, idC) and so es = s.

Thus we have a commuting diagram

0 R C R′ 0

R⊕R′

(r,r′)

r r′

Moreover, the homomorphism (r, r′) is an isomorphism. To see this, say x,x′ ∈ C are

such that (r, r′)(x) = (r, r′)(x′). Then r(x) = r(x′) implies s(r(x)) = s(r(x′)) which
implies e(x) = e(x′) and similarly (1 − e)(x) = (1 − e)(x′). Thus we have

x = (1 − e)(x) + e(x)

= (1 − e)(x′) + e(x′)

= x′.

For surjectivity, notice if (x,x′) ∈ R⊕R′ are given, then (r, r′)(s, s′)(x,x′) = (x,x′).

The next lemma states that splitting an idempotent is equivalent to finding its image.

Lemma F.3. Let C be k-linear. Assume also that C admits all kernels and cokernels.

Then if e ∶ C Ð→ C is split we have

im(e) ≅ ker(id−e) ≅ coker(id−e) (F.3)

Remark F.4. In the special case where C is a vector space and v ∈ C along with an

idempotent e ∶ C Ð→ C we have x = e(x) + (id−e)x. It follows that

C ≅ im e⊕ im(id−e). (F.4)
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Thus, to split an idempotent is to calculate its image. This is where the suggestion that

the splitting of idempotents is a fundamental component of computation comes from.

Idempotents dictate the projection onto states of knowledge, which reduces entropy, and

the calculation of the image of these spaces is the arrival at such a state of knowledge.

Definition F.2. A preadditive category C is idempotent complete if either (and

hence both) of the following equivalent conditions are satisfied:

• All idempotents have a kernel.

• All idempotents have a cokernel.

Lemma F.5. Suppose C is preadditive. Let e ∶ C Ð→ C be an idempotent such that e

and 1 − e both split as e = er and 1 − e = s′r′, where s ∶ R Ð→ C, r ∶ C Ð→ R,s′ ∶ R′ Ð→
C, r′ ∶ C Ð→ R′. Then C ≅ R⊕R′.

Proof. See [33, Lemma B.1.5]

Definition F.3. The idempotent completion of C is an idempotent complete cat-

egory Cω together with a full and faithful functor C Ð→ Cω such that, given a functor

F ∶ C Ð→ D where D is idempotent complete, there exists a functor Fω ∶ Cω Ð→ D such

that
C Cω

D
F

Fω (F.5)

commutes, and moreover Fω is unique up to isomorphism of functors.

If an object C of a preadditive category C is such that C ≅ R⊕R′ for some pair of objects

(R,R′), then we say R and R′ are direct summands of C.

Lemma F.6. Let C be a subcategory of a preadditive, idempotent complete category A.
Then Cω is the full subcategory of A consisting of all objects which are direct summands

of some object of C

Proof. See [33, Corollary B.2.3].



Appendix G

Quantum computing

These notes are an adaptation of [52].

Our standard of information will be sequences of binary integers. A bit of quantum

information, that is, a qubit, will be the complex Hilbert space C2 and a system of n > 0
qubits will be modeled by the tensor product H =⊗n

i=1C2 of n qubits. We will identify

elements of H with linear operators from C into H and use Dirac notation. For example,

∣0⟩ ∶ CÐ→H denotes the map defined by linearity and the rule 1 z→ (1,0), whereas ∣1⟩
denotes the map defined by linearity and the rule 1z→ (0,1).

Definition G.1. A qubit is a copy of the C-Hilbert space C2.

The state of a qubit C2 is a vector ∣ψ⟩ ∈ C2 of norm 1, ⟨ψ∣ ∣ψ⟩ = 1.

A pair (C2, ∣ψ⟩) consisting of a qubit C2 and a state ∣ψ⟩ ∈ C2 is a prepared qubit and

we say C2 has been prepared to ∣ψ⟩.

If clarity is needed, we will refer to a binary integer as a classical bit. If we write a

state ∣ψ⟩ of a qubit C2 as a linear combination of the standard basis vectors

∣ψ⟩ = α ∣0⟩ + β ∣1⟩ (G.1)

then we think of ∣α∣2 and ∣β∣2 respectively as probabilities of the state ∣ψ⟩ being in state

∣0⟩ or state ∣1⟩ respectively. A qubit, where α ≠ 0 and β ≠ 0 is a superposition state.

A qubit as well as any composite system consisting of a finite collection of qubits are

examples of finite dimensional complex Hilbert spaces. We define a state space to be

any finite dimensional complex Hilbert space H.

Definition G.2. Let H1,H2 be two state spaces. The composite state space is

H1 ⊗H2. A state of a composite system is a vector ∣ψ⟩ ∈H1 ⊗H2 which can be written

228
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as a linear combination of pure tensors

α1 ∣ψ1⟩ + . . . + αn ∣ψn⟩ ∈H1 ⊗H2 (G.2)

where the coefficients satisfy ∣α1∣2 + . . .+ ∣αn∣2 = 1. The condition that each ∣ψi⟩ is a pure

tensor means

∀i = 1, . . . , n,∃x ∈H1,∃y ∈H2, ∣ψi⟩ = x⊗ y. (G.3)

We define a measurement as a family of possible outcomes with associated probabili-

ties; the states of state spaces are probabilistic, and so the measurements will be too.

Moreover, we do not assume that measurement leaves the state uneffected, and so mea-

surements are operators upon the state space.

Definition G.3. A measurement on a state space H is a finite family of linear oper-

ators {Mm ∶H Ð→H}m∈M satisfying the completeness condition.

∑
m∈M

M †
mMm = I. (G.4)

An element m ∈M is an outcome (simply a set of labels).

The resulting state after measurement {Mm}m∈M and outcome m is:

Mm ∣ψ⟩√
p(m)

. (G.5)

Remark G.1. Associated to every measurement and state vector ∣ψ⟩ there is a value

p(m) ∶= ⟨ψ∣M †
mMm ∣ψ⟩ = ∥Mm ∣ψ⟩∥2. (G.6)

It follows from (G.4) that p(m) ≤ 1 for allm, ∣ψ⟩. We understand p(m) as the probability
of outcome m on the measurement {Mm}m∈M. Under this interpretation, we think of

(G.4) as requiring that the probabilities p(m) sum to 1.

Definition G.4. Let H be a state space. A single step time evolution of H is a

unitary operator U on H. A single step time evolution of a state vector ∣ψ⟩ with
respect to U is the pair (∣ψ⟩ , U ∣ψ⟩).

An evolution of H is a sequence of unitary operators (U1, ..., Un) on H, an evolu-

tion of a state vector ∣ψ⟩ with respect to the evolution (U1, ..., Un) is the sequence

(∣ψ⟩ , U1 ∣ψ⟩ , ..., Un⋯U1 ∣ψ⟩).

Definition G.5. A linear transformation P is a projector if P 2 = P .
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The exact relationship between projective measurements (measurements where all Mm

are projections) and measurements is given by Proposition G.3 below which says in a

precise way that general measurements are projective measurements augmented by a

unitary operator.

Lemma G.2. Let W ⊆ V be a subspace of a Hilbert space V , and let U ∶W Ð→ V be a

unitary operator. Then U extends to a unitary operator U ′ on all of V .

Proof. Take U ′ = U ⊗ idW ⊥ .

Definition G.6. Let n > 0. The standard basis vectors for Cn will be denoted ∣1⟩, . . .,
∣n⟩.

Proposition G.3. Let {Mn}n∈M be a measurement on H. Then there exists a projective

measurement {Pn}n∈M, a state space Q, and a unitary operator U ∶ H ⊗Q Ð→ H ⊗Q
such that for any state ∣ψ⟩ of the composite system H⊗Q and any n ∈M:

⟨ψ∣U †P †
nPnU ∣ψ⟩ = ⟨ψ∣M †

nMn ∣ψ⟩ . (G.7)

Proof. Let Q be the Hilbert space freely generated by the set {∣1⟩ , ..., ∣m⟩}. Define the

following linear map.

U ∶H Ð→H⊗Q (G.8)

∣ψ⟩ = ∑
m∈M

Mm ∣ψ⟩⊗ ∣m⟩ . (G.9)

We first prove this is unitary, by Corollary E.29 it suffices to check that ⟨ψ∣U †U ∣ψ⟩ =
⟨ψ∣ ∣ψ⟩ for arbitrary ∣ψ⟩ ∈H. We perform the following calculation, note: we have written

⟨ψ∣M †
m ⊗ ⟨m∣ for the linear functional which maps a⊗ b to the product ⟨ψ∣M †

ma ⟨m∣ b.

⟨ψ∣U †U ∣ψ⟩ = ( ∑
m∈M

⟨ψ∣M †
m ⊗ ⟨m∣ )( ∑

m′∈M
Mm′ ∣ψ⟩⊗ ∣m′⟩ )

= ∑
m∈M

∑
m′∈M

⟨ψ∣M †
mMm′ ∣ψ⟩ ⟨m∣ ∣m′⟩

= ∑
m∈M

⟨ψ∣M †
mMm′ ∣ψ⟩

= ⟨ψ∣ ∣ψ⟩ .

We now want to extend U to a unitary operator on all of H ⊗ Q using Lemma G.2,

however we must first identify H with a subspace of H ⊗Q. There are many ways this

can be done, here we choose the an arbitrary vector ∣1⟩ ∈ Q to be special, and identify

H with H⊗ Span ∣1⟩ ⊆H⊗Q.
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Now consider the following projective measurement on H⊗Q:

Pm ∶= Iq ⊗ ∣m⟩ ⟨m∣ . (G.10)

Then the probability outcome n occurs is:

p(n) = ⟨ψ∣U †PnU ∣ψ⟩

= ( ∑
m∈M

⟨ψ∣M †
m ⊗ ⟨m∣ )IQ ⊗ ∣n⟩ ⟨n∣ ( ∑

m′∈M
Mm′ ∣ψ⟩⊗ ∣m⟩ )

= ( ∑
m∈M

⟨ψ∣M †
m ⊗ ⟨m∣ ) ∑

m′∈M
Mm′ ∣ψ⟩⊗ ∣n⟩ ⟨n∣ ∣m⟩

= ∑
m∈M

( ⟨ψ∣M †
m ⊗ ⟨m∣ )Mn ∣ψ⟩⊗ ∣n⟩

= ∑
m∈M

⟨ψ∣M †
mMn ∣ψ⟩ ⟨m∣ ∣n⟩

= ⟨ψ∣M †
nMn ∣ψ⟩ .

Remark G.4. The defining equation (G.9) of the linear map (G.8) may look opaque. We

derive it from a more natural starting point here. First observe that

Hom(Q,Hom(H,H)) ≅ Hom(Q⊗H,H) (G.11)

≅ Hom(H,H⊗Q∗). (G.12)

Then, by identifying Q with Q∗ via the anti-linear, isometric bijection given by the

Riesz Representation Theorem, a linear map H Ð→H⊗Q can be given by a linear map

QÐ→H⊗H. We claim that (G.8) is related under this correspondence to the following

linear map.

QÐ→ Hom(H,H) (G.13)

∣m⟩z→Mm. (G.14)

We now verify this claim. This is a matter of a calculation.

( ∣m⟩↦Mm)z→ ( ∣m⟩⊗ ∣ψ⟩↦Mm ∣ψ⟩ ) (G.15)

z→ (ψ ↦ ∑
m∈M

Mm ∣ψ⟩⊗ ∣m⟩ ). (G.16)

Definition G.7. A message is a state ∣ψ⟩ ∈ H⊗n, for some n. An error is a pair of

states (∣φ⟩ , ∣ψ⟩) where ∣φ⟩ , ∣ψ⟩ ∈ H⊗n for some n, note that an error may be such that

∣φ⟩ = ∣ψ⟩. The message ∣φ⟩ is the intended message and ∣ψ⟩ is the received message.
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Definition G.8. An n-encoding of a single state (sometimes just an encoding)

is an injective linear map ι ∶ H Ð→ H⊗n. An n-encoding of a message ∣m⟩ ∈ H⊗k

is an n-encoding ι along with a message ∣m⟩ ∈ H⊗nk for which there exists ∣m′⟩ ∈ H⊗k

satisfying ι⊗k ∣m′⟩ = ∣m⟩.

Definition G.9. A quantum error correcting code (QECC) is a pair Q = (H, S)
consisting of a state space H along with a set of operators S on H. The elements of S

are the stabilisers. The codespace HS of Q is the maximal subspace of H invariant

under all the operators in S.

Definition G.10. We define the following operators on C2:

X ∶=
⎛
⎝
0 1

1 0

⎞
⎠

Y ∶=
⎛
⎝
0 −i
i 0

⎞
⎠

Z ∶=
⎛
⎝
1 0

0 −1
⎞
⎠

H ∶= 1√
2

⎛
⎝
1 1

1 −1
⎞
⎠
.

The matrices X,Y,Z are the Pauli matrices, and H is the Hadamard matrix.

We make the passing observation that all of X,Y,Z,H square to the identity matrix.

The basis vectors

H ∣0⟩ = 1√
2
(∣0⟩ + ∣1⟩), H ∣1⟩ = 1√

2
(∣0⟩ − ∣1⟩) (G.17)

are the Bell states and are denoted ∣+⟩ , ∣−⟩ respectively. Notice that H2 = I, so H ∣+⟩ =
∣0⟩ and H ∣−⟩ = ∣1⟩.

Definition G.11. The standard basis ∣0⟩ , ∣1⟩ of H induces a basis of H⊗n, we denote

∣0⟩⊗⋯⊗ ∣0⟩ by ∣0⋯0⟩, etc.

Notation G.12. Given a Pauli matrix W ∈ {X,Y,Z} the operator on H⊗n given by

the tensor product consisting of W in the ith slot (for i ≤ n) and the identity operator

in all other slots by Wi. For example, the operator Z1 on H⊗3 is the operator Z ⊗ I ⊗ I.

Given a collection of Pauli matrices Wi1 , ...,Wim ∈ {X,Y,Z} where 0 < i1 < ⋯ < im ≤ n
we denote by Wi1 . . .Wim the composition Wi1 ○ . . . ○Wim . For example, the operator

Z1Z2 on H⊗3 is the operator

(Z ⊗ I ⊗ I) ○ (I ⊗Z ⊗ I) = Z ⊗Z ⊗ I ∶H⊗3 Ð→H⊗3. (G.18)
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Consider the bit flip encoding

BitFlip ∶H Ð→H⊗3 (G.19)

∣0⟩z→ ∣000⟩ (G.20)

∣1⟩z→ ∣111⟩ (G.21)

then an encoding of a message with respect to this encoding might be ∣000111000⟩, but
could not be ∣000111001⟩.

Definition G.13. A bitflip error is an error (∣φ⟩ , ∣ψ⟩) where ∣φ⟩ is an encoding of a

message with respect to the encoding BitFlip⊗m for some m, such that Xi ∣φ⟩ = ∣ψ⟩ for
some i.

Let (∣φ⟩ , ∣ψ⟩) be a bit flip error. The following algorithm takes as input ∣ψ⟩ and recon-

structs ∣φ⟩:

Algorithm G.14 (Bit flip correction). Input: a received message ∣ψ⟩,

1. Perform the following projective measurements:

⟨ψ∣Z1Z2 ∣ψ⟩ with resulting state ∣ψ′⟩ , (G.22)

followed by

⟨ψ′∣Z2Z3 ∣ψ′⟩ (G.23)

Let (r1, r2) be the pair of results from these measurements.

2. We have that r1, r2 ∈ {1,−1}, and the resulting state of the second measurement

is ∣ψ⟩.

3. Now retrieve ∣ψ⟩ based on the values of r1, r2:

• If (r1, r2) = (1,1), return ∣ψ⟩.

• If (r1, r2) = (−1,1), return X1 ∣ψ⟩.

• If (r1, r2) = (1,−1), return X3 ∣ψ⟩.

• If (r1, r2) = (−1,−1), return X2 ∣ψ⟩.

It will be helpful to first notice:

Z1Z2 ∣000⟩ = ∣000⟩ Z1Z2 ∣001⟩ = ∣001⟩

Z1Z2 ∣010⟩ = − ∣010⟩ Z1Z2 ∣011⟩ = − ∣011⟩

Z1Z2 ∣100⟩ = − ∣100⟩ Z1Z2 ∣101⟩ = − ∣101⟩

Z1Z2 ∣110⟩ = ∣110⟩ Z1Z2 ∣111⟩ = ∣111⟩ .



Algebraic Geometry and Linear Logic 234

Let ∣ψ⟩ ∶= a ∣010⟩ + b ∣101⟩ be a state, i.e, an element of (C2)⊗3. We perform the mea-

surement Z1Z2 followed by Z2Z3:

⟨ψ∣Z1Z2 ∣ψ⟩ = (a ⟨010∣ + b ⟨101∣)Z1Z2(a ∣010⟩ + b ∣101⟩)

= (a ⟨010∣ + b ⟨101∣)(−a ∣010⟩ − b ∣101⟩)

= −a2 − b2 = −1

and

⟨ψ∣Z2Z3 ∣ψ⟩ = (a ⟨010∣ + b ⟨101∣)Z1Z2(a ∣010⟩ + b ∣101⟩)

= (a ⟨010∣ + b ⟨101∣)(−a ∣010⟩ − b ∣101⟩)

= −a2 − b2 = −1.

We can infer from the fact that both of these came out as −1 that it was the second

bit which was flipped, and so we can correct this. However, what is the impact of this

measurement on the state? Again we calculate:

Z1Z2(a ∣010⟩ + b ∣101⟩) = Z1(−a ∣010⟩ + b ∣101⟩)

= −a ∣010⟩ − b ∣101⟩

and

Z2Z3(−a ∣010⟩ − b ∣101⟩) = Z2(−a ∣010⟩ + b ∣101⟩)

= a ∣010⟩ + b ∣101⟩

and so the measurements (in the end) did not impact our state.

Definition G.15. Let n > 0. The nth-Pauli Group, denoted Gn, is the set of operators

(C2)⊗n Ð→ (C2)⊗n generated by of all operators ±I, iI,Xj , Yj , Zj for j = 1, ..., n.

Denote by X the following Pauli operators:

X ∶= {I,X,Y,Z}. (G.24)

For an arbitrary element g ∈ Gn, let g1, ..., gn ∈X be such that

g = αg1 ⊗⋯⊗ gn, α ∈ {1,−1, i,−i} (G.25)

then the sequence g1, ..., gn is the unique such, and we denote a length 2n sequence

x = (x1, ..., x2n) in Z2n
2 by r(g) defined by the following schemata:
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• xi = 1 if and only if gi =X.

• xi+n = 1 if and only if gi = Z.

• xi = xi+n = 1 if and only if gi = Y .

Given a set {g1, ..., gk} of elements of the Pauli group, the check matrix is the k × 2n

matrix whose jth row is r(gj). The check matrix is denoted Check(g1, ..., gk).

Remark G.5. Let (g, h) be a pair of elements of Gn and let g1, ..., gn, h1, ..., hn ∈ X be

such that

g = αg1 ⊗⋯⊗ gn, α ∈ {1,−1, i,−i}

h = βh1 ⊗⋯⊗ hn, β ∈ {1,−1, i,−i}

we see that g and h commute if and only if the number of times gj and hj are distinct

matrices with neither equal to the identity is even.

Defining

Λ ∶=
⎛
⎝
0 In

In 0

⎞
⎠

(G.26)

we have the following lemma.

Lemma G.6. Let (g1, g2) ∈ Gn. Then g1, g2 commute if and only if

r(g1)Λr(g2)T = 0. (G.27)

Rough sketch. The form of r(g1):

r(g1) = (X or Y in g1 ∣ Z or Y in g1) (G.28)

and similarly for r(g2). Thus we have

r(g1)Λr(g2)T = (X or Y in g1 ∣ Z or Y in g1)
⎛
⎝
Z or Y in g2

X or Y in g2

⎞
⎠
. (G.29)

This contains the data of the requirements specified by Remark G.5.

Definition G.16. A set of elements g1, ..., gr ∈ Gn of the Pauli group Gn are indepen-

dent if for any j we have, where we write ĝi for the omission of gi:

⟨g1, ..., gr⟩ ≠ ⟨g1, ..., ĝj , ..., gn⟩ (G.30)

(here, the notation ⟨g1, ..., gn⟩ denotes the group generated by these elements).
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Lemma G.7. Let g1, ..., gr ∈ Gn be a set of elements such that −I /∈ ⟨g1, ..., gr⟩, then the

elements g1, ..., gr are independent if and only if r(g1), ..., r(gr) and linearly independent

(over the field Z2).

Proof. See [52, Page 457, Proposition 10.3].

The following lemma will be used to calculate the dimension of ((C2)⊗n)S :

Lemma G.8. Let g1, ..., gk be independent elements of the Pauli group Gn and denote

by S the group they generate. Assume −I /∈ S. Then for each i = 1, ..., k there exists

g ∈ Gn such that g anti-commutes with gi and commutes with all gj satisfying i ≠ j.

Proof. The set r(g1), ..., r(gk) is linearly independent by Lemma G.7, thus the check

matrix of g1, ..., gk has k linearly independent columns. So, there exists a vector x ∈ Zk2
such that

Check(g1, ..., gn)Λx = ei (G.31)

where ei is the i
th standard basis vector of Zk2. Let g be such that r(g)T = x. The result

follows from Lemma G.7.

Theorem G.17. Let S = ⟨g1, ..., gk⟩ ⊆ Gn and say −I /∈ S. Then dim(C2)⊗n)S = 2n−k.

Proof. We notice that (1/2)(I + gj) is the projector onto the +1-Eigenspace of gj . We

let x = (x1, ..., xk) ∈ Zk2 and define the operator

P xS ∶= 1/2k
k

∏
j=1
(I + (−1)xjgj). (G.32)

By Lemma G.8 we have for each gj there exists gxj such that gxjgjg
−1
xj = −gj . Let

gx = gx1⋯gxk , then

gxP
(0,...,0)
S g−1x = 1/2k

k

∏
j=1
(gxjg−1xj + gxjgjg

−1
xj )

= P xS .

Thus there is an isomorphism

imP xS ≅ imP
(0,...,0)
S . (G.33)

Since imPS ≅ (C2)⊗n)S we have dim imP xS = dim(C2)⊗n)S . Finally we note that

I = ∑
x∈Zk

2

P xS . (G.34)
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The operator I is a projector onto an n-dimensional space, and ∑x∈Zk
2
P xS is a sum of

2k orthogonal projectors all of the same dimension as VS , thus the only possibility is

dim(C2)⊗n)S = 2n−k.

Example G.1. In the context of the bitflip error correction, we have:

S = ⟨Z1Z2, Z2Z3⟩ ⊆ G3. (G.35)

It is clear that

V S ⊇ Span{∣000⟩ , ∣111⟩}. (G.36)

Since Z1Z2, Z2Z3 are 2 independent generators for S, it follows from Theorem G.17 that

dimV S = 23−2 = 2 = dim (Span{∣000⟩ , ∣111⟩}). (G.37)



Appendix H

Proofs of statements in Section

4.2.1

Proof of Proposition 4.17. We check that as operators on F (M)

(δYb ⋅ η) ⋅ δXa = (−1)∣η∣+1δXa ⋅ (δYb ⋅ η)

δYb ⋅ (η ⋅ δXa) = (−1)∣η∣δYb ⋅ (δXa ⋅ η)

so it suffices for this check to show [δXa, δYb] = 0, but

[δXa, δYn] = [ψi − xaψ∗i , ψj + ybψ∗j ]

= yb[ψu, ψ∗j ] − xa[ψ∗i , ψj]

= (yb − xa)δij .

If i = j, that is, Xa and Yb are connected in M

Xa●

Yb●

Li

then by the condition that ∂M ≅Mop
X ∐MY we have either xa = yb = + (shown above)

or xa = yb = −, so in either case yb = xa and (yb − xa)δij vanishes.

The next check is

[δXa, δXa′] = [ψi − xaψ∗i , ψi′ − xa′ψ∗i′]

= −(xa + xa′)δii′ .

238
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There are two cases: if i = i′ then the component Li looks as one of the following:

Xa′● Xa● Xa●
Xa′●

and as above in either case xa + xa′ = 0. Similarly

[∂Yb, ∂Yb′] = [ψj + ybψ∗j , ψj′ + yb′ψ∗j′]

= (yb + yb′)δjj′

and if j = j′ then yb + yb′ = 0.

Proof of Proposition 4.17. We prove only the first claim. SetX = (X1, x1), . . . , (Xn, xn),
Y = (Y1, y1), . . . , (Ym, ym) and Z = (Z1, z1), . . . , (Zl, zl) and suppose the connected com-

ponents of M ∶ X Ð→ Y are M1, . . . ,Mr and those of N ∶ Y Ð→ Z are N1, . . . ,Ns. We

compute the following

F (N)⊗F (Y ) F (M) =
⋀(Cψ′1 ⊕ . . .⊕Cψ′s)⊗C ⋀(Cψ1 ⊕ . . .⊕Cψr)

I (H.1)

where I is

I = (ηδYb ⊗ ϵ − η ⊗ δYbϵ ∣ η ∈⋀(Cψ′), ϵ ∈⋀(Cψ),1 ≤ b ≤m). (H.2)

So we must examine how δYb acts on ⋀(Cψ′) = ⋀(⊕s
j=1Cψ′j) and ⋀(Cψ) = ⋀(⊕r

i=1Cψi).
We have

ηδYb = (−1)∣η∣[ψ′j − ybψ′∗j ](η)

δYbϵ = [ψu + ybψ∗i ](ϵ).

We can reduce to the case where every component of N meets Y and every interval

component of M meets Y . For example if Nj only meets Z then

F (N)⊗F (Y ) F (M) ≅⋀(Cψ′j)⊗C F (N/Nj)⊗F (Y ) F (M) (H.3)

and similarly for M . Note that loops evaluate to C so may be ignored.

Let us call the pair (N,M) reduced if all components of M,N meet Y .
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Now let (N,M) be reduced and set L ∶= N ○M . Some components of L are loops, others

involve multiple passes between N,M , as shown below.

...

● ● ● ● ●

...

Nj1

Mi1

Nj2

Mi2

Let us ignore the loops in L for now, and enumerate the intervals in L by L1, . . . , Lt so

F (N ○M) =⋀(Cκ1 ⊕ . . .⊕Cκt). (H.4)

Let Lk be a component and write it as a sequence Nj1 ,Mi1 ,Nj2 , . . . as above (possibly

starting with a component of M instead). This chain involves at least one component of

N , call its index α(k) = j1 (taking the first such index), and suppose the corresponding

generator of F (N) is ψ′α(k). We claim that the composite

F (N ○M) = ⋀(Cκ1 ⊕ . . .⊕Cκt)

⋀(Cψ′1 ⊕ . . .⊕Cψ′s)⊗C ⋀(Cψ1 ⊕ . . .⊕Cψr) = F (N)⊗C F (M)

⋀(Cψ′1⊕...⊕Cψ′s)⊗C⋀(Cψ1⊕...⊕Cψr)
(ηδYb⊗ϵ−η⊗δYbϵ) = F (N)⊗F (Y ) F (M)
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where the first map is κk z→ ψ′α(k), is an isomorphism. This can be reduced to proving

that for each k, the map

Lk

. . .
Yb1●

Yb2●

●

...

Ybq−1●

Yq● . . .

Nj1

Mi1

Nj2

Njq

Miq

(H.5)

⋀(Cκk)
⋀Cψ′j1⊗⋀Cψi1

⊗...⊗⋀Cψ′jq⊗⋀Cψiq

I (H.6)

where

I = (η1δYb1 ⊗ ϵ1 ⊗ η2 ⊗ . . . − η1 ⊗ δYb1ϵ1 ⊗ η2 ⊗ . . . ,

. . . ,

η1 ⊗ ϵ1 ⊗ η2 ⊗ . . .⊗ ηqδYbq ⊗ ϵq − η1 ⊗ ϵ1 ⊗ ϵ2 ⊗ . . .⊗ ηq ⊗ δYbqϵq)

is an isomorphism. Note that the chain in (H.5) may not start in N and may not end in

M , but the modifications necessary for the other cases are trivial and left to the reader.

Using the universal property of the right hand side, we construct a left inverse to (H.6),

so it suffices to show it is surjective. This we do by induction. Order the set B of tuples

x = (b1, a2, . . . , aq, bq) ∈ {0,1}2q−1 by degree b1 + a2 + . . . + aq + bq (so smaller degree <
larger degree) and within a given degree by x < y if x can be obtained by shifting some

1 in y leftwards into a 0 spot. Each such tuple x determines a basis vector

(ψ′j1)
a1(ψi1)b1 . . . (ψ′jq)

aq(ψiq)bq . (H.7)

The base case is (ψ′j1)
a1 which is in the image of (H.6).

Otherwise x is of the form (0,0, . . . ,0,1,0, . . . ,0) where either:
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1. The 1 is in the position ψia for some a in which case in the quotient (for suitable

Y )

(ψ′j1)
a1 ⊗ 1⊗ . . .⊗ ψia ⊗ . . .⊗ (ψ′jq)

aq ⊗ (ψiq)bq (H.8)

= (ψ′j1)
a1 ⊗ 1⊗ . . .⊗ 1⊗ δY ⋅ 1⊗ . . . (H.9)

= (ψ′j1)
a1 ⊗ 1⊗ . . .⊗ 1 ⋅ δY ⊗ 1⊗ . . . . . . (H.10)

= ±(ψ′j1)
a1 ⊗ 1⊗ . . .⊗ ψ′ja ⊗ . . . (H.11)

2. The 1 is in a position ψja for some a, in which case a similar argument applies.

By the inductive hypothesis, (H.11) is in the image of (H.6).

Notice that (H.6) is an isomorphism of vector spaces and it remains to show it is F (Z)-
F (X)-bilinear.

F (Z)-bilinearity. It suffices to consider components Lk ofN○M as in (H.5) which meet

Z, say in Zc. Then δZc = κk + zcκ∗k is an endomorphism on ⋀Cκk, and δZc = ψ′1 + zcψ′∗1
is an endomorphism on

⋀Cψ′j1 ⊗⋀Cψi1 ⊗ . . .⊗⋀Cψ′jq ⊗⋀Cψiq
I

(H.12)

so that (H.6) is clearly F (Z)-linear.

F (X)-linearity. It suffices to consider the situation in which the component meets X

at Xa. Now, inside F (N)⊗F (Y ) F (M),

((ψ′j1)
a1 ⊗ 1⊗ . . .⊗ 1) ⋅ δXa = (ψ′j1)

a1 ⊗ 1⊗ . . .⊗ 1⊗ ψiq
= (ψ′j1)

a1 ⊗ 1⊗ . . .⊗ 1⊗ δYbq ⋅ 1

= (ψ′j1)
a1 ⊗ 1⊗ . . .⊗ 1 ⋅ δYbq ⊗ 1

= (ψ′j1)
a1 ⊗ 1⊗ . . .⊗ ψ′jq ⊗ 1

= . . .

= (ψ′j1)
a1 ⋅ δYb1 ⊗ 1⊗ . . .⊗ 1.

Note that yb1 = −yb2 , yb2 = −bb3 , . . . , ybq = xa so yb1 = (−1)q+1xa = xa as q is odd. This

δYb1 is therefore ψ′j1 − xaψ
′∗
j1
.
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Proof of Proposition 4.18. First we calculate ∂2. We have

∂2 = 1

2
[∂, ∂]

= 1

2
[∑
i

XiδXi +∑
j

YjδYj ,∑
i′
Xi′δXi′ +∑

j′
Yj′δYj′]

= 1

2
∑
i,i′
XiXi′[δXi, δXi′] +

1

2
∑
j,j′
YjYj′[δYj , δYj′].

Now, [δYj , δYj′] = 2yjδjj′ and

δXi ⋅ δXiδη = δXi ⋅ ((−1)∣η∣η ⋅ δXi)

= −η ⋅ δXi ⋅ δXi

= −xiη.

So [δXi, δXi′] = −2xiδii′ . Hence,

∂2 = −
n

∑
i=1
xiX

2
i +

m

∑
j=1

yjY
2
j

=WY −WX .

To prove G is a strong functor we consider a composable pair

X Y Z, where Z = (Z1, z1), . . . , (Zl, zl)
V1 V2 (H.13)

The cut G(v2) ∣ G(v1) is as a Z2-graded C[z, x]-module

G(V2) ∣ G(V1) = V2 ⊗C C[z, y]⊗C[y] C[y, x]⊗C V1

≅ V2 ⊗C V1 ⊗C C[z, x]

with differential ∂ = ∑ni=1XiδXi +∑lk=1ZkδZk.

The Clifford representation {γu, γ†
u}mu=1 of Cm on G(v2) ∣ G(v1) is computed as follows.

We have tu = ∂
∂Yu
(WY ) = 2yuYu so ∂tu = 1

2yu∂Yu

γu = Atu = [∂G(V2)⊗G(V1), ∂tu]

= 1

2
yu[∂G(V2)⊗G(V1), ∂tu]

= 1

2
yu[

n

∑
i=1
XiδXi +

m

∑
j=1

YjδYj , ∂Yu]

+ 1

2
yu[

l

∑
k=1

ZkδZk +
m

∑
j=1

YjδYj , ∂Yu]



Algebraic Geometry and Linear Logic 244

where δYj acts on v1 and δYj on v2. One can show

γu =
1

2
yuδYu[Yu, ∂Yu] +

1

2
yuδYu[Yu, ∂Yu]

= −1
2
yu(δYu + δYu)

and

γ†
u = −∂Yu(∂G(V1)) −

1

2
∑
q

∂Yq∂Yu(WY )Atq

= −∂Yu(
n

∑
i=1
XiδXi +

m

∑
j=1

YjδYj)

− 1

2
∑
q

∂Yq(2yuYu)Atq

= −δYu − yuAtu

= δYu +
1

2
(δYu + δYu)

= −1
2
(δYu − δYu).

By [48] this is a strict Clifford representation on G(V2) ∣ G(V1) in LGC(WX ,WZ) and
the composite in LGC is the splitting of the idempotent

e = γ1 . . . γmγ†
m . . . γ

†
1

= (1
2
)2my1(δY1 + δY1) . . . ym(δYm + δYm)

(δY1 − δY1) . . . (δYm − δYm).

The image im(e) can be written both as G(V2) ∣ G(V1)/∑u im(δYu − δYu) and also as

⋂u ker(δYu + δYu). Using the first presentation,

G(v2) ○G(v1) ≅ im(e)

= G(v2)∣G(v1)/∑
u

im(δYu − δYu)

= (v2 ⊗k v1)⊗k k[z, x]
∑u im(δYu − δYu)

≅ v2 ⊗k v1
(ωδYu ⊗ ν − ω ⊗ δYuν)ω∈v2,ν∈v1,1≤u≤m

⊗k k[z, x]

= (V2 ⊗F (Y ) V2)⊗k k[z, x]

= G(V2 ⊗F (Y ) V1)

which can be easily shown to be an isomorphim of matrix factorisations. The remaining

checks are left to the reader.
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Université du Québec à Montréal, May 28–June 1, 1985, pages 126–159. Springer,

2006.

[37] M. Khovanov and L. Rozansky. Matrix Factorizations and Link Homology, 2004.

arXiv.math/0401268.

[38] J. Kock. Notes on Polynomial Functors. Manuscript, version, 2009.

[39] J. Laird, G. Manzonetto, G. McCusker, and M. Pagani. Weighted Relational Models

of Typed Lambda-Calculi. In 2013 28th Annual ACM/IEEE Symposium on Logic

in Computer Science, pages 301–310. IEEE, 2013.



Bibliography 248

[40] R. Landauer. Irreversibility and Heat Generation in the Computing Process. IBM

Journal of Research and Development, 5(3):183–191, 1961.

[41] O. Laurent. A Token Machine for Full Geometry of Interaction (Extended Ab-

stract). In S. Abramsky, editor, Typed Lambda Calculi and Applications, pages

283–297, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[42] O. Laurent. An Introduction to Proof Nets. 2013.

[43] I. Mackie. The Geometry of Interaction Machine. In Proceedings of the 22nd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’95, page 198–208, New York, NY, USA, 1995. Association for Computing

Machinery.

[44] J.C. Maxwell. Theory of Heat. Text-books of science. Longmans, 1871.

[45] P.A. Melliès. A Functorial Excursion Between Algebraic Geometry and Linear

Logic. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in

Computer Science, LICS ’22, New York, NY, USA, 2022. Association for Computing

Machinery.

[46] D. Murfet. On Sweedler’s Cofree Cocommutative Coalgebra. Journal of Pure and

Applied Algebra, 219(12):5289–5304, 2015.

[47] D. Murfet. Logic and Linear Algebra: an Introduction, 2017. arXiv:1407.2650.

[48] D. Murfet. The Cut Operation on Matrix Factorisations. Journal of Pure and

Applied Algebra, 222(7):1911–1955, 2018.

[49] D. Murfet and W. Troiani. Gentzen-Mints-Zucker Duality, 2020. arXiv:2008.10131.

[50] D. Murfet and W. Troiani. Elimination and Cut-Elimination in Multiplicative

Linear Logic, 2022. arXiv:2207.10871.

[51] D. Murfet and W. Troiani. Linear Logic and Quantum Error Correcting Codes.

preprint available on the arXiv, 2024.

[52] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information: 10th

Anniversary Edition. Cambridge University Press, 2010.

[53] M. Pagani and L. Tortora de Falco. Strong Normalization Property for Second

Order Linear Logic. Theoretical Computer Science, 411(2):410–444, 2010.

[54] M. Rogers, T. Seiller, and W. Troiani. Simplifying Normal Functors: an Old and a

New Model of λ-Calculus. working paper or preprint, March 2024.



Bibliography 249

[55] D. Scott. Outline of a Mathematical Theory of Computation. Technical Report

PRG02, OUCL, November 1970.

[56] D. Scott. Data Types as Lattices. SIAM Journal on computing, 5(3):522–587, 1976.

[57] D. Scott. Domains for Denotational Semantics. In Automata, Languages and Pro-

gramming: Ninth Colloquium Aarhus, Denmark, July 12–16, 1982 9, pages 577–610.

Springer, 1982.

[58] T. Seiller. Interaction Graphs: Multiplicatives. Annals of Pure and Applied Logic,

163(12):1808–1837, 2012.

[59] T. Seiller. Interaction Graphs: Additives. Annals of Pure and Applied Logic,

167(2):95–154, 2016.

[60] T. Seiller. Interaction Graphs: Non-Deterministic Automata. ACM Trans. Comput.

Logic, 19(3), aug 2018.

[61] T. Seiller. Interaction Graphs: Exponentials. Logical Methods in Computer Science,

Volume 15, Issue 3, August 2019.

[62] M.H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism, Vol-

ume 149 (Studies in Logic and the Foundations of Mathematics). Elsevier Science

Inc., USA, 2006.

[63] P. Taylor. Quantitative Domains, Groupoids and Linear Logic. In Category Theory

and Computer Science: Manchester, UK, September 5–8, 1989 Proceedings, pages

155–181. Springer, 1989.

[64] L. Tortora de Falco. Additives of Linear Logic and Normalization—Part I: a (Re-

stricted) Church–Rosser Property. Theoretical Computer Science, 294(3):489–524,

2003. Linear Logic.

[65] T. Waring. Geometric Perspectives on Program Synthesis and Semantics. Master’s

thesis, 2021.


	Abstract
	Declaration of Authorship
	Preface
	Acknowledgements
	1 Introduction
	2 Linear Logic and Geometry of Interaction
	2.1 Linear logic
	2.1.1 MELL
	2.1.2 IMELL
	2.1.3 Proof nets
	2.1.4 The dynamics of MELL
	2.1.5 Persistent paths

	2.2 The theory of MLL proof nets
	2.2.1 The Sequentialisation Theorem
	2.2.2 Geometry of Interaction 0
	2.2.3 Geometry of Interaction I
	2.2.4 A comment

	2.3 Origins
	2.3.1 l-terms as normal functions
	2.3.2 Linear proofs as linear functions


	3 Proofs and Locally Projective Schemes
	3.1 Parameter spaces
	3.1.1 Projective schemes
	3.1.2 Properties of the Hilbert scheme
	3.1.2.1 The Grassmann scheme
	3.1.2.2 The Hilbert scheme


	3.2 Exponentials
	3.2.1 An example

	3.3 Future paths

	4 Modelling Multiplicative Linear Logic
	4.1 Matrix factorisations
	4.1.1 Clifford algebras and matrix factorisations
	4.1.2 The bicategory of Landau-Ginzburg models
	4.1.3 The cut operation of matrix factorisations

	4.2 Geometry of interaction models, MLL
	4.2.1 Atoms, bordisms, Clifford algebras, matrix factorisations and MLL proofs
	4.2.2 The cut operation and stabiliser codes
	4.2.3 Proofs as codes
	4.2.4 Cut-elimination and the Falling Roofs algorithm
	4.2.5 From error correction to Falling Roofs


	A The Untyped and Simply Typed l-Calculus
	A.1 Untyped l-calculus
	A.2 Simply typed l-calculus

	B Computing the Successor of 2 in linear logic
	C Girard's Normal Form Theorem
	D Schemes
	D.1 Affine schemes
	D.2 Closed subschemes
	D.3 Glueing and representability
	D.4 The Grassmann variety
	D.5 Constructing the Grassmann and Hilbert schemes
	D.6 Hilbert scheme construction

	E Algebra
	E.1 Graded rings, modules, and algebras
	E.2 Exterior algebra
	E.3 Clifford Algebras
	E.3.1 Clifford algebras
	E.3.2 Clifford algebras of real or complex bilinear forms

	E.4 Hermitian and unitary operators

	F Splitting idempotents and idempotent completion
	G Quantum computing
	H Proofs of statements in Section 4.2.1
	Bibliography

