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1 Linear Algebra

1.1 Orthogonal matrices

Throughout, k is an algebraically closed field.

Definition 1.1.1. A square matrix X ∈Mn(k) is orthogonal if XT = X−1.

These come up when dealing with orthonormal bases:

Lemma 1.1.2. A square matrix X ∈Mn(k) is orthonormal if and only if its columns form an orthogonal
basis for kn.

Proof. Write X = [v1, ..., vn] for vectors vi ∈ kn. Then vi · vj = δij if and only if XXT = I.

Lemma 1.1.3. For every symmetric matrix X ∈ Mn(k) there exists an orthogonal matrix U such that
UTXU is diagonal.

Proof. We proceed by induction on n, the base case is trivial. Say n > 1. Since k is algebraically closed
we can find an eigenvector v1 ∈ kn of X with eigenvalue λ ∈ k and by replacing v1 with v1/||v1|| if
necessary we may assume v1 is of unit length too. We extend v1 to an orthonormal basis {v1, ..., vn} of
kn and set Q = [v1, ..., vn], that is, Q is the matrix with ith column is the vector vi. We then have

QTXQ =

(
λ u
0 X ′

)
for some u ∈M1×n−1(k) and X ′ ∈Mn−1(k). Taking the transpose of each side we have:

QTXTQ =

(
λ 0
u X ′T

)
Since X is symmetric we have X = XT and so QTXQ = QTXTQ which implies u = 0 and X ′ is
symmetric. We can apply the inductive hypothesis to X ′ to get an orthogonal matrix V ∈ Mn−1(k)
such that V TX ′V = D is diagonal. We thus have

QTXQ =

(
λ 0
0 V DV T

)
=

(
1 0
0 V

)(
λ 0
0 D

)(
1 0
0 V T

)

The result then follows as Q

(
1 0
0 V

)
is orthogonal.
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1.2 Partial trace

Throughout, V,W are finite dimensional vector spaces. First we make an observation, let {v1, ..., vn}
and {w1, ..., wm} be bases for V,W respectively. Let γ : V ⊗W −→ V ⊗W be a linear map. We write

γ(vi ⊗ wj) = α11,ijv1 ⊗ w1 + . . .+ α1m,ijv1 ⊗ wm
+ . . .

+ αn1,ijvn ⊗ w1 + . . .+ αnm,ijvn ⊗ wm
so that if we make the following definitions:

Eij : V −→ V Fij : W −→ W

vi 7−→ δijvj wi 7−→ δijwj

where δij = 0 if i 6= j and δij = 1 if i = j, we have:

γ =
n∑
i=1

m∑
j=1

(
α11,ijEi1 ⊗ Fj1 + . . .+ α1m,ijEi1 ⊗ Fjw

+ . . .

+ αn1,ijEin ⊗ Fj1 + . . .+ αnm,ijEin ⊗ Fjm
)

We arrive at:

Observation 1.2.1. The set
{Eik ⊗ Fjl}j,l=1,...,m

i,k=1,...,n (1)

forms a basis for Hom(V ⊗W ). We have shown:

Lemma 1.2.2. For arbitrary vector spaces X, Y,X ′, Y ′ there exists a natural injection

Hom(X,X ′)⊗ Hom(Y, Y ′) � Hom(X ⊗ Y,X ′ ⊗ Y ′) (2)

which is an isomorphism if X, Y,X ′, Y ′ are finite dimensional.

Proof. The above argument shows that (2) maps a basis onto a linearly independent set, and so
injectivity follows. In the finite dimensional case we obtain an isomorphism by counting dimensions.

Corollary 1.2.3. There is a natural isomorphism (recall that V,W are finite dimensional).

Hom(V,W ) −→ V ∗ ⊗W (3)

f 7−→
n∑
i=1

v∗i ⊗ f(vi) (4)

where {v1, ..., vn} is ar arbitrary basis for V .

Proof. By Lemma 1.2.2 we have:

Hom(V ⊗ k, k ⊗W ) ∼= Hom(V, k)⊗ Hom(k,W ) (5)

hence we can perform the following calculation, where s : V ⊗k −→ k⊗V is the swap map, for i = 1, ..., n
we denote by Ei : V −→ k is the linear map sending vi 7−→ 1 and Fj : k −→ V the linear map sending
1 7−→ vi.

f 7−→ 1⊗ f ◦ s =
n∑
i=1

Ei ⊗ fFi 7−→
n∑
i=1

v∗i ⊗ f(vi) (6)
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We will generalise the definition of the trace operator to the definition of a partial trace operator, to
do this we use the natural isomorphism of Corollary 1.2.3 and combine it with the following adjunction,
the tensor-hom adjunction.

Fact 1.2.4. There is an adjunction

Hom(V ⊗W,U) ∼= Hom(W,Hom(V, U)) (7)

f 7−→
(
w 7→ (v 7→ f(v ⊗ w))

)
(8)(

v ⊗ w 7→ g(v)(w)
)
←− [ g (9)

with counit given by the evaluation map (we simply write h for Hom)

V ⊗ h(V, U) −→ U

v ⊗ f 7−→ f(v)

and unit given by tensor:

U −→ h(V, V ⊗ U)

u 7−→ (v 7→ v ⊗ u)

Corollary 1.2.5. For finite dimensional vector spaces, there is an adjunction:

Hom(V ⊗W,U) −→ Hom(W,U ⊗ V ∗) (10)

f 7−→
(
w 7→

n∑
i=1

v∗i ⊗ f(ui ⊗ w)
)

(11)

where {u1, ..., un} is an arbitrary choice of basis for V .
The counit of this adjunction is given by

V ⊗ U ⊗ V ∗ −→ U

x⊗ u⊗ y∗ 7−→ y∗(x)u

and unit given by (where v1, ..., vn is an arbitrary basis for V )

W −→ W ⊗ V ⊗ V ∗

w 7−→ w ⊗ (
n∑
i=1

vi ⊗ v∗i )

Proof. For existence of the adjunction, we observe the following algebra.

Hom(V ⊗W,U) ∼= Hom(W,Hom(V, U)) (12)
∼= Hom(W,V ∗ ⊗ U) (13)

Now we unwind definitions and find the unit and counit. Writing simply h for Hom the map:

h(V, V ) −→ h(V ⊗ k, k ⊗ V ) −→ h(V, k)⊗ h(k, V ) −→ V ∗ ⊗ V (14)

acts on idV in the following way, where s denotes the swap map and v1, ..., vn is an arbitrary basis for
V ,

idV 7−→ s 7−→
n∑
i=1

v∗i ⊗ (1 7→ vi) 7−→
n∑
i=1

v∗i ⊗ vi (15)

which describes the unit. The counit is calculated similarly.
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With this language, we come up with a description of the trace operator.

Observation 1.2.6. Let f : V −→ V be a linear map. Then the map k −→ k given by 1 7−→ Trace f is
given by the following composite, where η, ε are respectively the unit and counit of the adjunction (10)
and v1, ..., vn is an arbitrary basis for V :

k V ⊗ V ∗ V ⊗ V ∗ k

1
∑n

i=1 vi ⊗ v∗i
∑n

i=1 f(vi)⊗ v∗i
∑n

i=1 v
∗
i (f(vi)) = Trace f

η f⊗1 ε

(16)

We use this observation to make a definition:

Definition 1.2.7. Let f : W ⊗ V −→ W ⊗ V be a linear map. We define the partial trace operator
TraceV f as the following composite:

W W ⊗ V ⊗ V ∗ W ⊗ V ⊗ V ∗ W

w w ⊗ (
∑n

i=1 vi ⊗ v∗i ) =
∑n

i=1(w ⊗ vi)⊗ v∗i
∑n

i=1 f(w ⊗ vi)⊗ v∗i . . .

1⊗η f⊗1 1⊗ε

(17)

the final formula is a bit difficult to write out, in the special case where f = f1 ⊗ f2 for f1 : W −→
W, f2 : V −→ V we obtain

(TraceV f)(w) =
n∑
i=1

f1(w)v∗i
(
f2(vi)

)
= (Trace f2)f1(w) (18)

In fact we can write out a formula for (17) if we use Dirac notation. Let |1〉 , ..., |n〉 be a basis for V ,
we think of these as operators k −→ V . We write id⊗ |i〉 for the composite W −→ W ⊗ k −→ W ⊗ V .
Also, we denote the multiplication map W ⊗ k −→ W defined by w ⊗ x 7−→ xw by Mult. We have

TraceV f = ε
( n∑
i=1

f(id⊗ |i〉)⊗ 〈i|
)

= Mult
( n∑
i=1

(id⊗〈i|)f(id⊗ |i〉)
)

2 Rings and modules

Definition 2.0.1. Let A be a ring, the Jacobson radical R is the intersection of all maximal ideals
of A.

Lemma 2.0.2. Let A be a ring. x ∈ R if and only if 1− xy is a unit for all y ∈ A.

Proof. Say 1−xy is not a unit. Then it is contained inside some maximal ideal m, but so is xy as x ∈ m,
thus 1 ∈ m which is a contradiction.

Conversely, if x is not contained in some maximal ideal m then m and x generated (1) (by maximality).
Thus 1 = yx+ u for some u ∈ m, that is, 1− xy ∈ m, and is therefore not a unit.

Definition 2.0.3. Let A be a ring, the nilradical is the ideal of nilpotents.

Lemma 2.0.4. The nilradical is equal to the intersection of all prime ideals (in a commutative ring).

Proof. Clearly all nilradicals are contained in all prime ideals.
Conversely, if a is not nilpotent then Aa is not the zero ring and thus contains a prime.
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2.1 Localisation (Nakayama’s Lemma)

Lemma 2.1.1. Let M be an R-module such that for all maximal ideals m of R we have Mm = 0. Then
M = 0.

Proof. Let x ∈ M be such that x/1 = 0 in Mm. Then there exists a 6∈ m such that ax = 0, which is
to say ann(x) 6⊆ m. Since this is true for all maximal ideals m we have that ann(x) = A which implies
x = 0.

We use the above to give a slick proof that a ring map being an isomorphism is a local property:

Corollary 2.1.2. A ring homomorphism ψ : A −→ B is an isomorphism if and only if its localisation
at all maximal ideals is.

Proof. It’s easy to show kerψm
∼= (kerψ)m and cokerψm

∼= (cokerψ)m. Thus the Lemma follows from
Lemma 2.1.1

Lemma 2.1.3 (Nakayama’s Lemma). Let R be a ring and M a finitely generated R-module. If I ⊆ R
is an ideal contained in the jacobson radical such that IM = M then M = 0.

We reduce to the local case and then make a simple observation.

Proof. We use Lemma 2.1.1.
Let m be a maximal ideal such that I ⊆ m which necessarily exists as I is contained in the jacobson

radical. Then mM = M and (mAm)Mm = Mm, so it suffices to assume A is local and I is maximal. Let
m denote the unique maximal ideal.

Let m1, ...,mn be a set of generators for M . Then m1 = i1m1 + . . . + inmn for some elements ij
contained in the maximal ideal of R. Thus (1 − i1)m1 = i2m2 + . . . + inmn. In fact 1 − i1 is a unit
because i1 ∈ m and 1 6∈ m, thus m2, ...,mn form a generating set. Applying this logic finitely many
times we see that M is generated by mn, but then mn = imn for some i ∈ m so (1− i)mn = 0 which by
the same logic as above implies mn = 0.

2.2 Chain conditions

Lemma 2.2.1. Given a short exact sequence of A-modules

0 −→M ′ ϕ−→M
ψ−→M ′′ −→ 0

M is Noetherian if and only if M ′,M ′′ are.

Proof. Every sub and quotient module of a neotherian module is Noetherian which establishes one
direction.

Conversely, let N ⊆ M be a submodule and let x ∈ N . Then consider [x] ∈ M/ kerψ where we can
write [x] =

∑n
i=0 αi[xi] where {[xi]}ni=0 is a finitely generating set of ψ(N). Choosing representatives we

have x −
∑n

i=0 αixi ∈ kerψ. We have a short exact sequence so kerψ = M ′ which is finitely generated
so there exists y1, ..., ym such that x−

∑n
i=0 αixi =

∑m
j=0 βjyj. Thus N is finitely generated.

Remark 2.2.2. There is a better proof which can be used here. The obvious idea working directly with
the ascending chain condition works and gives a proof idea which also works for Artinian. The above
proof does not work for Artinian rings because there is no analogue in the setting of Artinian rings to
the statement that a ring a module is Noetherian if and only if all its submodules are finitely generated.

Corollary 2.2.3. If R is a Noetherian ring then so is Rn.

Proof. Obvious inductive argument.

Corollary 2.2.4. If R is Noetherian then every finitely generated R-module M is Noetherian.

Proof. Write M = Rn/I.
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2.2.1 Artinian rings/modules

Definition 2.2.5. A ring A is Artinian if every descending chain of ideals

I1 ⊇ I2 ⊇ . . .

terminates. That is, there exists N > 0 where for all n > N we have In = In+1.

Lemma 2.2.6. Every Artinian ring A has finitely many maximal ideals.

Proof. Say A has infinitely many maximal ideals {m1,m2, . . .}. Then consider the chain

m1 ⊇ m1m2 ⊇ . . .

we claim this is an infinite descending chain. Consider the link m1 . . .mn ⊇ m1 . . .mnmn+1 for any n. If
this was equality then we would have

m1 . . .mn ⊆ m1 . . .mnmn+1 ⊆ mn+1

so by primality, mi ⊆ mn+1 for some i ≤ n. By maximality it follows that mi = mn+1 contradicting that
these are distinct maximal ideals.

Lemma 2.2.7. Let A be Artinian, by Lemma 2.2.1 there is a finite set of maximal ideals {m1, . . . ,mn},
denote by I the product m1 . . .mn. Then there exists n > 0 such that In = (0).

Proof. Suppose for a contradiction that In 6= (0) for any n. Let n be such that In = Im for all m > n,
which exists as A is Artinian. Let S be the set of ideals of A which do not annihilate In, then A ∈ S
and so S is non-empty. Let J be a minimal element of S, which exists as A is Artinian. We have that
JIn ⊆ J and (JIn)In = JI2n = JIn 6= (0). so by minimality we have JIn = J . There exists j ∈ J such
that jIn 6= 0 and so again by minimality we have (j) = J . Thus there exists i ∈ In such that ji = j,
that is, j(i − 1) = 0. We then have that i ∈ mk for all k and so i − 1 must not be in any mk, which
implies i− 1 is a unit and that j = 0, contradicting that J does not annihilate In.

Proposition 2.2.8. All Artinian rings are Noetherian.

Proof. Let A be Artinian and {m1, ...,mm} be the set of maximal ideals of A and let n be such that
(m1 . . .mm)n = (0). Consider the chain

A ⊇ m1 ⊇ . . . ⊇ mn
1 ⊇ mn

1m2 ⊇ . . . ⊇ mn
1m

n
2 ⊇ . . . ⊇ mn

1 . . .m
n
m = 0

each subquotient is anA/mi-vector space for some i, and in fact is finite dimensional as these subquotients
are Artinian modules. We thus have a decomposition series with Noetherian quotients and thus A is
Noetherian.

Corollary 2.2.9. All finitely generated modules over Artinian rings are both Artinian and Noetherian.

Proof. Let M be finitely generated over Artinian A. Then M ∼= An/I for some integer n and ideal
I ⊆ A, and hence is Artinian. Since A is Artinian, it is thus Noetherian, and so M is Noetherian.

Definition 2.2.10. A composition series of a module M is a finite sequence of submodules

0 = M0 ⊆M1 ⊆ . . . ⊆Mn = M

such that Mi+1/Mi is simple (admits no non-trivial submodules) for all i ≥ 0. Such a series is denoted
(Mi) and the length is denoted l(Mi) (we will see shortly that this integer is independent of choice of
decomposition series where the notation l(M) will be adopted).
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If N is a proper submodule of M and (Mi) is a decomposition series for M then we have a chain
of submodules of N given by (Ni := N ∩Mi). These are such that Ni+1/Ni � Mi+1/Mi so since the
latter is simple we either have Ni+1/Ni = Mi+1/Mi or Ni+1 = Ni. We can remove equal terms so that
the latter case is ruled out, and then we have a decomposition series for N satisfying l(Ni) ≤ l(Mi). If
we had equality we would then have Ni+1/Ni = Mi+1/Mi for all i form which we deduce that N1 = M1

which implies N2 = M2 and so on until M = N . Thus l(Ni) < l(Mi).

Remark 2.2.11. An application of this is the following: let (Ni) be any ascending chain, say of length k.
Then N0 ⊆ . . . ⊆ Nk = M implies l(N0) < . . . < l(Nk) and so k ≤ l(M). Thus all ascending chains have
length less than or equal to that of the minimal decomposition series, in particular, all decomposition
series have the same length. We denote this integer l(M):

Proposition 2.2.12. For any module M :

1. all decomposition series of M have the same length,

2. if N (M is a proper submodule, then l(N) < l(M),

3. if M admits a decomposition series then any ascending chain can be extended to a decomposition
series.

Proof. The first two dotpoints have already been proved. For the last, if an ascending chain is not a
decomposition series, then there exist intermediate modules which can be added to the chain. Do so
finitely many times until a decomposition series is obtained.

Remark 2.2.13. One might suspect that since there is no finite chain condition imposed on M in
Proposition 2.2.12 that there may be an issue with part 3, for instance, maybe M admits infinite length
chains as well as finite decomposition series. However this is impossible, as the length of any chain in
M is bounded by the length of the decomposition series assumed to exist as per Remark 2.2.11.

The proof of the next Corollary shows that any finitely generated module over an Artinian ring
admits a decomposition series:

Corollary 2.2.14. Any finitely generated module over an Artinian ring has finite length.

Proof. Let M be such a module. Then M is also Noetherian and so admits a maximal proper submodule
M1. M1 itself is Noetherian and so also admits a maximal proper submodule. Continuing in this way
we obtain a descending chain which terminates by the Artinian property. Thus we have a composition
series and so all composition series are of this length, moreover any chain must have length less than
this. ([6, §6])

Theorem 2.2.15. A ring A is Artinian if and only if it is Noetherian and has dimension 0.

2.3 Associated primes/primary decomposition

Definition 2.3.1. An ideal I ⊆ R of a ring R is primary if it satisfies the following property:
if ab ∈ I then either a ∈ I or b ∈

√
I.

If I is primary and
√
I is a known prime p then I is p-primary.

Definition 2.3.2. We refer to
√

(0) as the nilradical. (Notice this agrees with Definition 2.0.3).

Lemma 2.3.3. The nilradical is equal to the intersection of all prime ideals, in symbols:√
(0) =

⋂
p prime

p
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Proof. See Lemma 2.0.4.

Corollary 2.3.4. For an ideal I the radical
√
I is equal to the intersection of all prime ideals containing

I,
⋂

p⊇I, p prime

p

Proof. By the correspondence Theorem the only check to make is that the image of
√
I under the

projection A −→ A/I is equal to
√

(0) but this is clear.

Definition 2.3.5. Let I ⊆ R be an ideal of a ring R. The vanishing set V (I) is the set of prime ideals
containing I,

V (I) := {p ∈ SpecR | p ⊇ I}

Corollary 2.3.6. If I, J are ideals and V (I) ⊆ V (J), then
√
J ⊆
√
I.

Proof. Follows from Corollary 2.3.4.

Remark 2.3.7. Clearly, if I is primary then
√
I is prime however the converse does not hold: let

R = k[x, y, z]/(xy − z2) and let P = (x, z) which is prime, then P 2 is not primary. This is because
xy = z2 ∈ P 2 but x 6∈ P 2 and yn 6∈ P 2 for any n ≥ 0. This also shows that a power of a prime need not
be primary.

Lemma 2.3.8. If
√
I is maximal, then I is primary. In particular, for a maximal ideal m we have that

mn for any n > 0 is m-primary.

Proof. Let
√
I = m. Then the image of m in A/I is the nilradical of A/I. Since the nilradical is the

intersection of all primes, it follows that the A/I has only one prime. Thus every element of A/I is
either a nilpotent or a unit, which means every zero divisor of A/I is nilpotent.

Lemma 2.3.9. Let R be a Noetherian ring and I ⊆ R and ideal. There exists n > 0 such that (
√
I)n ⊆ I.

Proof. Let
√
I be generated by a1, ..., am. For any n, the ideal (

√
I)n is generated by elements of the

form ak11 ...a
km
m where k1 + . . .+km = n. Now let ri > 0 be such that arii ∈ I and fix n = r1 + . . .+rm. For

each generating element ak11 ...a
km
m of (

√
I)n we must have for some j that kj ≥ rj, and so ak11 ...a

km
m ∈ I

which completes the proof. Notice this proof works for any finitely generated ideal, be R Noetherian or
not.

Corollary 2.3.10. Let A be a Noetherian local ring with maximal ideal m. Then for some n ≥ 0, an
ideal I is m-primary if and only if mn ⊆ I ⊆ m.

Proof. If I is m-primary then
√
I = m and so by Lemma 2.3.9 we have mn =

√
I
n ⊆ I. Also since A is

local we have I ⊆ m.
Conversely, if mn ⊆ I ⊆ m for some n, ab ∈ I implies ab ∈ m, say a 6∈ m. Then b ∈ m and so

bn ∈ mn ⊆ In, thus I is primary. Moreover,

m ⊆
√
mn ⊆

√
I ⊆
√
m ⊆ m

and so I is m-primary.

We know that the prime ideals of Z are given by (p) where p is prime. The primary ideals of Z
are given by (pn). This follows from the fact that Z is a PID and that an ideal I is primary implies√
I is prime. Consider for example (pn) for n > 0, then there exist zero divisors (as a Z-module)

p, p2, ..., pn−1 ∈ Z of Z/pn and all of these are such that pj ∈
√

annZ(Z/pn) = (p).
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Definition 2.3.11. A submodule N ⊆ M of an R-module M is primary if it satisfies the following
condition:

if a ∈ R is a zero-divisor of M/N then a ∈
√

annR(M/N).

Fact 2.3.12. If M is a primary submodule then annR(M/N) is primary.

Proof. Let ab ∈ annR(M/N) and say a 6∈ annR(M/N). Then ab(M/N) = 0 but a(M/N) 6= 0. This
implies b(ax) = 0 for some x ∈M/N which is to say that b is a zero-divisor of M/N . Since N is primary,
this implies b ∈

√
annR(M/N).

Definition 2.3.13. Let M be an R-module, then the set of associated primes is

AssRM := {p | ∃x ∈M, annR(x) = p}

We say that p = annRM is associated.

How do we think about associated primes? They have surprisingly useful properties which we go
through now.

Lemma 2.3.14. If R is Noetherian and M a non-zero R-module, then

1. AssRM 6= ∅,

2. the set of zero divisors of M is the union of all associated primes of M .

Proof. (1): as R is Noetherian the set {annR(x) | x ∈M} contains a maximal element.
(2) Any zero divisor a is contained in annR(x) for some x and so by the first part is contained in some
associated prime.

The next Theorem shows how associated primes interact with localisation:

Theorem 2.3.15. Let S be a multiplicative subset of R and consider SpecAS as a subset of SpecA,

1. Let M an RS-module (and hence also an A-module). Then AssRM = AssRS
M .

2. Let M be an R-module, if R is Noetherian then AssRM ∩ SpecRS = AssRS
MS.

Proof. (1) We already know there is a bijection between primes of RS and primes of R disjoint from
S given by p 7→ p ∩ R. In fact, any associated prime p of R must be disjoint from S as elements of S
act invertably on M , thus it remains to show that associated primes are mapped to associated primes
under this bijection. We have

a(x/1) = 0⇔ ∃s ∈ S, sax = 0

⇔ ax = 0

because M is an RS module and thus elements of S act invertibly on M . Thus annRS
(x)∩R = annR(x),

for any x ∈M .
(2) Let p = annR(x) ∈ AssRM ∩ SpecRS and consider the prime ideal pRS, we claim this is equal

to annRS
(x/1). Say (a/s)(x/1) = 0, then there exists t ∈ S such that tax = 0, but t 6∈ annR(x) (as

p ∩ S = ∅) and so ax = 0, which is to say a ∈ p and so a/1 and thus a/s ∈ pRS. Also, if a/1 ∈ pRS

then ax = 0 and thus (a/1)(x/1) = 0. Notice that we did not use the assumption that R is Noetherian
here.

Conversely, let p = annRS
(x/s) ∈ AssRS

MS and consider the prime P := p ∩ R. Let a1, ..., an
generate P . The image of these under the localisation map P −→ p are such that (ai/1)(x/s) = 0, so
there exists ti ∈ S such that tiaix = 0. We claim P = annR(t1...tnx). If y ∈ P then y =

∑n
i=1 αiai which

annihilates t1...tnx, and if y ∈ annR(t1, ..., tnx) then yx/1 = 0 in RS so y/1 ∈ p which implies y ∈ P .
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Corollary 2.3.16. For a Noetherian ring R and R-module M we have

p ∈ AssRM ⇐⇒ pRp ∈ AssRp Mp

Proof. This follows from (2) and the simple observation p ∈ SpecRp.

Theorem 2.3.17. Let R be a ring and let the following be a short exact sequence of M modules:

0 −→M ′ ϕ−→M
ψ−→M ′′ −→ 0

then AssRM ⊆ AssRM
′ ∪ AssRM

′′.

Proof. Let p = annR x ∈ AssRM , the map R −→ M given by a 7→ ax gives rise to a submodule N of
M which is isomorphic to R/p. If y 6= 0 ∈ N then annA(y) = p as p is prime. Thus if N ∩M ′ 6= ∅
we have that p ∈ AssRM

′. On the other hand, if N ∩M ′ = ∅ then the image of N under ψ is also
isomorphic to A/p and so ψ(N) = annA(y) for any y ∈ ψ(N).

Theorem 2.3.18. Let R be Noetherian and M a finitely generated R-module. Then there exists a
sequence of submodules

0 = M0 ⊆ ... ⊆Mn = M

along with a sequence of prime ideals p1, ..., pn of R such that for i > 0, Mi/Mi−1
∼= A/pi.

Proof. Choose any p1 ∈ AssRM which gives rise to a submodule M1 of M which is isomorphic to A/p1.
Then either M1 = M or not. If not, then consider M/M1 and perform the same process to obtain a
submodule M ′

2 ⊆M/M1, then set M2 to be the preimage of M ′
2 under M −→M/M1. M is Noetherian

by Lemma 2.2.1 so this process eventually terminates.

Remark 2.3.19. The statement of Theorem 2.3.18 provides a statement of some structure of finitely
generated modules over a Noetherian ring and is completely free of any mention of associated primes.
However, the existence of a submodule isomorphic to an integral domain is crucially used in the proof
presented here, so this gives a good justification for the existence of associated primes.

Definition 2.3.20. The support of an R-module M is SuppM := {p ⊆ R |Mp 6= 0}.

Theorem 2.3.21. Let R be Noetherian and M a finitely generated R-module. Then

1. AssRM is a finite set,

2. AssRM ⊆ SuppM ,

3. The minimal elements of AssRM and SuppM coincide.

Proof. (1) Follows from Theorems 2.3.17 and 2.3.18.
(2) By Corollary 2.3.16 we have p ∈ AssRM ⇒ pRp ∈ AssRp Mp which in particular means pRp is prime
and thus not equal to Rp so Mp 6= 0.
(3) By (2) it suffices to show that minimal elements of SuppM are associated. Let p be such. Then
Mp 6= 0 which means there exists an associated prime in AssRp Mp. Thus there is an element of
AssRM ∩ SpecRp by Corollary 2.3.16. We use that Mp is non-zero, (2), and (2) of Theorem 2.3.15 to
obtain:

∅ 6= AssRp Mp = AssRM ∩ SpecRp ⊆ SuppM ∩ SpecRp = {p}

which shows p ⊆ AssRp Mp.

We will make use of the following:
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Lemma 2.3.22. Let I, J be ideals of a ring R and p a prime ideal. Then IJ ⊆ p implies I ⊆ p or
J ⊆ p.

Proof. The proof reduces to showing if R is an integral domain and IJ = 0 then either I = 0 or J = 0.
If neither I nor J were zero then there exists i 6= 0 ∈ I and j 6= 0 ∈ J such that ij 6= 0 ∈ IJ .

The following provides another way of thinking about support of a finitely generated module over a
neotherian ring:

Lemma 2.3.23. If M is a finitely generated R-module then

SuppM = V (annR(M))

where V (annR(M)) is the vanishing set (Definition 2.3.5).

Proof. Let x1, ..., xn be a set of generators for M . We have

Mp 6= 0⇐⇒ ∃i, xi/1 6= 0

⇐⇒ ∃i, annR(xi) ⊆ p

⇐⇒ annR(M) =
n⋂
i=1

annR(xi) ⊆ p

The (⇐=) direction of the final implication uses that M is finitely generated. Indeed,

n∏
i=1

annR(xi) ⊆
n⋂
i=1

annR(xi) ⊆ p =⇒ ∃i, annR(xi) ⊆ p

using Lemma 2.3.22.

Theorem 2.3.24. Let R be Noetherian and M a finitely generated R-module. A submodule N ⊆M is
primary if and only if AssR(M/N) consists of a single element. In this case,

√
annR(M/N) is associated,

and thus is the single element of AssR(M/N).

Proof. First say AssR(M/N) = {p}. Denote annR(M/N) by I. By (3) of Theorem 2.3.21 we have that
Supp(M/N) = V (p), which by Lemma 2.3.23 implies V (p) = V (I), and thus by Corollary 2.3.6, p =

√
I.

Using this, if a ∈ R is a zero divisor, and so by 2 of Lemma 2.3.14, a ∈ p, then a ∈
√
I. That is, N is

primary.
Conversely, say N is primary and let p be associated. For any a ∈ p we have that a is a zero divisor,

and thus a ∈
√
I. This shows that p ⊆

√
I, and by the definition of associated prime we clearly have

the reverse inclusion.

Remark 2.3.25. Recall that an ideal I with the property that
√
I is prime need not be such that I is

primary (Remark 2.3.7). So we do not obtain from Theorem 2.3.24 for free that in the context given
there, annR(M/N) is primary. This however is true (we continue to denote annR(M/N) by I): say
ab ∈ I and a 6∈ I, then ab(M/N) = 0 and a(M/N) 6= 0, which means b is a zero-divisor of M/N and so
b ∈
√
I as N is primary.

Definition 2.3.26. If M is a finitely generated R module with R Noetherian, N ⊆M is primary, and
AssR(M) = {p} then M is p-primary.

Definition 2.3.27. Let M be an R-module, M finitely generated and R Noetherian.

12



� The module M is reducible if there exists submodules N1, N2 ⊆M such that N1 ∩N2 = M with
N1 6= M and N2 6= M . If M is not reducible it is irreducible,

� An irreducible decomposition of M is a finite set of modules N1, ..., Nn ⊆ M such that N1 ∩
. . . ∩Nn = M ,

� A primary decomposition of M is a set of primary modules N1, ..., Nn such that N1∩ . . .∩Nn =
M ,

� If N1∩...∩Nn is either type of decomposition and moreover for all j satisfies: N1∩...∩N̂j∩...∩Nn 6=
M (where N̂j means to omit Nj) then the decomposition is irredundant.

Lemma 2.3.28. Let M be a finitely generated R module with R Noetherian. If N = N1 ∩ ... ∩ Nn

is an irredundant, primary decomposition of a proper submodule N ⊆ M where Ni is pi-primary then
AssR(M/N) = {p1, ..., pn}.

Proof of Lemma 2.3.28. By replacing M with M/N we can assume that N = 0. The module M is
isomorphic to a submodule of

⊕n
i=1M/Ni and so

AssR(M) = AssR

( n⊕
i=1

M/Ni

)
⊆

n⋃
i=1

AssRM/Ni = {p1, ..., pn}

where the inclusion is by Theorem 2.3.17.
For the reverse inclusion, pick an arbitrary pi, we will construct explicitly an element y ∈ M such

that annR(y) = pi. By irredundancy, N1 ∩ ... ∩ N̂i ∩ ... ∩ Nn 6= 0, so choose some element x 6= 0 of
this module. We claim there exists ν > 0 such that pνi x = 0. We know that Ni is pi primary which
means pi =

√
annR(M/Ni). By Lemma 2.3.9 there exists ν > 0 such that pνiM ⊆ Ni, and so pνi x = 0,

establishing the claim.
Assume that ν is such that pν−1

i x 6= 0 and pick any non-zero element of this module, we take this to
be y. We have that piy = 0 and so pi ⊆ annR(y), it remains to show this is an equality.

Since Ni is primary and pi =
√

annR(M/Ni) it suffices to show that every element of pi is a zero-
divisor of M/Ni. We know that piy = 0 so this reduces to showing y 6∈ Ni. Say y ∈ Ni. As y is a scalar
multiple of x, and x ∈ Nj for all i 6= j, we have y ∈ N1 iff y = 0, thus y 6= 0.

Fact 2.3.29. Every finitely generated module over a Noetherian ring admits an irreducible decomposition.

Proof. If the module is reducible, reduce it. This terminates as the module is Noetherian.

Lemma 2.3.30. All irreducible modules are primary.

Proof. Let N ⊆M be a submodule which is not primary. By replacing M by M/N we can assume that
N = 0. Moreover, assume N1 ∩ N2 = 0. By Theorem 2.3.24 we have that AssR(M) has at least two
elements p1, p2. Thus there are two submodules of K1, K2 ⊆M such that Ki

∼= A/pi. For any non-zero
element x ∈ Ki we have annR(x) = pi and so K1 ∩K2 = 0, that is, 0 is reducible.

Fact 2.3.29 and Lemma 2.3.30 together show that every module admits a primary decomposition, in
fact, more can be said, see [, §2.6 Thm 6.8]
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3 Polynomial rings

3.1 The quotient of a polynomial ring by a maximal ideal

Given a field F and maximal ideal m of the polynomial ring F [x1, ..., xn] we obtain a field extension
F [x1, ..., xn]/m of F . The following shows that this is always an algebraic extension:

Lemma 3.1.1. Let m be a maximal ideal of F [x1, ..., xn], then F [x1, ..., xn]/m is an algebraic extension
of F .

This Lemma is a special case of the following more general result:

Lemma 3.1.2. Let K/F be some field extension, and say k1, ..., kn ∈ K are such that F [k1, ..., kn] is an
integral domain. If F [k1, ..., kn] is a field, then it is an algebraic extension of F .

Notice that once this is established, Lemma 7.1.3 follows by simply making the observation that

F [x1, ..., xn]/m = F [[x1]m, ..., [xn]m]

We will need the following lemmas:

Lemma 3.1.3. Let k be a field and l an algebraic extension. Then for any finite sequence of elements
in l, (l1, ..., ln):

� k[l1, ..., ln] = k(l1, ..., ln), and

� there exists polynomials fi ∈ k[x1, ..., xi] for i = 1, ..., n such that kerϕn = (f1, ..., fn) where
ϕn : k[x1, ..., xn]→ k(l1, ..., ln) is the map defined by xi 7→ li.

Proof. The first claim is proved by induction on n. First notice that the ideal generated by the minimal
polynomial f1 of (l1) is contained within the kernel of the surjective map ϕ1 : k[x1] → k[l1] defined
by ϕ1(x1) = l1. Moreoever, if p ∈ k[x1] is such that ϕ1(p) = 0, ie, p(l1) = 0, then we can divide
by f1 to obtain p = f1q + r. Notice that r(l1) = 0. To avoid contradicting minimality of f1, it
must be that r = 0, that is, p ∈ (f1). Thus (f1) = kerϕ1. As f1 is minimal, (f1) is maximal, thus
k[x1]/ kerϕ1 = k[x1]/(f1) ∼= k[l1] is a field, that is, k[l1] = k(l1).

The inductive step is similar; first notice that k[l1, ..., lr] = (k[l1, ..., lr−1])[lr] which by the inductive
hypothesis is equal to k(l1, ..., lr−1)[lr]. As proven in the base case, the map

k(l1, ..., lr−1)[xr] � k(l1, ..., lr−1)[lr]

has kernel given by the ideal generated by the minimal polynomial gr ∈ k(l1, ..., lr−1)[xr] of lr. Again,
since gr is minimal, (gr) is maximal, thus k(l1, ..., lr−1)[lr] = k(l1, ..., lr−1)(lr) = k(l1, ..., lr).

For the second claim, for all r = 1, ..., n, since k(l1, ..., lr−1) = k[l1, ..., lr−1] there exists a polynomial
fr ∈ k[x1, ..., xr−1] such that f(l1, ..., lr−1, xr) = gr. So if p ∈ kerϕn, ie, if p is such that p(l1, ..., ln) = 0,
we can divide p as a polynomial in xn by fn to obtain p = fnqn + rn for some qn and rn(l1, ..., ln−1, xn)
either equal to 0 or such that deg(rn(l1, ..., ln−1, xn)) < deg(fn). By minimality of gn, it follows that
rn(l1, ..., ln−1, xn) = 0. We can thus divide rn by fn−1 to obtain rn = fn−1qn−1 + rn−2. Repeating this
process finitely many times yields

p =
n∑
i=1

(
fnqn + rn−1

)
where r0 = 0. Thus p ∈ (f1, ..., fn).
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The first dotpoint of Lemma 3.1.3 can be extended to the case where infinitely many elements of l
are taken, this is a useful result and so we include it here, but only the finite version will be used to
prove the Nullstellensatz.

Lemma 3.1.4. Let F/k be an algebraic extension and L ⊆ F a subfield. Then k[L] = k(L).

Proof. We prove that every non-zero element x of k[L] is a unit. Write x = α1x1 + ...+αnxn for elements
αi ∈ k, xi ∈ L. By the finite case we have k(x1, ..., xn) = k[x1, ..., xn] ⊆ k[L].

Proof of Lemma 3.1.2. We will prove the contrapositive. It can be assumed that k1, ..., kn are ordered
such that k1, ..., kr form a transcendence basis of F (k1, ..., kn) so that F (k1, ..., kn) is an algebraic
extension of F (k1, ..., kr). By Lemma 3.1.3 there exists fr+i ∈ F (k1, ..., kr)[xr+1, ..., xi] such that the
kernel of the map F (k1, ..., kr)[xr+1, ..., xn]→ F (k1, ..., kn) which maps xr+i to kr+i is given by (fr+1, ..., fn).
Since the coefficients of each fr+i are in F (k1, ..., kr), by clearing denominators, there exists g ∈
F [k1, ..., kr] such that for all i, gfr+i ∈ F [k1, ..., kr, xr+1, ..., xn]. In other words, for all i,

fr+i ∈ (F [k1, ..., kr, xr+1, ..., xn])g

Now, (F [k1, ..., kr])g is not a field, as F [k1, ..., kr] is isomorphic to a polynomial ring with infinitely many
irreducible elements, so we can pick an irreducible element which is not in the unique factorisation
of g, this element will not be a unit in (F [k1, ..., kr])g. Thus there exists a non-trivial ideal I of
(F [k1, ..., kr])g. The module (F [k1, ..., kn])g is free over (F [k1, ..., kr])g, a fact we leave as an exercise, and
so I(F [k1, ..., kn])g is a non-trivial ideal of (F [k1, ..., kn])g. Lastly, notice that if F [k1, ..., kn] were a field,
then so would be (F [k1, ..., kn])g, thus F [k1, .., kn] is not a field.

3.2 Hilbert’s Nullstellensatz

The goal of this section is to prove Hilbert’s Nullstellensatz, for part 2 of Theorem 3.2.2 we will need
the content of Section 3.1. Throughout, F is a field:

Definition 3.2.1. An algebraic zero of a subset Φ ⊆ F [x1, ..., xn] is a sequence (α1, ..., αn) of elements
in an algebraic closure F̄ such that f(α1, ..., αn) = 0 for all f ∈ Φ.

Notice that if a root exists in any algebraic closure it exists in them all, so it makes sense to talk
about an algebraic zero in absence of a particular algebraic closure.

Theorem 3.2.2. Let Φ ⊆ F [x1, ..., xn], and write (Φ) for the ideal generated by Φ,

1. if Φ admits no algebraic zeros, then (Φ) = F [x1, ..., xn].

2. let f ∈ F [x1, ..., xn] be such that f(α1, ..., αn) = 0 for all algebraic zeros (α1, ..., αn) of Φ, then
there exists r > 0 such that f r ∈ (Φ).

First we show how 1 proves 2.

Proof of part 1 of Theorem 3.2.2. Consider the set Φ∪{1−fy} ⊆ F [x1, ..., xn, y]. Then by the assumption
of f , this set has no algebraic zeros. Thus by 1 (Φ ∪ {1 − fy}) = f [x1, ..., xn, y], so there exists sets of
polynomials {hi}i∈I ⊆ Φ, {pi}i∈I ⊆ F [x1, ..., xn, y] and polynomial q ∈ F [x1, ..., xn, y] such that

1 =
∑
i∈I

pi(x, y)hi(x) + q(1− f(x)y)
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Thus the image of both sides of the equation are equal under the map F [x1, ..., xn, y]→ (F [x1, ..., xn])f
given by substituting 1/f for y are equal, ie,

1 =
∑
i∈I

pi(x, 1/f(x))hi(x) ∈ (F [x1, ..., xn])f

clearing denominators then gives the result.

Proof of part 2 of Theorem 3.2.2. Assume that (Φ) 6= F [x1, ..., xn] and let m be a maximal ideal containing
(Φ). F [x1, ..., xn]/m over F being algebraic (7.1.3) admits an embedding θ into F̄ . For any f ∈ Φ,
f(α1, ..., αm) = f(θ([x1]), ..., θ([xn])) ∈ ker(θ), and so (θ([x1]), ..., θ([xn])) is an algebraic zero of Φ.

3.3 Hilbert’s Basis Theorem

Theorem 3.3.1 (Hilbert’s Basis Theorem). If R is Noetherian then so is R[x].

Proof. Say I ⊆ R[x] is an ideal which is not finitely generated. Let f0 ∈ I be of minimal degree, and
fr ∈ I \ (f0, ..., fr−1) be of minimal degree (note \ here is set exclusion, not modulus). Denote by ai
the coefficient of the leading term of fi. The sequence (a0) ⊆ (a0, a1) ⊆ (a0, a1, a2) ⊆ . . . eventually
stabilises and so that (a0, ..., aN−1) = (a0, ..., an) for any n ≥ N . Thus we can write

aN =
N−1∑
i=0

uiai

for some ui ∈ R. Consider the following polynomial:

g =
N−1∑
i=0

uix
deg fN−deg fifi

which has the same leading term as fN and is in (f0, ..., fN−1). fN itself is not in (f0, ..., fN−1) and so
neither is g − fN , which has smaller degree than fN , contradicting minimality.

Corollary 3.3.2. Every finitely generated algebra over a Noetherian ring is Noetherian.

Proof. Using that quotients of Noetherian rings are Noetherian.

3.4 Noether normalisation

There is a great note by Hochster http://www.math.lsa.umich.edu/~hochster/615W10/supNoeth.

pdf. We extend the notion of algebraic independence (Definition 4.2.2) to make sense over any k-algebra
(not just over a field):

Definition 3.4.1. Let A be a k-algebra. A set of elements {α1, ..., αn} ⊆ A are algebraically
independent if the ring morphism k[x1, ..., xn] −→ A which maps xi 7→ αi is injective.

Lemma 3.4.2. Let k be a field and A ∼= k[α1, ..., αn] a finitely generated k-algebra. Then there exists
algebraically independent elements {β1, ..., βr} ⊆ A such that A is a finite k[β1, ..., βr]-module. In other
words, every finitely generated k-algebra is a finite module over a polynomial ring.
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Proof. We proceed by induction on n. k is a finite k-module so the case when n = 0 is trivial. Say
n > 0 and the result holds for k-algebras finitely generated by n− 1 elements. If n = r then we can take
βi = αi and then A is finitely generated by 1 over A. So, assume there exists a non-zero polynomial
f ∈ k[x1, ..., xn] such that f(α1, ..., αn) = 0. Take N to be any integer which is greater than every
exponent of every xi in f . Consider the following set of generators of A:

{α′i := αi − αN
i

n , for i < n and αn}

These satisfy the polynomial g(x1, ..., xn) := f(x1+xN1 , x2+xN
2

2 , ..., xn−1+xN
n−1

n−1 , xn), moreover, for every

monomial xd11 ...x
dn−1

n−1 x
dn
n in f we have (x1 +xNn )d1 ...(xn−1 +xN

n−1

n )dn−1xdnn whose highest degree monomial

is given by xdn+d1N+...+dn−1Nn−1

n whose exponent, by the uniqueness of representations of integers base
N , is uniquely determined by d1, ..., dn. This means that in g none of these terms cancel out, and so
there exists a highest degree power of xn in g and it is of the form cxmn for some c ∈ k and integer m.

We can divide through by c to replace g with a monic polynomial h in xn with coefficients in
k[x1, ..., xn−1] such that h(α′1, ..., α

′
n−1, αn) = 0. This shows that αn is integral over k[α′1, ..., α

′
n−1] and

thus k[α′1, ..., α
′
n−1, αn] is a finite k[α′1, ..., α

′
n−1]-module (Lemma 6.1.9). Since k[α′1, ..., α

′
n−1] is generated

by n− 1 elements, the inductive hypothesis implies there is algebraically independent elements β1, ..., βl
of the ring k[α′1, ..., α

′
n−1] such that k[α′1, ..., α

′
n−1] is a finite k[β1, ..., βl] module. The result follows by

transitivity of finiteness of modules.

If A is a k-integral domain, then l = tr. degk A. This is because k[β1, ..., βl] −→ A is finite and thus
integral, which in turn implies k(β1, ..., βl) −→ FracA is algebraic (Lemma 6.1.11). Thus tr. degk A =
tr. degk k(β1, ..., βl) = l.

Example 3.4.3. Let A be the finitely generated k-algebra k[x1, x2, x3, x4]/(x1x2−x3x4) which we write
as k[α1, ..., α4]. Then f(X1, X2, X3, X4) := X1X2 −X3X4 is such that f(α1, ..., α4) = 0, so consider the
polynomial

f(X1 +X2
4 , X1 +X4

4 , X1 +X8
4 , X4) = (X1 +X2

3 )(X2 +X4
4 )− (X3 +X8

4 )X4 = . . .+X9
4

which is a monic polynomial such that f(α1 − α2
4, α2 − α4

4, α3 − α8
4, α4) = 0. This shows that α4 is

integral over k[α1, α2, α3] and thus k[α1, α2, α3, α4] is a finite k[α1, α2, α3]-module with generating set
{1, α4, ..., α

l
4} for some l. Moreover, {α1, α2, α3} is an algebraically independent set, and so A is a finitely

generated k[α1, α2, α3]-module.

4 Fields

4.1 Algebraic closure

Every integral domain R can canonically be embedded within a field in the following way:

Definition 4.1.1. Let Frac(R) be the field of fractions of R, the construction of which mimics that
of the rational numbers from the integers: The underlying set of Frac(R) consists of equivalence classes
of pairs (x, y) ∈ R × R \ {0} where two pairs (x, y), (x′, y′) are equivalent if xy′ − x′y = 0. Addition
is defined by (x, y) + (x′, y′) = (xy′ + x′y, yy′) and multiplication (x, y) · (x′, y′) = (x · x′, y · y′). The
canonical injection ϕR is given by x 7→ (x, 1).

This field is minimal as made precise by the following Lemma:

17



Lemma 4.1.2. Say R is an ID and let ψ : R → F is a ring homomorphism where F is a field. Then
there exists a unique morphism γ : Frac(R)→ F such that the following diagram commutes

R Frac(R)

F

ϕR

ψ
γ

Proof. The map γ(x, y) = ψ(x) · ψ(y)−1 is the unique map.

If a field F is such that for every polynomial p ∈ F [x] there exists f ∈ F which is a root of p, then
F is said to be algebraically closed.

Lemma 4.1.3. Every field F can be embedded into an algebraically closed field F̄ .

Proof. Let Λ be the collection of monic, irreducible polynomials with coefficients in F . For each f ∈ F ,
let uf,0, ..., uf,d be formal indeterminants, where d is the degree of f . Let F [{U}] be the polynomial ring
over F where U is the collection of all uf,i. Write

f −
d∏
i=0

(x− uf,i) =
d−1∑
i=0

αf,ix
i ∈ F [{U}][x]

Let I be the ideal generated by αf,i. I is not all of F [{U}] so there exists a maximal ideal M containing
I. Let F1 = F [{U}]/M . Repeat this process to define fi for all i > 0. Then ∪∞i=1Fi is algebraically
closed which F embeds into, and moreover is an algebraic extension of F .

This constructed field will be denoted F̄ and it along with the embedding F � F̄ is called the
algebraic closure of F and is denoted F̄ . It is essentially unique in a way made precise by the
following Lemma:

Lemma 4.1.4. Let F be a field and ϕ : F → L a ring homomorphism such that L is algebraic over F .
Then if L is algebraically closed, L ∼= F̄ .

Proof. The collection of pairs (K, σ) where K is an algebraic extension of F and σ : K → L is a
ring homomorphism, with partial order (K, σ) < (K ′, σ′) defined by K � K ′ and σ′ �K= σ defines a
non-empty poset closed under ascending chains. By zorn’s Lemma, there thus exists a maximal element
which can be shown to be F̄ . Since L is algebraic over F it then follows that σ : K → L is surjective,
thus this is an isomorphism.

Notation 4.1.5. Given a field extension K/F , and elements k1, ..., kn ∈ K we denote

� the smallest subring of K containing F and k1, ..., kn by F [k1, ..., kn],

� the smallest subfield of K containing F and k1, ..., kn by F (k1, ..., kn).

Notice that F (k1, ..., kn) ∼= Frac(F [k1, ..., kn]). So we can define these notions without the presence
of a field extension:

Notation 4.1.6. Given a field k we denote

� k[x1, ..., xn]/I by k[α1, ..., αn],

� Frac
(
k[x1, ..., xn]/I

)
= Frac k[α1, ..., αn] by k(α1, ..., αn).

18



4.2 Transcendence degree

Throughout, let K/F be a field extension.

Definition 4.2.1. An element f of a field F is transcendental if whenever p ∈ F [x] admits f as a
root, p is the zero polynomial.

Similarly, there are algebraically independent sets :

Definition 4.2.2. A subset S ⊆ F is algebraically independent if the map

K[xs | s ∈ S]→ F

which maps xs 7→ s is injective.

Definition 4.2.3. An algebraically independent subset S of F is a transcendence basis of K/F if F
is an algebraic extension of K(S).

Lemma 4.2.4. A transcendence basis always exists, and the cardinality of any two such bases are always
equal.

Proof. That a transcendence basis always exists can be shown using a similar method to how a basis
for a vector space always exists; apply Zorn’s Lemma to the poset of algebraically independent sets S
of K to yield a maximal element B (note: if this poset is empty, then the empty set can be taken as a
basis for K/F ). It can then be shown that K is an algebraic extension of F (B) [2, §9.26].

Next we prove the following statement by induction on n: if E/J is any field extension, and B =
{b1, ..., bn}, B′ = {b′1, ..., b′m} for some m ≤ n are bases for E/J then m = n. This establishes the case of
the claim when the cardinality of the two bases are finite.

If n = 0 then E/J is an algebraic extension, which means n = m = 0.

Now say n > 0. SinceB′ is a basis, there exists a polynomial f ∈ J [x, y1, ..., ym] such that f(b1, b
′
1, ..., b

′
m) =

0. This polynomial f must involve x and some yi, lest either B′ not be a basis, or b1 be algebraic over
J . Without loss of generality, assume i = 1.

Let B∗ = {b1, b
′
2, ..., b

′
m}. Our next claim is that B∗ is algebraically independent over J . Indeed, if

g ∈ J [x1, ..., xm] were such that g(b1, b
′
2, ..., b

′
m) = 0, where g necessarily involves x1, then b1 is algebraic

over J(b′2, ..., b
′
m). This in turn implies b′1 is algebraic over J(b′2, ..., b

′
m), due to the existence of f .

Thus {b2, ..., bn} and {b′2, ..., b′m} are bases for E/J(b1), which by the inductive hypothesis implies n = m.

Now say B,B′ are such that |B′| ≤ |B| and |B| is infinite, it will be shown throughout the course
of this part of the argument that it is necessarily the case that |B′| is also infinite, so this is the last
case to consider.

For each b ∈ B′ choose a polynomial p[x1, ..., xn] and elements b2, ..., bn of B such that p(b, b2, ..., bn) = 0.
Let B∗ be the set containing all such bi for all such p. Then B∗ ⊆ B and we claim moreover that
B∗ = B. To see this, say β ∈ B \ B∗. Then β is algebraic over F (B′) and so is algebraic over F (B∗),
a contradiction. Thus |B| = |B∗| which since |B| is infinite implies that |B′| is infinite. It now follows
from |B′| being infinite that |B∗| = |B′|.
Lemma 4.2.5. Any generating set contains a transcendence basis.

Proof. Similar to the corresponding statement about bases of vector spaces (we are working with fields
here).
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4.3 Perfect fields and separable elements

Throughout, k is a completely arbitrary field, possibly not algebraically closed, possibly of positive
characteristic. Say k has characteristic p, denote by kp the image of the Frobenius Endomorphism
on k which maps x 7→ xp. This is indeed a homomorphism, with additivity following from the important
relation (x + y)p = xp + yp. Since k is a field we have that xp = 0 implies x = 0 so indeed this map is
injective. Of particular interest is the case when this endomorphism is also surjective:

Definition 4.3.1. A field is perfect if the characteristic is 0, or it is not 0 and the Frobenius Endomorphism
is an isomorphism.

Example 4.3.2. Examples and a non-example of perfection:

� If k is finite then the Frobenius Endomorphism is an injective map between two sets with equal
cardinality, and thus is an isomorphism. So every finite field is perfect.

� If k is algebraically closed then it is perfect.

� Let Fp be the finite field of characteristic p > 0. The field Fp(t) is not perfect, see Example 4.3.9.

Lemma 4.3.3. Let A be a UFD. If f ∈ A is an irreducible polynomial of positive degree then its image
in FracA is also irreducible.

Proof. Write f = f1f2 for polynomials f1, f2 ∈ FracA, we can write fi =
f ′i
ai

with ai ∈ A. We now have
that f divides f ′1f

′
2 and since f is irreducible and A is a UFD we thus have f is prime and so f divides

either f ′1 or f ′2, say f divides f ′1. This implies deg f ≤ deg f ′1. As A is an integral domain we also have
deg f ′1 + deg f ′2 = deg f . It follows that deg f ′2 = 0 and so f2 is a unit. Since deg f > 0 it follows that f1

is not a unit, thus f is irreducible in FracA.

Definition 4.3.4. An element a of a field k admits an lth root if there exists b ∈ k such that bl = a.

An alternative condition for a field being perfect will involve its formal derivative:

Definition 4.3.5. The formal derivative (often abbreviated to derivative) of a polynomial f =∑n
i=0 aix

i ∈ k[x] is f ′ :=
∑n−1

i=1 iaix
i−1.

Lemma 4.3.6. Let k be a field of characteristic p and let a ∈ k be an element which does not admit a
pth root. For any e ≥ 0, the polynomial xp

e − a is irreducible in k[x].

Proof. We proceed by induction on e, the result holds trivially if e = 0. Assume e > 0 and the result
holds for e− 1. Let f ∈ k[x] be a monic, irreducible polynomial which divides xp

e − a. Let d ≥ 0 be the
greatest integer such that fd divides xp

e − a and let g ∈ k[x] be such that

fhg = xp
e − a (19)

Taking derivatives of both sides and dividing by fd−1 we obtain:

0 = df ′g + fg′ (20)

This equation implies g divides fg′. Since gcd(f, g) = 1 it follows that g divides g′, which means g′ = 0.
Thus g ∈ k[xp]. Moreover, (20) now reads 0 = df ′g which implies df ′ = 0, that is, fd ∈ k[xp]. Equation
(19) now can be written as f1(x)g1(x) = xp

e−1 − a where f1(xp) = f(x)d and g1(xp) = g(x). By the
inductive hypothesis, this is irreducible, and so g1 is a uni. In fact, g1 = 1 as both xp

e−1 − a and f1 are
monic. We now have

f1(x) = xp
e−1 − a, f(x)d = xp

e − a
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We finish the proof by proving d = 1, first we show p does not divide d. Say it did, then f(x)d would be
a power of f(x)p which would imply all the coefficients of f(x)d have a dth root, which would mean all
the coefficients of xp

e − a would have a dth root (as such elements form a subring), but this contradicts
the assumption that a does not have a pth root. Since p does not divide d, the equation df ′ = 0 implies
f ′ = 0 which means f ∈ k[xp], so we can write f(xp)− f2(x). Thus the equation f1(xp) = f(x)d implies
f1(x) = fd2 and so to avoid contradicting irreducibility of xp

e−1 − a we must have that d = 1.

Definition 4.3.7. An irreducible polynomial f ∈ k[x] is separable if f ′ 6= 0 and inseperable if f ′ = 0.
An arbitrary polynomial f ∈ k[x] of positive degree is is separable if its irreducible components are.
Otherwise it is inseparable.

We now give an alternate characterisation of a field being perfect :

Lemma 4.3.8. A field k is perfect if and only if every irreducible polynomial f ∈ k[x] is separable.

Proof. Assume k is perfect. Let f be an arbitrary polynomial with zero derivative. Then f ∈ k[xp] so
we can write f =

∑n
i=0 αix

i where αi ∈ k. Since k is perfect there exists α′i such that (α′i)
n = αi. Thus

we have
∑n

i=0 αix
i =

(∑n
i=0 α

′
ix
)n

. That is, f is reducible.
Conversely, say k is imperfect and let a ∈ k admit no nth root for some n > 1. Consider the

polynomial xp − a, this has zero-derivative so it remains to show that this is irreducible. This follows
from Lemma 4.3.6.

Example 4.3.9. The field Fp(t) is imperfect. It admits at least one irreducible, separable polynomial.

Definition 4.3.10. Given a field extension K/k, an element a ∈ K which is algebraic over k is
separable over k if its minimal polynomial is. Otherwise it is inseparable.

The following gives a reduction to the problem of separability of an element.

Lemma 4.3.11. An element a ∈ F of a field extension F/k is separable if and only if f ′(a) 6= 0 where
f is the minimal polynomial of a.

Proof. We should that a is inseparable if and only if f ′(a) = 0. If f ′(a) = 0 then by minimality of f we
have that f ′ = 0. Conversely f ′ = 0 implies f ′(a) = 0.

The following lemma show that the derivative of a polynomial which vanishes at a separable element
also vanishes at that separable element, thus extending Lemma 4.3.11:

Lemma 4.3.12. Let a ∈ k be an inseparable element of a field extension F/k and let g ∈ k[x] be a
polynomial such that g(a) = 0, then g′(a) = 0.

Proof. Let f ∈ k[x] be the minimal polynomial of a. That g(a) = 0 implies f divides g and so fh = g
for some h, taking derivatives gives the result.

5 Field extensions

Extensions of algebraic objects can be studied at various levels of generality, we may have an extension
of groups, or an extension of rings, etc. A bottom up approach would be to consider extensions of
decreasingly “bare” algebraic objects, perhaps starting at group extensions. However, the nature of the
theory changes. For example, when considering an extension of fields K/k in the special situation where
K is a finite dimensional vector space over k, one may ask “what does the dimension of this vector space
mean for the extension”? This is a question which in the more general setting of an extension of rings
A/B where A is a finitely generated B-module cannot be asked.

We thus consider the theory of field extensions in this Section, and the theory of extensions of rings
(integral extensions) separately in Section 6.
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Definition 5.0.1. Given a field extension K/k, an element α ∈ K is:

� algebraic if there exists a polynomial f ∈ k[x] such that f(α) = 0. Since k[x] is a UFD for any
algebraic α there exists a unique, monic, irreducible polynomial f̂ ∈ k[x] such that f̂(α) = 0 which
we call the minimal polynomial of α,

� purely inseparable over k in the case where k has characteristic p 6= 0 and there exists e ≥ 0
such that αp

e ∈ k,

Recall also Definition 4.3.10 that given a field extension K/k and an element α ∈ K is separable if
its minimal polynomial admits a nonzero formal derivative.

Definition 5.0.2. A field extension K/k is:

� algebraic if every element of K is,

� finitely generated if there exists α1, ..., αn ∈ K such that K = k(α1, ..., αn),

� finite if the dimension of K as a k-vector space is finite,

� separable if every element of K is, otherwise the extension is inseparable,

� purely inseparable if every element of K is,

� separably generated ifK/k is finitely generated, and there exists a transcendence basis {α1, ..., αm} ⊆
K such that K/k(α1, ..., αm) is a separable. Such a set of elements {α1, ..., αm} is a separating
transcendence basis.

Proposition 5.0.3. Let K/k be a field extension, then:

� if K/k is finite then it is algebraic,

� if K/k is finitely generated and algebraic, then it is finite,

Proof. The respective arguments are:

� if K/k is a finite field extension and say the dimension of K as a k-vector space is d, then for any
α ∈ K, the set {1, α, . . . , αd} is linearly dependent, and so α is algebraic.

� if α ∈ K is such that K = k(α) and moreover, α is algebraic over k, then the extension K/k is
finite, this is because there exists a polynomial p(x) ∈ k[x] such that p(α) = 0, which implies αr

for some r can be written as a linear combination of 1, ..., αr−1. Continuing inductively, the result
follows.

5.1 Separable extensions

We want to introduce the terminology of a root’s multiplicity but we need to show this is well defined:

Lemma 5.1.1. Let F1/k and F2/k be two field extensions and a ∈ k a root of a polynomial g ∈ k[x].
Write g(x) = (x − a)r1f1(x) and g(x) = (x − a)r2f2(x) where fi ∈ Fi[x] and fi(a) 6= 0. Then r1 = r2.
This integer is the multiplicity of the root a.
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Proof. Assume without loss of generality that r1 ≥ r2. Let k̄ be an algebraically closed field and consider
F1 and F2 as subfields of k̄. Then inside k̄[x] we have f2(x) = (x − a)r1−r2f1(x), but f2(a) 6= 0 and so
r1 = r2.

Lemma 5.1.2. If K/F is a separable extension and L is any field such that F ⊆ L ⊆ K then K/L is
a separable extension.

Proof. Let a ∈ K be separable over F . The minimal polynomial f ∈ F [x] of a admits a as a simple root
(a root of multiplicity 1). The image of f in L[x] must also have a as a simple root otherwise f in K[x]
would have a multiple root, which by Lemma 4.3.11 would contradict a being separable (over F ). Thus
by Lemma 4.3.12 we have the result.

From here on, assume k has characteristic p 6= 0.

Lemma 5.1.3. If an element α ∈ F is separable over k and is purely inseparable, then α ∈ k.

Proof. Let e be the least integer such that αp
e ∈ k. Suppose for a contradiction that e 6= 0, then αp

e
does

not have a root in k and so the polynomial p(x) := xp
e − αpe is irreducible (Lemma 4.3.6). This is also

monic, and thus is the irreducible polynomial of α. By separability, p′ 6= 0, but this is a contradiction,
so e = 0.

Definition 5.1.4. Given a polynomial f ∈ k[x], the greatest integer e such that f ∈ k[xp
e
] is the

reduced degree of f .

Recall the notation kp for the subfield of k given by pth powers of elements of k.

Lemma 5.1.5. Say F/k is a separable extension, then k = k[F p]. Conversely, if k = k[F p] and F/k is
finite, then F/k is separable.

Proof. By Lemma 3.1.4 we have that k[F p] is a field. We have k ⊆ k[F p] ⊆ F so since F/k is separable,
by Lemma 5.1.2 we have F/k[F p] is separable. Moreover, since F ⊆ k[F p] we have that every element
of F is purely inseparable over k[F p]. By Lemma 5.1.3 we have F = k[F p].

For the converse, we first prove the following claim: let α1, ..., αn be a linearly independent set of F
as a k-vector space, then αp1, ..., α

p
n is also linearly independent. We know the Frobenius endomorphism

is an isomorphism onto its image, so αp1, ..., α
p
n form a linearly independent set in F p as a k-vector space.

By assumption though, k[F p] = F and so this set is linearly independent in F .
Let a ∈ F be an element not in k and let f ∈ k[x] be the minimal polynomial of a, say deg f = n.

Say a is inseparable and let e < n be the reduced degree of f . To avoid contradicting minimality of n we
must have 1, a, a2, ..., ae is linearly independent, but 1, ap

e
, a2pe , ..., aep

e
we claim is linearly independent.

Since f ∈ k[xp
e
] we can write f(x) = f1(xp

e
) where f1 ∈ k[xp

e
]. We have 0 = f(a) = f1(ap

e
).

Corollary 5.1.6. If x is separable over k then k(x) = k(xp). Conversely if k(x) = k(xp) then x is
separable over k.

Lemma 5.1.7. If α1, ..., αn ∈ F are separable over k then F/k(α1, ..., αn) is separable.

Proof. By induction, apply Corollary 5.1.6.

Lemma 5.1.8. If k ⊆ L ⊆ K are fields with L/K separable and K/L separable then K/k is separable.

Proof. See [5, II §5, 9].
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5.2 Theorem of a Primitive element

In this Section, k is an arbitrary field of infinite cardinality (not necessarily algebraically closed).

Lemma 5.2.1. If p ∈ k[x] is irreducible, then p ∈ (k[x])({xi}i∈I) is irreducible for any collection of
indeterminants {xi}i∈I .

Proof. Write
p(x) = p1(x, xi1 , ..., xin1

)p2(x, xj1 , ..., xjn2
) ∈ (k[x])[{xi}i∈I ] (21)

for some elements i1, ..., in1 , j1, ..., jn2 ∈ I. Then (21) still holds if we set xik = xjl = 0 for all k =
i1, ..., in1 , l = j1, ..., jn2 . We obtain p(x) = p1(x, 0, ..., 0)p2(x, 0, ..., 0) which we consider as an equation in
the ring k[x], by irreducibility of p we have deg p(x) = deg p1(x), say. Thus deg p1 ≥ deg p and so p2 has
degree 0 in x. Hence, p1 considered as an element of (k[x])({xi}i∈I) is a unit.

Notation 5.2.2. Given a polynomial f ∈ k[x1, ..., xn] we denote (∂/∂xi)f by fx.

Theorem 5.2.3 (Theorem of a primitive element). Let F/k be a finite, separable extension. Then there
exists α ∈ F such that F = k(α).

If α1, ..., αn ∈ F are such that F = k(α1, ..., αn) (which exists as F/k is finite, hence finitely
generated) then α can be taken to be a linear combination of α1, ..., αn which coefficients in k.

Proof. Since F/k is finite, there exists α1, ..., αn ∈ F such that F = k(α1, ..., αn). We let k∗ :=
k(x1, ..., xn) and F ∗ := F (x1, ..., xn). Notice that F ∗ = k∗(α1, ..., αn) and since αi is separable over k
we have that αi, when considered in F ∗, is separable over k∗ for all i, by Lemma 5.2.1. It then follows
from Lemma 5.1.7 that F ∗ is a finite, separable extension of k∗. Consider the element β(x1, ..., xn) :=
α1x1 + ... + αnxn of F ∗ and let f be the minimal polynomial of β(x1, ..., xn) in k∗[x]. By clearing
denominators, there exists h ∈ k[x1, ..., xn], g ∈ k[x, x1, ..., xn] such that

h(x1, ..., xn)f(x, x1, ..., xn) = g(x, x1, ..., xn) ∈ k[x, x1, ..., xn] (22)

subject to
g(β(x1, ..., xn), x1, ..., xn) = 0 (23)

By (22) we have
gx(x, x1, ..., xn) = h(x1, ..., xn)fx(x, x1, ..., xn) (24)

and since β(x1, ..., xn) is separable over k∗ we have

gx(β(x1, ..., xn), x1, ..., xn) = h(x1, ..., xn)fx(β(x1, ..., xn), x1, ..., xn) 6= 0 (25)

Since k is infinite we can find elements c1, ..., cn ∈ k such that gx(β(c1, ..., cn), c1, ..., cn) 6= 0.
On the other hand, by (23) and the chain rule we have

gxi = αigx(β(x1, ..., xn), x1, ..., xn) + gxi(β(x1, ..., xn), x1, ..., xn) = 0 (26)

So, setting α = α1c1 + ...+ αncn we have:

0 = αigx(α, c1, ..., cn) + gxi(α, c1, ..., cn) (27)

which implies αi ∈ k(α), thus k(α) = F .

Remark 5.2.4. In the proof of Theorem 5.2.3 we only used the fact that F/k is finitely generated
and separable, however, if F/k is separable then it is in particular algebraic. Hence also being finitely
generated, we have by Proposition 5.0.3 that F/k is finite. So this hypothesis is equivalent to what was
taken here.
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5.3 Separating transcendence bases

Remark 5.3.1. Considering the definition of separably generated one might think that a field extension
K/k is finitely generated if there exists α1, ..., αn ∈ K such that K/k(α1, ..., αn) is a finite extension.
Notice however, that K/k(α1, ..., αn) being finite implies it is algebraic, and so every element x ∈ K
is a root of a monic polynomial p(x) with coefficients in k(α1, ..., αn), that is, there exists β1, ..., βn ∈
k(α1, ..., αn) such that

xn + β1x
n−1 + . . .+ βn−1x+ βn = 0

so since K is a field, we have

x = β1 + (x−1)β2 + . . .+ (x−1)n−2βn−1 + (x−1)n−1

which is to say K = k(α1, ..., αn), so these definitions are equivalent.

Theorem 5.3.2. Let K/k be an extension which is finitely generated and separably generated. Then
any transcendence basis is a separating transcendence basis.

Proof. We proceed by induction on tr. degkK := r. Say r = 1 and let {α} be a separating transcendence
basis, in other words, α ∈ K is transcendental over k and K/k(α) is separable. Let β ∈ K be any element
transcendental over k. We need to show that K/k(β) is separable. First, extend β to a generating set
{β, β1, ..., βn} (which is necessarily finite by hypothesis of K/k), and notice that each βi and β are
separable over k(α) (as K = k(β, β1, ..., βn) and K/k(α) is separable). We have k(α) ⊆ k(α, β) ⊆ K and
thus (Lemma 5.1.2) K/k(α, β) is separable. By Lemma 5.1.8 it thus remains to show that k(α, β)/k(β)
is separable, that is, α is separable over k(β).

Since tr. degkK = 1 and both α, β are transcendental, there exists a polynomial f(x, y) ∈ k[x, y]
such that f(α, β) = 0. Moreover, as k[x, y] is a UFD we may assume that f is irreducible. Assume
for a contradiction that α is inseparable over k(β). Then by Lemma 4.3.12 we have f ′(x, β) = 0 and
thus f(x, β) ∈ k(β)[xp], write f(x, β) = g(xp, β). We know that β is separable over k(α) (as K/k(α)
is separable) and so for any irreducible polynomial j(y) ∈ k(α)[y] we have j′(β) 6= 0. The polynomial
g(αp, y) is irreducible, to see this, notice α and hence αp is transcendental over k, so g(αp, y) reducible
implies g(xp, y) and hence f(x, y) reducible. Thus, ∂

∂β
g(β, αp) 6= 0. This implies by Lemma 4.3.12 that

β is separable over k(αp).
On the other hand, α is transcendental and so α 6∈ k(αp) which means xp − αp ∈ k(αp)[x] is the

minimal polynomial of α over k(αp) which shows α is inseparable over k(αp). Thus K/k(αp) cannot
possibly be separable. and noting that K = k(β, β1, ..., βn), we have that β is inseparable over k(αp)
(Lemma 5.1.7). Thus we have a contradiction.

For the inductive step, let {α1, ..., αr} be a separating transcendence basis for K/k and let {β1, ..., βr}
be a transcendence basis. We extend {β1, ..., βr} to a set of generators {β1, ..., βr, γ1, ..., γl} of K. Now,
{α2, ..., αr} form a separating transcendence basis for k(β1)(β2, ..., βr, γ1, ..., γl) and so by the inductive
hypothesis there is a subset of {β1, ..., βr} consisting of r−1 elements which is a separating transcendence
basis, say this set is {β1, ..., βr−1}. Extend {α1, ..., αr} to a generating set {α1, ..., αr, δr+1, ..., δn}, then
K = k(α1, ..., αr−1)(αr, δr+1, ..., δn) and via this decomposition we have that K is a finitely generated
and separably generated by the single variable αr. This must be separating by the inductive hypothesis
again and so the result follows.

Lemma 5.3.3. Let K be a finitely generated k-field with tr. degkK = r, and {α1, ..., αn} a set of
generators. If K/k is not separably generated then there exists i1, ..., ir+1 such that k(αi1 , ..., αr+1)/k is
not separably generated.

Proof. We proceed by induction on n, if n = r + 1 then there is nothing to show. Assume n > r + 1
and assume the result holds for the n − 1 case. Assume wlog that α1 is algebraically dependent on
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α2, ..., αn. If k(α2, ..., αn)/k is not separably generated then the result holds by the inductive step.
Assume k(α2, ..., αn)/k is separably generated. Then by Theorem 5.3.2 there exists i2, ..., ir+1 such that
α2, ..., αir+1 is a separating transcendence basis of k(α2, ..., αn). Since α1 is algebraically dependent on
α2, ..., αn we have that k(α2, ..., αn) = k(α1, ..., αn) = K, and thus K/k(α1, αi2 , ..., αir+1) is separable, so
since K/k is not, it follows from Lemma 5.1.2 that k(α1, αi2 , ..., αir+1)/k is not.

Theorem 5.3.4. Let k be perfect. Every algebraic extension of k is separable.

Proof. Let α ∈ K and let f(x) ∈ k[x] be the minimal polynomial of α. Write f(x) = g(xp
d
) for some

d ≥ 0 with g separable. Then g(xp
d
) = h(x)p

d
for some h (as k is perfect). Since f is irreducible, we

have that d = 0 so that f(x) = g(x) and thus f is separable.

Corollary 5.3.5. If k is a perfect field then any finitely generated extension of k is separably generated.

6 Integral extensions and jacobson rings

6.1 Cayley-Hamilton Theorem, finite modules, and integrality

Definition 6.1.1. A morphism f : A → B is a finitely generated A-algebra or is of finite type
if B is an A-algebra and there exists a surjective algebra homomorphism A[x1, ..., xn] → B. In such a
setting we often denote the subring f(A) by A, even though f need not be injective.

Definition 6.1.2. Let B be an A algebra. An element b ∈ B of B is integral over A if there exists
a monic polyonomial f(x) ∈ A[x] such that f(b) = 0. The ring B is integral over A if every element
b ∈ B is integral over A. A homomorphism of finite type f : A → B is integral if B is an integral
extension of A.

Theorem 6.1.3 (Cayley-Hamilton Theorem). Let M be a finitely generated A-module (note: module,
not algebra) and ϕ : M →M an endomorphism. Then ϕ satisfies its own characteristic equation.

Throught, we denote the n × n identity matrix by 1n. Recall that for an n × n matrix X, the
adjugate of X, AdjX is given by the trasnpose of the matrix of cofactors. The adjugate matrix has
the important property that AdjX ·X = detX · 1n.

Proof of Theorem 6.1.3. Let {m1, ...,mn} be a set of generators of M and let m denote the column
vector (m1, ...,mn)T . For each i, write ϕ(mi) =

∑n
j=1 aijmj and let A denote the matrix with ijth entry

aij. Notice that
ϕ1n ·m = A ·m (28)

and so
(ϕ1n − A)m = 0 (29)

Left multiplying both sides of (29) by the adjugate of ϕ1− A gives:

0 = Adj(ϕ1n − A) ·
(
ϕ1n − A)m

)
=
(

Adj(ϕ1n − A) ·
(
ϕ1n − A)

)
m

= det(ϕ1n − A)1n ·m

and since m is a set of generators, this implies that det(ϕ1n − A) = 0.

Remark 6.1.4. An important further observation is that det(ϕ1n − A) is a monic polynomial xn +
c1x

n−1 + ...+ cn−1x+ cn, and if there is an ideal I such that ϕ(M) ⊆ IM we have that ci ∈ I i.
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Corollary 6.1.5. If M is a finitely generated R-module and there is an ideal I ⊆ R such that IM = M
then there exists c1, ..., cn ∈ I with ci ∈ I i such that (1 + c1 + ...+ cn)M = 0. In particular, there exists
c ∈ I such that (1 + c)M = 0.

Proof. Apply Theorem 6.1.3 to the identity function and take note of Remark 6.1.4.

So Theorem 6.1.3 gives a powerful way of creating integral elements.

Definition 6.1.6. If f : A→ B is a finitely generated A-module, then f is finite. Also, for an element
b ∈ B we denote by f(A)[b] the A-algebra {f(b) ∈ B | f(x) ∈ A[x]} (in other words, f(A)[b] is the
A-subalgebra of B generated by b).

Lemma 6.1.7. An element b ∈ B is integral if and only if f(A)[b] is finite.

Proof. If b is integral then there exists monic g(x) = α0 + α1x + . . . + αn−1x
n−1 + xn ∈ A[x] such that

g(b) = 0. Thus bn ∈ A+Ab+ . . .+Abn−1. That {1, b, . . . , bn−1} generate f(A)[b] follows from an obvious
inductive argument.

If f(A)[b] is a finitely generated A-module, then multiplication by b gives an endomorphism. The
result then follows by Cayley-Hamilton.

Lemma 6.1.8. The integral elements of B over A form a subalgebra.

Proof. A · 1 is integral, thus it suffices to show the integral elements are closed under multiplication and
subtraction. Let b1, b2 be integral. Let i1 : A→ A[b1] and i2 : A[b1]→ (A[b1])[b2] be inclusion maps. By
6.1.7 we have that i1(A)[b1] and i2(A[b1])[b2] are finitely generated modules, and by the previous exercise,
this implies A[b1, b2] is a finitely generated A-module. Multiplication by b1 − b2 and multiplication by
b1b2 give endomorphisms so the result follows from Cayley-Hamilton.

In light of Lemma 6.1.8 we define the integral closure of A in B, denoted Ā, to be the subalgebra
of B given by the integral elements.

The following establishes a strong relationship between integrality and finitality:

Lemma 6.1.9. A morphism f : A → B is finite if and only if B = f(A)[b1, ..., bn] with bi integral. In
other words, f : A→ B is finite if and only if B is a finitely generated and integral over A.

Proof of (⇒) direction. If f is finite, then f(A)[b] for all b ∈ B is a finitely generated A-module, and
thus b is integral by Lemma 6.1.7.

The converse is proved by induction on n and using the fact that the composition of finite morphisms
is finite.

The following results show that integrality is preserved by quotients, and is a local property:

Lemma 6.1.10. Let f : A −→ B be a ring homomorphism and let I ⊆ B be an ideal. Then A/(A ∩
I) −→ B/I is integral.

Proof. This really just comes down to realising what the induced A/(A∩I)-algebra structure on B/I is:
let b̄ ∈ B/I and consider a representative b ∈ B. Then since f : A −→ B is integral there exists a monic
polynomial p(x) ∈ A[x] with coefficients in A such that p(b) = 0. This polynomial with coefficients
reduced modulo A/(A ∩ I) evaluates b̄ to 0.

Lemma 6.1.11. Let A −→ B be integral where A,B are k-algebras. Then FracA −→ FracB is
algebraic.
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Proof. Let a/b ∈ FracA and f = xn +
∑n−1

j=0 αjx
j ∈ k[x] such that f(a) = 0. Then

0 = (1/bn)(an/1) + (1/bn)
n−1∑
j=0

αj(a
j/1) = (a/b)n +

n−1∑
j=0

αj/b
n−j(a/b)j

Remark 6.1.12. The above proof uses nothing special about the fact that we localised at (0). In fact
if A −→ B is integral and S is any multiplicative subset of A then AS −→ BS is also integral.

6.2 Jacobson rings

We need the following fact about jacobson rings:

Lemma 6.2.1. A is jacobson if and only if it satisfies the following property: for any prime p ∈ A and
element a ∈ A/p, if (A/p)a is a field, then A/p is a field.

We prove the following special case of Lemma 6.2.3 as a warm up:

Lemma 6.2.2. Let A be a jacobson domain and B = A[s] an A-algebra generated by a single element.
Then if B is a field, so is A.

Proof. In light of Lemma 6.2.1 we see that it is sufficient to find an element a ∈ A such that Aa is a
field. Let K = FracA be the field of fractions of A, we argue first that B is a finite field extension of K.

Write B ∼= A[x]/q for some ideal q. There is an obvious map ϕ : A[x] → K[x]/qK[x] with kernel
equal to q. The induced map ψ : A[x]/q→ K[x]/qK[x] is injective, we show this is an isomorphism.Let∑n

i=0

[
ai
a′i
xi
]

be an arbitrary element of K[x]/qK[x]. In general, if γ : Y → X is a ring homomorphism

with both y ∈ Y and γ(y) ∈ Y units, then γ(y)−1 = γ(y−1). Thus

n∑
i=0

[a0

a′0
xi
]

= ψ
( n∑
i=0

[ai][a
′
i]
−1xi

)
proving surjectivity.

Since B is a finite field extension of K, it is algebraic. Thus there exists a (not necessarily monic)
polynomial p(x) =

∑n
i=0

ai
a′i
xi with coefficients in K such that p(s) = 0. By clearing denominators we

obtain an expression
∑n

i=0 ais
i = 0, that is, s is integral over A. By inverting the leading coefficient an

and dividing through, we see that s is integral over Aan . Since Aan is an integral extension of the field
B, it follows from Corollary ?? that Aan is a field, which finishes the proof.

With that warm up out of the way, we show the result we really want:

Lemma 6.2.3. Let A be a jacobson domain and B = A[s] an A-algebra generated by a single element.
If B is a domain and there exists b ∈ B such that Bb is a field, then both A and B are fields.

Proof. In light of Lemma 6.2.1 we see that to show that A is a field, it is sufficient to find an element
a ∈ A such that Aa is a field, which similarly to the proof of Lemma 6.2.2, we do by finding an element
a ∈ A so that Bb is an integral extension of Aa. Once this is done, we will use the same lemma to show
that B is a field by proving that Bb and hence B is an integral extension of A.

Let K = FracA be the field of fractions of A, we argue that Bb is a finite field extension of K.
Write B ∼= A[x]/q. There is an obvious map ϕ : A[x] → K[x]/qK[x] with kernel equal to q. The

induced map
(
A[x]/q

)
b
→ K[x]/qK is an isomorphism. Thus Bb is a finite field extension of K and so
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is algebraic; so there exists a polynomial p(x) ∈ A[x] with coefficients in A such that p(s) = 0. Inverting
the leading term pn shows that s is integral over Aan , however, this is not the Aan that we will end up
taking, as we still need b−1 to be integral over Aa.

Since b ∈ B ⊆ K[x]/qK[x], there exists a polynomial q(x) ∈ A[x] with coefficients in A such that
q(b) = qmb

m + . . .+ q0 = 0. Since B is an domain we can cancel powers of b to assume that the Let qm
be the leading term of this polynomial. We can invert q0b

m and divide through show that b−1 is integral
in Aq0 . We now have that s and b−1 are integral in Aq0pn and so Bb is an integral extension of the field
Aq0pn .

Thus, Bb is an integral extension of the field Aq0pn and thus Aq0pn is a field. Since A is jacobson, it
follows that A is a field, in fact, A = Aq0pn . This shows that Bb and hence B is an integral extension of
A, and so B is also a field.

We use Lemma 6.2.3 to prove two important properties of jacobson rings.

Theorem 6.2.4. If A is a jacobson ring and B a finitely generated A-algebra, then B is jacobson.

Proof. Consider the case where B is generated by a single element s ∈ B. Let p ⊆ B be a prime and
b ∈ B/p be such that (B/p)b is a field. In light of Lemma 6.2.3 it suffices to show that B/p is generated
by a single element as an algebra over some jacobson ring. B/p is generated by [s] over A/(A ∩ p),
and indeed this is a jacobson ring as the quotient of any jacobson ring by any ideal is jacobson by the
correspondence Theorem. The general case then follows by an obvious induction argument.

Theorem 6.2.5. If f : A → B is a ring homomorphism with A jacobson and B a finitely generated
A-algebra, then A ∩m is maximal for any maximal ideal m ∈ B.

Proof. First consider the case where B is generated by a single element s. Let m ∈ B be maximal. By
the Correspondence Theorem, A/f−1(m) is jacobson. Moreover, B/m is generated by a single element
as an algebra over A/f−1(m). Thus by Lemma 6.2.2 we have that A/f−1(m) is a field, that is, f−1(m)
is maximal. For the general case we proceed by induction. Say B = A[b1, ..., bn]. Let m′ ⊆ A[b1, ..., bn−1]
be the preimage of m in A[b1, ..., bn−1]. Since A[b1, ..., bn] =

(
A[b1, ..., bn−1]

)
[bn], and A[b1, ..., bn−1] being

a finitely generated A-algebra is jacobson (Theorem 6.2.4), it follows that m′ is maximal from the base
case. The final observation to make is m′ = m.

Lemma 6.2.6. For a jacobson ring A, the nilradical is equal to the jacobson radical.

Proof. The nilradical is equal to the intersection of all primes, since all primes are the intersection of a
family of maximals, the result follows.

6.3 Going Up and Lying over Theorems

Loosely speaking, an integral extension A ⊆ B occurs when every element of B is algebraically related
to 0 usingonly using elements scalars from A. If A,B are integral domains then any polynomial relating
an element of B to 0 can be “divided through” by the powers of x so that the constant term is non-zero.
Another way of stating this is that if A,B are integral domains then an integral extension A ⊆ B occurs
when every element of B is algebraically related to an element of A only using elements of A:

Lemma 6.3.1. Let A ⊆ B be an integral extension with A,B integral domains. Then A is a field if and
only if B is.

Proof. First assume that A is a field. Let b 6= 0 ∈ B and consider an expression

bn + a1b
n−1 + . . . an−1b+ a0 = 0
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where we may assume a0 6= 0 as B is an integral domain. We then ahve

a−1
0 (−bn−1 − a1b

n−2 − . . .− an−1)b = 1

and so b is a unit.
Conversely, let a 6= 0 ∈ A and consider a as an element of B. Since B is a field we have that a−1

exists in B and so there is

(a−1)n + a1(a−1)n−1 + . . .+ an−1(a−1) + an = 0

which yields:
a−1 = a1a+ . . .+ an−1a

n−2 + ana
n−1

where the expression on the right is an element of A.

A corollary of this is a sufficient condition for maximal ideals to be pulled back to maximal ideals:

Corollary 6.3.2. Let A ⊆ B an integral extension and p ⊆ B an ideal of B. Then p is maximal if and
only if A ∩ p is.

Proof. Integrality is preserved by taking quotients (Lemma 6.1.10) so A/(A ∩ p) −→ B/p is integral.
We now have an integral extension of integral domains so we can apply Lemma 6.3.1.

In turn, an application of this is for integral extensions A ⊆ B the chains of primes of B lying over
a prime in A are of length 0:

Corollary 6.3.3. Let A ⊆ B be integral and q ⊆ q′ ⊆ B primes in B such that q ∩ A = q′ ∩ A. Then
q = q′.

Proof. Denote q ∩ A by p. Integrality is preserved by localisation (Lemma 6.1.11) so Ap −→ BA\p is
integral (warning: p ⊆ B need not even be an ideal, let alone prime. However, A \ p is multiplicative, so
this localisation still makes sense). Consider qBA\p and q′BA\p which both intersect with Ap to give pAp.
The result then follows from Corollary 6.3.2 and that primes in BA\p are in bijection with primes in B
disjoint from A \ p (notice that A \ p = A \ (q ∩A) so and ideal I ⊆ B such that I ∩ (A \ (q ∩A)) = ∅
is just an ideal I such that I ∩ A = p).

We have the lying over Theorem:

Theorem 6.3.4. Let A ⊆ B be integral. Then SpecB −→ SpecA is surjective.

Proof. Let p ⊆ A be a prime. The localisation of integral extensions in integral, and so Ap −→ BA\p is
integral. We have the following commutative diagram:

A B

Ap BA\p

β

Since Ap −→ BA\p is integral, any maximal ideal m of BA\p is such that m ∩ Ap = pAp. So by
commutativity we have β−1(m) is a prime such that β−1(m) ∩ A = p.

an easy Corollary of which is the going up Theorem:

Theorem 6.3.5. Let A ⊆ B be integral and consider say p1 ⊆ p2 ⊆ A are prime ideals, and q1 ⊆ B is
prime such that q1 ∩ A = p1. Then there exists prime q2 ⊆ B containing q1 such that q2 ∩ A = p1.

Proof. Apply Theorem 6.3.4 to the integral extension A/p1 ⊆ B/q1.
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7 Dimension Theory

7.1 Transcendence degree of finitely generated k-domains

We prove:

Theorem 7.1.1. Let A be a finitely generated k-integral domain, with k a field. Then

1. tr. degk A = dimA,

2. if p is any prime of A then ht. p + dimA/p = dimA

We first establish some lemmas, we denote k[x1, ..., xn] by k[x]

Lemma 7.1.2. Let p ⊆ k[x] be prime ideal, and consider S = k[x1, ..., xm] \ {0} as a multiplicative
subset of k[x]. Then writing k[x]/p = k[α1, ..., αn] we have

k[x]S/pk[x]S ∼= k(α1, ..., αr)[αr+1, ..., αn]

Proof. Writing S for the image of S under k[x]→ k[x]/p we have,

k[x]S/pk[x]S ∼= (k[x]/p)S
∼= k(α1, ..., αr)[αr+1, ..., αn]

The following Lemma was established in [?] as a required Lemma for proving Hilbert’s Nullstellensatz,
but we also use it here to prove Theorem 7.1.1:

Lemma 7.1.3. Let m be a maximal ideal of F [x1, ..., xn], then F [x1, ..., xn]/m is an algebraic extension
of F .

Proof. See [?, §2.1]

Proof of Theorem 1. First we show tr. degk A ≥ dimA, we claim it suffices to show for any pair of prime
ideals q $ r of k[x] that

tr. degk k[x]/r < tr. degk k[x]/q (30)

Write A ∼= k[x]/p, any chain of primes in A corresponds to a chain x0 $ . . . $ xm of primes in k[x]
containing p. So given Equation 30 holds, we find

n− 1 < tr. degk A

establishing the claim.
There is a surjective map k[x]/q → k[x]/r so tr. degk k[x]/r ≤ tr. degk k[x]/q is clear. Say equality

held. Let β1, ..., βn denote the image of x1, ..., xn under k[x]→ Frac k[x]/r and by rearranging the order
of x if necessary, assume that β1, ..., βr be algebraically independent where r := tr. degk k[x]/r. We
denote by α1, ..., αn elements of k[x]/q such that under k[x]/q → k[x]/p αi maps to βi. Notice that
α1, ..., αr are algebraically independent.

Consider S := k[x1, ..., xr] \ {0} as a subset of k[x]. α1, ..., αr are algebraically independent, so
k[x1, ..., xr] → k[x]/q is injective and so q ∩ S = ∅. Similarly, r ∩ S = ∅. Writing k[x] = R, it follows
from Lemma 7.1.2 that

RS/qRS
∼= k(α1, ..., αr)[αr+1, ..., αn]

where we think of the right hand side as a subring of k(α1, ..., αn). By Lemma 3.1.3 this is a field, and
so qRS is maximal. That is qRS = rRS and so q = r, a contradiction.
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Now we show tr. degk A ≤ dimA, we proceed by induction on r := tr. degk A. Write A ∼= k[x]/p,
if r = 0 then A is a field and so dimA = 0. Say r > 0, write k[x]/p = k[α1, ..., αn] and assume
that α1 is transcendental. Write R := k[x] and consider S := k[x1] \ {0} as a subset of R. Then
RS
∼= k(x1)[x2, ..., xn] and RS/pRS = k(α1)[α2, ..., αn], by Lemma 7.1.2. Now, tr. degk RS/pRS < r so

by the inductive hypothesis there exists a chain of primes x0 $ ... $ xr−1 of RS all containing pRS. We
set ri := xi ∩ p ⊂ R and notice that in particular x1 6∈ rr−1, and hence the residue class [x1] ∈ R/rr−1 is
transcendental over k, which is to say that rr−1 is not maximal (Lemma 7.1.3). Thus it is contained in
a maximal ideal so we obtain a chain r0 ( . . . $ rn in R all containing p. Thus dimA ≥ tr. degk A.

We move onto the proof of Theorem 2, we start with the following special case:

Lemma 7.1.4. Denote k[x] by R. Let p ⊆ R be prime, then ht. p + dimR/p = n.

Proof. We proceed by induction on n. If n = 0 then p = (0) and ht.(0) = dimR/(0) = 0. Say n > 0. Let
r := tr. degk R/p and write R/p = k[α1, ..., αn] where α1, ..., αr are algebraically independent. Consider
S := k[x1, ..., xr]\{0} as a subset of R. Then RS

∼= k(x1, ..., xr)[xr+1, ..., xn]. By the inductive hypothesis
we have

ht. pRS + dimk RS/pRS = n− r

By Lemma 3.1.3 we have dimk RS/pRS = 0. Furthermore, p ∩ S = ∅ so ht. pRS = ht. p. We thus have
ht. p + r = n, the result then follows from Theorem 1 as r = tr. degk R/p = dimR/p.

We now generalise this:

Proof of Theorem 2. Write A ∼= k[x]/p and let q ⊆ A be prime. Then there is prime q′ in k[x] containing
p such that A/q ∼= k[x]/q′. From Lemma 7.1.4 we thus have

ht. q′ + dim k[x]/q′ = n = ht. p + dim k[x]/p

We thus have ht. q′−ht. p+dimA/q′ = dimA/p. Clearly, ht. q′−ht. p = ht. q, and dim k[x]/q′ = dimA/q,
thus

ht. q + dimA/q = dimA

as required.

Next we prove:

Theorem 7.1.5. A Noetherian integral domain A is a UFD if and only if every prime ideal of height
1 is principal.

Proof. Let p be of height 1 and f ∈ p \ {0}. p by assumption is principal so write p = (g1). Let h1 ∈ A
be such that f = h1g1. Say h1 is not a unit, then similarly there exists a prime ideal p1 of height 1
containing h1. Let h2 ∈ A be such that (h2) = p2 and r2 ∈ A be such that h1 = r2h2. Repeating this
process we obtain a sequence g1, g2, ... such that (g1) $ (g2) $ . . . which by the Noetherian assumption
is finite, of length n say. We have f = rng1 . . . gn.

Conversely, let f ∈ A be a non-unit and not zero. Let p be a minimal primes lying over f and write
f = rf1...fn for irreducibles fi and unit r. Fix some i ≤ n, we claim p = (fi). It suffices to show fi is
prime, but A is a UFD and so all irreducibles are prime.
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7.2 The Poincare Series and the length of a module

7.2.1 The length polynomial

Sometimes the notation of a geometric series is used for convenience sake, for instance, we have that in

k̂[x]:
(1− x, 1− x, 1− x, . . .)(1, 1 + x, 1 + x+ x2, . . .) = (1, 1, 1, . . .)− (x, x2, x3, . . .)

and that (x, x2, x3, ...) is equivalent to zero, this is often written as:

1

1− x
= 1 + x+ x2 + . . .

where both sides of the equality are thought of as elements of k̂[x]. This notation will be used in
the statement involving the Poincare series (Definition 7.2.3) of a module with respect to an additive
function:

Definition 7.2.1. Let A be a ring and MA the class of all A-modules. A funcion:

λ :MA −→ Z

is additive if for every short exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

we have that λ(M ′)− λ(M) + λ(M ′′) = 0.

Eventually we will specialise to the case where λ is the length of a module:

Definition 7.2.2. Let M be an A-module. The length of M is the supremum of the lengths of all
ascending chains of submodules

M0 ( . . . (Mn

A chain consisting of n+ 1 modules has length n.

Definition 7.2.3. Let A =
⊕∞

i=0Ai be a Noetherian graded ring and M =
⊕∞

i=0 Mi a graded A-module.
The Poincare series is the element of ZJtK given by

P (M, t) =
∞∑
i=0

λ(Mi)t
i

What happens in the case where M is finitely generated? Being Noetherian, A is finitely generated
as an A0-module (see [?]). In the case where where M is finitely generated as an A0-module, we have
Mn = 0 for large n, and so P (M, t) is just a polynomial in t. Now consider the case where A admits
elements a1, ..., am with respective degrees k1, ..., km such that M is a finitely generated A0[a1, ..., am]-
module. Multiplication by am yields an exact sequence for any n:

0 −→ kern am −→Mn
am−→Mn+km −→ Cokern am −→ 0 (31)

where the n in kern am is a label signifying this is the kernel which is a submodule of Mn, similarly for
Cokern am. Since λ is additive, by multiplying by tn+km we obtain:

λ(kern am)tn+km − λ(Mn)tn+km + λ(Mn+km)tn+km − λ(Cokern+km am)tn+km = 0
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summing over all n yields:

(1− tkm)P (M, t)−
km∑
n=0

λ(Mn)tn =
∞∑
n=0

λ(Cokern+km am)tn+km − tkmP (ker am, t) (32)

where ker am =
⊕∞

n=0 kern am. Now, by defining

Coker am := M0 ⊕ . . .⊕Mn ⊕
∞⊕
n=0

Cokern+km am

we have
∞∑
n=0

λ(Cokern+km am)tn+km = P (Coker am, t)−
km∑
n=0

λ(Mn)tn

and so (32) becomes:

(1− tkm)P (M, t) = P (Coker am, t)− tkmP (ker am, t) (33)

Noticing now that Coker am and ker am are both finitely generated A0[a1, ..., am]-modules and are
annihilated by am so in fact are finitely generated A0[a1, ..., am−1]-modules, we have proved:

Theorem 7.2.4. Let A =
⊕∞

i=0Ai be a Noetherian graded ring and M =
⊕∞

i=0Mi a finitely generated
graded A-module. Let a1, ..., am be generators of A as an A0-module with degrees k1, ..., km respectively.
The Poincare series can be written as:

P (M, t) =
f(t)∏m

i=1(1− tkm)
(34)

where f(t) is a polynomial.

We obtain different representations (34) by taking different sets of generators of A, however the pole
at t = 1 is invariant:

Definition 7.2.5. The pole of f(t)∏m
i=1(1−tkm )

at t = 1, denoted d(M), is the pole in the ordinary sense

when considered as a meromorphic function C −→ C.

That this pole is an invariant follows from the fact that each representation (34) is equal to P (M, t)
which does not depend on a choice of generators.

A further special case of Theorem 7.2.4 is when all the generators a1, ..., am have degree 1, in such a
situation we can make a statement about the restriction of λ to the modules Mn for large n:

Corollary 7.2.6. Let A be a Noetherian graded ring and M a finitely generated A-module. We know A
is finitely generated as an A0-module, assume further that generators of A all of degree 1 can be chosen.
Then the function n 7→ λ(Mn) is given by a polynomial (in Q[t]) for sufficiently large n. The degree of
this polynomial is independent of the choice of generators and is equal to d(M)− 1.

Proof. By definition of the Poincare series, the coefficient next to tn is equal to λ(Mn) (for all n). First,
we calculate the coefficient next to tn in

∏m
i=1(1− t)−m. Recall that (1− t)−1 = 1 + t+ t2 + . . . and so

we wish to calculate the coefficient in front of tn of

(1 + t+ t2 + . . .)(1 + t+ t2 + . . .) . . . (1 + t+ t2 + . . .)
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where there are m factors. This has a combinatorial answer; this coefficient counts the number of
multisubsets of the set {t1, ..., tm} of size n, where ti represents t chosen from the ith factor. This
coefficient is thus

(
n+m−1
m−1

)
.

Consider the representation of the Poincare series given by Theorem 7.2.4, we have that f(t) is a
polynomial so write f(t) =

∑N
i=0 αit

i, by cancelling factors of (1 − t) we may assume m = d(M) and
f(1) 6= 0. We then have that the coefficient in front of tn in P (M, t) is the coefficient in front of tn of

(α0 + α1t+ α2t
2 + . . .)(1 + t+ t2 + . . .)(1 + t+ t2 + . . .) . . . (1 + t+ t2 + . . .)

which by the previous calculation is

N∑
k=0

αk

(
n+ d− k − 1

d− 1

)
(35)

notice that:(
n+ d− k − 1

d− 1

)
=

(n+ d+ k − 1)!

(d− 1)!(n+ k)!
=

(n+ d+ k − 1) . . . (n+ d− k − (d− 1))

(d− 1)!
(36)

which is a polynomial in n, and hence so is (35). Equation (35) holds true for all n, and is always a
polynomial, but for n < N this polynomial changes as n increases. On the other hand, for all n ≥ N
this polynomial remains exactly the same. Thus for all n ≥ N we have that λ(Mn) is equal as a function
to a fixed polynomial. Lastly, notice that the numberator of (36) has d− 1 factors, and so the leading
term of (35) is (∑N

k=0 αk
)
nd−1

(d− 1)!
=
f(1)nd−1

(d− 1)!

which is non-zero.

From now on, λ :MA −→ Z is taken to be the length function (Definition 7.2.1).
Assume M is an A-module (with no assumptions on either M nor A) and there is a filtration

. . . ⊆M1 ⊆M0 = M

of M . If n ≥ 0 is such that M/Mn admits a decomposition series (see the section on Artin Rings/modules
of [?]) then since any chain of submodules can be extended to a decomposition series we have:

λ(M/Mn) =
n∑
i=0

λ(Mi/Mi+1) (37)

Lemma 7.2.7. Let f : Z −→ R be a polynomial function of degree d. Then the function

hf : Z −→ R

n 7→
n∑
i=0

f(i)

is a polynomial of degree d+ 1.

Proof. Write f(n) =
∑d

j=0 αjn
j so that

hf (n) =
n∑
i=0

d∑
j=0

αji
j

=
d∑
j=0

αj

n∑
i=0

ij
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so it remains to show for all j ≥ 0 that
∑n

i=0 i
j is a polynomial in n and that

∑n
i=0 i

d has degree d+ 1.
This can be done in many different ways, one of which is by using Bernoulli numbers and Faulhaber’s
formula, we omit the details.

We have:

Proposition 7.2.8. Let A be a Noetherian local ring, m its maximal ideal, q an m-primary ideal, M a
finitely-generated A-module, (Mn) a stable q-filtration of M . Then,

1. M/Mn is of finite length for each n ≥ 0,

2. for sufficiently large n, this length is a polynomial g(n) of degree less than or equal to s where s is
the least number of generators of q,

3. the degree and leading coefficient of g(n) is independent of the choice of stable q-filtration.

Proof. 1: If A is a Noetherian local ring with maximal ideal m, let q ⊆ A be a m-primary ideal, and
assume M is finitely generated. The only prime ideal containing q is m and so A/q is a Noetherian ring
of dimension 0, and thus is Artinian. So, each Mi/Mi+1 is a finitely generated module over an Artinian
ring thus has finite length. It follows from (37) that λ(M/Mn) is finite.

2: If a1, ..., as is a minimal set of generators of q then the images ā1, ..., ām in q/q2 generate G(A) :=⊕∞
i=0 q

i/qi+1. All of these have degree 1 and so by Corollary 7.2.6 there exists N > 0 such that the
function n 7→ λ(MN+n/MN+n+1) is given by a polynomial p ∈ Q[n] such that deg p ≤ d(G(M)). By the
shape of (34) we have that d(M) ≤ s. Equality holds when f(t) does not admit 1 as a root.

3: Say (Mn) and (M ′
n) are two stable q filtrations of M . Let N > 0 be such that for all n > N we

have qMn = Mn+1, make a similar definition for N ′. We have

Mn+N = qnMN ⊆ qnM = qnM ′
0 ⊆M ′

n

and
M ′

n+N = qnM ′
N ′ ⊆ qnM = qnM0 ⊆Mn

and so if g(n) is the polynomial corresponding to (Mn) and g′(n) is the polynomial corresponding to
(M ′

n) then
g(n+N ′) ≤ g′(n)

and
g(n) ≤ g′(n+N)

since these are both polynomials we get limn−→∞ g(n)/g′(n) −→ 1 and so these have the same degree
and leading coefficient.

In the context of Proposition 7.2.8 where the stable q-filtration given by (qnM) is taken, we denote
the polynomial g(n) by χMq (n). In the case where M = A we denote this polynomial by χq(n). In fact,
in this case, the degree of this polynomial is invariant under choice of m-primary ideal q, astonishingly,
we will see later that this invariant degree is equal to the dimension of A.

Lemma 7.2.9. The degree of χq(n) is invariant under choice of m-primary ideal q.

Proof. Since A is Noetherian and q is m-primary, there exists r > 0 such that mr ⊆ q ⊆ m, so for all n
we have mnr ⊆ qn ⊆ mn and so for all n:

λ(A/mrn) ≤ λ(A/qn) ≤ λ(A/mn)

and so

1 =
χm(rn)

χm(rn)
≤ χq(n)

χm(rn)
≤ χm(n)

χm(rn)

n→∞−→<∞

the result follows.
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Definition 7.2.10. In light of Lemma 7.2.9, we denote the degree of χq(n) by d(A).

Remark 7.2.11. Lemma 7.2.9 shows that the degree of χq(n) is independent of the choice of q, and
Proposition 7.2.8 shows that this degree is equal to the size of the least number of generators of q, a
corollary of this is that the size of the least number of generators of all m-primary ideals are equal.

7.3 The Dimension Theorem

Given a Noetherian, local ring A with maximal ideal m we denote the least number of elements required
to generate m by δ(A). The amazing fact that we prove in this Section is that this integer and d(A)
(Definition 7.2.10) are both equal to dimA. We do this by proving the following sequence of inequalities:

δ(A) ≥ d(A) ≥ dimA ≥ δ(A)

The first inequality is already proved by part 2 of Proposition 7.2.8. To prove the second inequality, we
need the following general Lemmas:

Lemma 7.3.1. Let A be Noetherian, local, and M a finitely generated A-module. Given any non-zero-
divisor x ∈ A of M we have

d(M/xM) ≤ d(M)− 1 (38)

Proof. Since x is a non-zero-divisor, the map M 7−→ xM is injective and thus an isomorphism. It can
be shown using the Nine Lemma that in general, if

0 −→ N ′
α−→ N

β−→ N ′′ −→ 0

is a short exact sequence of modules and J ⊆ N is a submodule, then the sequence

0 −→ N ′/α−1J −→ N/J −→ N ′′/β(J)N ′′

is also a short exact sequence. Applying this to the submodule mnM ⊆M we have for all n ≥ 0 a short
exact sequence:

0 −→ xM/(xM ∩mnM) −→M/mnM −→M ′/mnM ′ −→ 0

where M ′ := M/xM . If we let g(n) denote the polynomial xM/(xM ∩ mnM) (taking n sufficiently
large) we have:

g(n)− χMm (n) + χM
′

m (n) = 0

Now, by the Artin-Rees Lemma (see [?]) we have that xM ∩ mnM is a stable m-filtration of xM , and
so by part 3 of Proposition 7.2.8 the leading term of g(n) and χMm (n) cancel out. The result follows.

Applying Lemma 7.3.1 to the special case where M = A we get:

Corollary 7.3.2. If x is a non-zero-divisor of a Noetherian, local ring A, then

d(A/(x)) ≤ d(A)− 1

We can now prove:

Lemma 7.3.3.
d(A) ≥ dimA
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Proof. We proceed by induction on d(A). If d(A) = 0 then for sufficiently large n we have λ(A/mn) =
λ(A/mn+1) which means mn = mn+1 which by Nakayama’s Lemma implies mn = 0. Thus, if p is a prime
ideal of A we have mn = 0 ⊆ p which implies m ⊆ p, in other words, dimA = 0.

Now say that d(M) > 0. Consider a chain of ascending prime ideals:

p0 ( . . . ( pr

in A. Let x ∈ p1 \ p0, denote A/p0 by A′ and consider the image x′ of x in A′. Then A′ is an integral
domain and x′ 6= 0, so by Corollary 7.3.2 we have d(A′/(x′)) ≤ d(A′) − 1. Our next claim is that
d(A′) ≤ d(A). There are many ways of showing this so we leave it as an exercise.

Thus d(A′/(x′)) ≤ d(A)−1 and so the inductive hypothesis applies. However, the image of p1 ( . . . pr
is an ascending chain in A′/(x′) and so r− 1 ≤ d(A)− 1 which implies r ≤ d(A), proving the result.

The remaining inequality, that dimA ≤ δ(A) follows from a Krull’s Principal Ideal Theorem:

Theorem 7.3.4 (Krull’s Principal Ideal Theorem). Let A be a Noetherian ring, a1, ..., ar ∈ A elements
of A and p a prime, minimal among those containing (a1, ..., ar), then ht .p ≤ r.

Proof. We proceed by induction on r. Say p is minimal over (a) and let q ⊆ p be a prime not equal to
p, we show ht .q = 0. Let l : A −→ Aq denote the localisation map and let X n := l−1

(
(qAq)

nAq

)
. We

claim X n = (a)X n + X n+1.
Since A is Noetherian the chain

(a) ⊆ (a) + X ⊆ (a) + X 2 ⊆ . . .

eventually stablises, say (a) + X n = (a) + X n+1. In particular this means X n ⊆ (a) + X n+1 and so
for any f ∈ X n we have f = ba + g for some b ∈ A and g ∈ X n+1. Thus f − ba ∈ X n+1 ⊆ X n, so
since f ∈ X n it follows that ba ∈ X n. Now, p is minimal over (a) and q ⊆ p so a 6∈ q, this means
b ∈X n by definition of X , establishing the claim.

By Nakayama’s Lemma, we thus have X n = X n+1. Localising at q we have X nAq = X n+1Aq,
ie, (X Aq)

n = (X Aq)
n+1. Applying Nakayama’s Lemma again we have (X Aq)

n = 0. Thus if r ⊆ Aq

was any prime then r ⊇ (0) = (X Aq)
n and thus r ⊇ X Aq = qAq so by maximality r = qAq. Thus

dimAq = 0.
We now prove the inductive step. Let p ⊆ A be minimal over x1, ..., xn and by replacing A by Ap if

necessary, assume that A is local and p maximal. Let q ⊆ p be a prime with no other primes strictly
sitting between. We will show that ht .q ≤ n− 1 by finding elements y1, ..., yn−1 such that q is minimal
over (y1, ..., yn−1).

Since p is minimal over (x1, ..., xn) and q $ p we have {x1, ..., xn} 6⊆ q, say x1 6∈ q. p is minimal

over (q, x1) and so
√

(q, x1) = p, thus for i = 2, ..., n there exists ri > 0, ai ∈ A, and yi ∈ q such that
xrii = aix1 + yi. We claim q is minimal over y2, ..., yn.

Denote the image of p in the quotient ring A/(y2, ..., yn) by p̄, similarly for q. Then p̄ is minimal
over x̄1 and so q̄ is minimal over 0. That is, q is minimal over (y2, ..., yn).

The inductive step also proves a converse:

Corollary 7.3.5. If a prime ideal p has height n, then there exists a1, ..., an ∈ p such that p is minimal
amongst all prime ideals containing (a1, ..., an).

Application: If A is a Noetherian, local ring with maximal ideal m and a1, ..., an are elements of
A whose images under A −→ m/m2 form a basis for this vector space, then if we denote by N the
submodule of A generated by a1, ..., an we have

N + m2 = m

so by Nakayama’s Lemma, N = m. This shows:
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Corollary 7.3.6. Let A be Noetherian, local with maximal ideal m. Then

dimkm/m
2 ≥ dimA

Remark 7.3.7. In the above discussion we have used that the vector space dimension agrees with Krull
dimension, and the Dimension Theorem.

Corollary 7.3.8. Let A be Noetherian, local with maximal ideal m, and Â the m-adic completion. Then

dimA = dim Â

Proof. A/mn ∼= Â/m̂n, so d(A) = d(Â).

8 Discrete valuation rings

What is the integral closure? An answer can be provided once a theory of valuation rings has been
developed:

Theorem 8.0.1. Let B be a subring of a field K. Then the integral closure B̄ of B in K is the
intersection of all subrings of FracB containing B which are discrete valuation rings.

Definition 8.0.2. A valuation ring B is an integral domain satisfying: for all x 6= 0 ∈ FracB either
x ∈ B or x−1 ∈ B (or both).

A valuation ring is discrete if the quotient group (FracB)×/B× is isomorphic to Z, here, the
superscript × denotes the group of units (the intuition behind this Definition comes from Lemma ??)

It is clear that discrete valuation rings exist, any field provides an example, but there are more
interesting examples involving homomorphisms into algebraically closed fields. First we provide some
properties:

Lemma 8.0.3. If B is a valuation ring, then

1. B is a local ring,

2. if B′ is a ring such that B ⊆ B′ ⊆ FracB then B′ is also a discrete valuation ring,

3. B is integrally closed.

Proof. 1: Let m be the set of all non-units of B, we show that this is an ideal. Let b, x ∈ B. If bx
is a unit then ∃r ∈ B, rbx = 1 which implies x is a unit. Thus if x ∈ m then bx ∈ m. If x, y ∈ m
then since B is a discrete valuation ring, either x−1y ∈ B or xy−1 ∈ B. In the first case we have
x+ y = (1 + x−1y)x ∈ Bm ⊆ m.

2: Let x ∈ FracB and say x 6∈ B′. Then x 6∈ B and so x−1 ∈ B which implies x−1 ∈ B′.

3: Let α ∈ FracB be integral over B, write

αn + b1α
n−1 + . . .+ bn−1α + bn = 0

We have that α ∈ B or α−1 ∈ B, in the first case we are done, in the second we have

α = bnα
1−n − bn−1α

2−n − . . .− b2α
−1 − b1

where the expression on the right is an element of B. Thus in either case we have α ∈ B.
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Our next goal is to prove:

Proposition 8.0.4. Let K be a field and Ω an algebraically closed field. Define ΣΩ
K to be the set of

pairs (C, f) where C ⊆ K is a subring and f : C −→ Ω a homomorphism;

ΣΩ
K := {(C, f) | C ⊆ K, f : C −→ Ω a homomorphism}

We endow ΣΩ
K with the following partial order: (C, f) ≺ (C ′, f ′) if C ⊆ C ′ and f ′ �C= f , then ΣΩ

K

satisfies the ascending chain condition and so by zorn’s Lemma admits at least one maximal element
(B, g). This ring B is a discrete valuation ring.

Remark 8.0.5. Note: we do not exclude the possibility that Ω is taken to be the trivial field (0). In
this case, the unique maximal element given (B, g) is (K, 0), where 0 denotes the zero map. In this
situation, it is clear that K is a valuation ring. In what follows, we consider the case where K 6= B.

First we prove a simpler result:

Lemma 8.0.6. B is a local ring, and if K 6= B then the unique maximal ideal is m := ker g.

Proof. Notice first that m is at least prime. As B is a subring of a field it is an integral domain, thus
there is an injection B −→ Bm. We have that for all x 6∈ m that g(x) 6= 0 (by definition of m) so
by the universal property of localisation we obtain a homomorphism Bm −→ Ω which extends B. By
maximality of B we obtain B = Bm which implies the statement.

Remark 8.0.7. Some authors (for example, Hartshorne) do not consider the set ΣΩ
K but instead consider

the set
Γ := {R ⊆ K | R is local} (39)

and endow this set with a partial order given by domination, R ≺ S if S ⊆ R and mR ∩ S = mS, with
mT denoting the unique maximal ideal of T .

This is equivalent to our presentation as since (B, g) is local, it suffices to consider only local rings
in ΣΩ

K , and all such local rings have unique maximal element given by the inverse of {0} which renders
the condition on the preorder given to ΣΩ

K equivalent to the domination condition.

Before proving Proposition 8.0.4 we need the following narky lemma:

Lemma 8.0.8. Let x 6= 0 ∈ K, then either mB[x] 6= B[x] or mB[x−1] 6= B[x−1].

Proof. Say both mB[x] = B[x] and mB[x−1] = B[x−1]. Then we have equations:

1 = mnx
n + . . .m1x+m0 (40)

1 = m′kx
−k + . . .m′1x

−1 +m′0 (41)

with mj,m
′
j ∈ m. We assume that these expressions are such that n is minimal. Say k < n and multiply

(41) by xk we get:
(1−m′0)xk = m′k +m′k−1x

1 + . . .+m′1x
k−1 (42)

Since m′0 ∈ m we have 1−m′0 is a unit and so we can divide through and multiply by xn−k to write (40)
with a smaller power of n, contradicting minimality.
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Proof of Proposition 8.0.4. Let x 6= 0 ∈ FracB and assume mB[x] 6= B[x] (if in fact mB[x] = B[x] then
replace x by x−1 in the following argument). Let n be a maximal ideal containing mB[x] in B[x]. Then
n ∩B contains m and m is maximal, thus n ∩B = m, we thus have a homomorphism B/m −→ B[x]/n.
Also, the homomorphism g : B −→ Ω induces B/m −→ Ω. We thus have the following commutative
diagram of solid arrows

B B/m Ω

B[x] B[x]/n

(43)

We have that B[x]/n ∼= B/m[x̄] where x̄ is the image of x under B/m −→ B[x]/n and so B/m −→ B[x]/n
is a finite and thus algebraic field extension. Thus we have the dashed arrow in (43) (here we crucially
use that Ω is algebraically closed). By maximality, it then follows that B = B[x], that is, x ∈ B.

Theorem 8.0.1 now follows as a Corollary:

Proof of Theorem 8.0.1. Let D denote the intersection of all discrete valuation rings of K. Since all
discrete valuation rings are integrally closed it follows that B̄ ⊆ D.

Conversely, say x ∈ K and is not integral over B. Then x is not contained in the ring B[x−1]. Thus
x−1 is a non-unit inside B[x−1] and so is contained inside a maximal ideal m. Let Ω be an algebraic
closure of the field B[x−1]/m, we then have a homomorphism

B −→ B[x−1] −→ B[x−1]/m −→ Ω

and so by Proposition 8.0.4 extends to a discrete valuation ring not containing x.

We give an alternative Definition of a valuation ring, which explains the name:

Definition 8.0.9. Let K be a field. and G a totally ordered abelian group. A valuation is a function
v : K \ {0} −→ G satisfying:

1. v(xy) = v(x) + v(y),

2. v(x+ y) ≥ min{v(x), v(y)}

Given a valuation v, the set RK,v := {x ∈ K | v(x) ≥ 0} is a local ring with maximal ideal {x ∈ K |
v(x) > 0}. We call this local ring the valuation ring of v.

A valuation ring is an integral domain which is the valuation ring of v for some valuation v : K −→
G.

9 Completion

9.1 Topological bases and neighbourhood bases

We will use extensively the notion of a neighbourhood which in some texts are taken to be open, here
however we do not require this:

Definition 9.1.1. A neighbourhood of a point x in a topological space X is a subset V ⊆ X of X
containing an open set U such that x ∈ U ⊆ V .

Remark 9.1.2. Neighbourhoods which are not necessarily open occur in situations where the topological
space has extra structure. For instance, a non-open subgroup A′ of a topological abelian group A may
contain an open subset U containing 0 where U is not a subgroup. The terminology “the subgroup A′

is a neighbourhood of 0” is simpler language.

41



When defining topologies, it is often easier to define a topology basis :

Definition 9.1.3. Let X be a set. A topology basis B of X is a collection of subsets of X such that

1. The B cover X,

2. if U, V ∈ B then for every x ∈ U ∩ V there exists W ∈ B containing x such that W ⊆ U ∩ V .

If X is a topological space, then a collection of open subsets B is a topological basis if every open set
U ⊆ X can be written as a union of elements in B.

Any topological basis in the second sense is a topological basis in the first sense, and conversely,
every topological basis B in the first sense gives rise to a unique topology such that B is a topological
basis in the second sense.

Lemma 9.1.4. Given a set X and topology basis B, there is a unique topology T on X such that B
becomes a topology basis for X as a topological space.

Proof. Let T be the topology given by unions of elements of B. Clearly we have that B is a topology
basis for X with respect to this topology.

If U ∈ T ′ where T ′ is any topology on X such that B is a topology basis then U can be written as
the union of elements of B and so U ∈ T .

Conversely, if U ∈ T then since B is a topology basis for T ′ we have that every element of B is
open (in T ′), and thus U ∈ T ′.

It is sometimes more convenient to define a topology by considering particular sets containing each
point individually:

Definition 9.1.5. Let X be a set, a system of neighbourhoods is a collection of sets of subsets
{B(x)}x∈X of X subject to:

1. B(x) 6= ∅.

2. if U ∈ B(x) then x ∈ U ,

3. if U, V ∈ B(x) then there exists W ∈ B(x) such that W ⊆ U ∩ V ,

4. if U ∈ B(x) then there exists a non-empty subset V ⊆ U containing x such that for all y ∈ V ,
there is W ∈ B(y) such that W ⊆ V .

Definition 9.1.6. Let X be a topological space and x ∈ X a point. A neighbourhood filter
(neighbourhood system) of x is a collection of neighbourhoods U of x such that for any arbitrary
neighbourhood V ⊆ X of x there exists U ∈ U such that U ⊆ V .

Lemma 9.1.7. Let X be a set and {B(x)}x∈X a system of neighbourhoods. There exists a unique
topology on X such that for all x, the set B(x) is a neighbourhood filter of x.

Proof. Define a subset of A ⊆ X to be B-open if for every x ∈ A there exists U ∈ B(x) such that
U ⊆ A. Then let T be the collection of B-open subsets of X.

Let U be a neighbourhood of a point x ∈ X. Then there exists a B-open subset A ⊆ U containing
x. By definition of B-open, there exists an element of B(x) contained inside A. Thus B(x) forms a
neighbourhood filter for x.

Let T ′ be any other such topology and let U ∈ T ′. Then for every x ∈ U there exists an element of
V ⊆ B(x) such that V ⊆ U . Moreover, there exists W ⊆ V which is B-open (by (4)), and so V ∈ T .

Convesely, if U ∈ T then U ∈ T ′ follows from (3).
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We conclude by describing the relationship between a topological basis and a system of neighbourhoods.

Proposition 9.1.8. Let B be a topological basis for a set X. Then for each x the collection of all sets
B(x) := {U ∈ B | x ∈ U} is a system of neighbourhoods.

Conversely, if {B(x)}x∈X is a system of neighbourhoods then B :=
⋃
x∈X B(x) is a topological basis.

Moreover, if B is a topology basis, then the topology induced by B is equal to the topology induced
by the system of neighbourhoods {B(x)}x∈X . If {B(x)}x∈X is a system of neighbourhoods, then the
topology induced by this system of neighbourhoods is equal to the topology induced by the topology basis
B.

Proof. Since B covers X we have that B(x) 6= ∅ for each x ∈ X. Next, it is clear that U ∈ B(x)
implies x ∈ U , by the definition of B(x). Thirdly, if U, V ∈ B(x) then for all y ∈ U ∩ V ther exists
W 3 y such that W ⊆ U ∩ V , so apply this to y = x. Lastly, let U ∈ B(x) and let y ∈ U . Consider
an arbitrary V ∈ B(y). There then exists W ⊆ U ∩ V such that y ∈ W ⊆ U ∩ V . This shows that for
every element y ∈ U there exists W ∈ B(y) such that y ∈ W ⊆ U .

Conversely, let U, V ∈ B. Say U ∈ B(x) and V ∈ B(y) with U ∩ V 6= ∅. Let z ∈ U ∩ V so that
x, z ∈ U and z, y ∈ V . There exists Wx ∈ B(z) such that Wx ⊆ U and Wy ∈ B(z) such that Wy ⊆ V
by axiom 4. Thus there exists Wxy ⊆ Wx ∩Wy such that Wxy ⊆ Wx ∩Wy and thus Wxy ⊆ U ∩ V .

Assume we are given a topological basis B. Let TB be the topology generated by the topological
bass, and TB(x)x the topology generated by the system of neighbourhoods. First we show TB ⊆ TB(x)x :
by Lemma 9.1.7 it suffices to show for all x ∈ X that B(x) is a neighbourhood filter of x. Let U ∈ B
be a neighbourhood of x. Then by definition of B(x) we have U ∈ B(x).

Now we show TB(x)x ⊆ TB: by Lemma 9.1.4 it suffices to show that B is a topological basis. Let
U be B-open and u ∈ U . By definition of B-open there exists V ∈ B(u) such that V ⊆ U . Thus
TB(x)x = TB.

The remainder of the proof is similar.

Remark 9.1.9. In essence, a system of neighbourhoods {B(x)} of X is just a topological basis B of
X parametrised by the elements x ∈ U ∈ B, ranging over all x and all U . The axioms for a system of
neighbourhoods is then just the translation of the axioms for a topological basis to this new setting:

� Axioms 1,2 together are equivalent to the condition that B covers X,

� Axioms 3, 4 together are equivalent to the statement then if U, V ∈ B then there exists W ∈ B
such that W ⊆ U ∩ V .

9.2 Completion of topological abelian groups

Lemma 9.2.1. Let G be a topological abelian group and H the intersection of all neighbourhoods of 0
in G. Then

1. H is a subgroup,

2. H is the closure of {0},

3. G/H is hausdorff,

4. G is hausdorff if and only if H = 0.

Proof. (1) Let a ∈ H. We need to first show that −a ∈ V where V is an arbitrary open neighbourhood
of 0. The map ρ is its own inverse and so ρ is a homeomorphism. It follows that ρ(V ) is itself an open
neighbourhood of 0 and so a ∈ ρ(V ) which implies −a ∈ V .
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Similarly, let a, b ∈ H and consider the homeomorphism Ta : G −→ G, g 7→ a + g. This is also a
homeomorphism so it suffices to show a+ b is in every set of the form T−1

g (V ) for some g ∈ G and open
neighbourhood V of 0. We take g = −a and this is now obvious.

(2) First we prove that if x ∈ H then x and 0 have the same set of open neighbourhoods. Since
x ∈ H it is clear that every open neighbourhood of 0 is an open neighbourhood of x, we now show the
converse. Let V be an open neighbourhood of x. Then

x ∈ V =⇒ −x ∈ −V
=⇒ 0 ∈ x− V
=⇒ x ∈ x− V, as every open nbhd of 0 is such of x,

=⇒ 0 ∈ −V
=⇒ 0 ∈ V

Now say Z is a closed set containing {0}, then Zc is open and does not containing 0 and hence does not
contain any element of H, from what we just calculated. Thus H ⊆ Z and so H ⊆ {0}. Conversely, let
x ∈ {0}. Consider an open neighbourhood V of 0. We have

0 ∈ V =⇒ x ∈ x+ V

=⇒ 0 ∈ x+ V, as every open nbhd of x is such of 0,

=⇒ −x ∈ V
=⇒ −x ∈ H
=⇒ x ∈ H

(3) The diagonal ∆ is the inverse image of {0} under subtraction. The set {0} under the subspace
topology is closed by (2).

(4) Follows from (3).

Definition 9.2.2. Let G be a topological abelian group. A cauchy sequence in G is a sequence
(x1, x2, ...) of elements in G such that for all neighbourhoods U of 0 there exists N > 0 such that for
n,m ≥ N we have xn − xm ∈ U . A sequence of elements (x1, x2, ...) converges to 0 if for all open
neighbourhoods U of 0, there exists N > 0 such that ∀n > N we have xn ∈ U . We write (xn) −→ 0 in
this case (even though there may be more elements than just 0 in H).

Lemma 9.2.3. The relation ∼ on the set of all cauchy sequences in G about 0 given by (xn)n ∼ (yn)n
if (xn − yn)n −→ 0 is an equivalence relation.

Proof. Reflexivity is clear. For symmetry it suffices to show that if (xn)n is cauchy then so is (−xn)n.
If an element x ∈ X is contained in every open neighbourhood V of 0 then −x ∈ −V . The result
follows as all neighbourhoods W of 0 are given by −W ′ for some neighbourhood W ′ (take W ′ = −W ).
For transitivity it suffices to show the sum of cauchy sequences (xn)n and (yn)n (given by the sequence
(xn + yn)n) is cauchy. Let V be an open neighbourhood of 0. Consider +−1(V ), by the definition
of the product topology there exists open neighbourhoods of 0; U,U ′ such that U × U ′ ⊆ +−1(V ).
Now let N1, N2 > 0 be such that xn − xm ∈ U and yn − ym ∈ U ′ for n,m > maxN1, N2. Then
xn + yn − xm − ym ∈ V .

There is a topology on the set of equivalence classes of cauchy sequences on a topological group G,
it is defined as follows:
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Definition 9.2.4. Let G be a topological abelian group and let G denote the set of cauchy sequences
in G. The induced topology is given as follows: for every neighbourhood V of 0 in G let V̂ be the set
containing all cauchy sequences (xn)n which are eventually in V , that is, there exists N > 0 such that
∀n > N we have xm ∈ N . The set {(xn)n + V̂ | V ⊆ G neighbourhood, (xn)n ∈ Cauchy(G)} forms a
system of neighbourhoods in Cauchy(G).

Exercise 9.2.5. Check if the following is true: let (M,dM) be a metric space and (M̂, dM̂) its completion.
Then the topology T induced by the metric dM̂ is equivalent to the topology T ′ consisting of subsets

Û ⊆ M̂ of equivalence classes of cauchy sequences all of which are eventually in U , ranging over all U
in the topology on M induced by the metric dM .

Definition 9.2.6. The completion Ĝ (sometimes denoted Cplt(G)) of a topological abelian group
G is the topological abelian group of equivalence classes of cauchy sequences with the quotient space
topology of the induced topology (Definition 9.2.4). Addition is given pointwise.

There is a canonical map φ : G −→ Ĝ defined by g 7→ (g)n and this map has kernel kerφ = H.

Lemma 9.2.7. Completion is a functor TopAbGp −→ CompleteTopAbGp.

Proof. Let f : G −→ G′ be a continuous homomorphism and let (xn)n be a cauchy sequence in G. Let
V be an open neighbourhood of 0 in G′, and consider f−1(V ) which is open in G. There exists N such
that ∀n,m ≥ N we have xn−xm ∈ f−1(V ) thus ∀n,m ≥ N we have f(xn)− f(xm) ∈ V . Thus (f(xn))n
is cauchy and thus we have defined f̂ : Ĝ −→ Ĝ′. Clearly, Cplt idG = idCpltG′ and

Cplt gf(xn)n = (gf(xn))n = Cplt g(f(xn))n = Cplt gCplt f(xn)n

so we get functoriality. That the completion of a topological abelian group is complete is Lemma 9.2.25
below.

We now come up with another way of arriving at completions in a more general context:

Definition 9.2.8. A filtration (Gn) of an abelian group G is a countably infinite chain of subgroups
(. . . G2 ⊆ G1 ⊆ G0 = G). A filtered abelian group is an abelian group G along with a filtration (Gn)
of G. A homomorphism of filtered abelian groups φ : G −→ H is a homomorphism such that
φ(Gn) ⊆ Hn.

Lemma 9.2.9. Let G be an abelian group and (Gn) a filtration. Then {g + Gn}n≥0,g∈G is a system of
neighbourhoods.

Proof. First, any g +Gn in this collection we have that g = g + 0 ∈ g +Gn and so g +Gn 6= ∅. Notice
that this also shows that g ∈ g+Gn. Next, g+Gn ∩ h+Gm ⊇ g+ h+Gmax{n,m}. Lastly, if h ∈ g+Gn

then h− g ∈ Gn which implies h− g +Gn ⊆ Gn which in turn implies h+Gn ⊆ g +Gn.

Definition 9.2.10. Let G be an abelian group and (Gn) a filtration. The topology induced by this
filtration is the topology induced by the filtration (Gn). Notice by Proposition 9.1.8 this corresponds
to the topology induced by the topology base corresponding to this system of neighbourhoods.

Remark 9.2.11. The topology given in Definition 9.2.4 only exists in a setting where we have a
topological abelian group. That of Definition 9.2.10 exists whenever we have a filtration. Later, we will
work with a ring R along with an ideal I and generated a filtration . . . ⊆ I2 ⊆ I ⊆ R. Since this is a
filtration, this topology exists for any ring R and ideal I, not just topological rings.

Lemma 9.2.12. Let G be a abelian group and (Gn) a filtration. The abelian group G when endowed
with the topology induced by the filtration is a topological abelian group.
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Proof. Let ρ : G −→ G, ρ(g) = −g denote the inverse map. For all n we have ρ−1(g+Gn) = −g+ρ−1(Gn)
so it suffices to show for all Gn that ρ−1(Gn) is open, which is true as ρ−1(Gn) = −Gn = Gn as Gn is a
group.

To see the addition map + : G × G −→ G,+(a, b) = a + b is continuous, let (a, b) ∈ g + Gn then
(a, b) ∈ (a+Gn)× (b+Gn) ⊆ +−1(g +Gn).

Definition 9.2.13. Let G be a topological abelian group. A countable fundamental system is a
filtration (Gn) which forms a neighbourhood filter (Definition 9.1.6) of 0.

Lemma 9.2.14. If G is a topological abelian group which admits a countable fundamental system (Gn),
then each Gi is both open and closed.

Proof. Let g ∈ Gi, then g+Gi is a neighbourhood of g and g+Gi ⊆ Gi as Gi is a subgroup. Thus there
is an open subset U such that g ∈ U ⊆ Gi and so Gi is open. In fact, this also shows

⋃
g 6∈Gn

(g +Gn) is
open, which indeed is the complement of Gi.

If G is an abelian group with a countable fundamental system, we can define the completion as an
inverse limit :

Definition 9.2.15. Let G be an abelian group along with a family of subgroups {Gn}∞n=0. Say we have
a family of homomorphisms {θn : Gn −→ Gn−1}n>0. We call the data of the triple (G, {Gn}∞n=0, {θn}n>0)
an inverse system. The inverse system is surjective if all the maps θn are.

The inverse limit of abelian groups corresponding to an inverse system is the abelian group
lim
←−

Gn whose underlying set is:

lim
←−

Gn := {sequences (xn)n | xi ∈ Gi, θn(xn) = xn−1}

with addition defined pointwise. The topology is the subspace topology of the product topology.

Definition 9.2.16. Given a countable fundamental system (Gn) the completion of G, denoted Ĝ is
the inverse limit of topological abelian groups:

lim
←−

G/Gn

Remark 9.2.17. We can also define this using the language of limits of a category: for each n > 0
there is a morphism G −→ G/Gn−1 such that Gn maps to 0. Thus we obtain a homomorphism
θn : G/Gn −→ G/G. Let J be the diagram consisting of all objects G/Gn and morphisms ϕn−1, then
consider the limit through the inclusion functor J : J −→ AbGp : lim

←J
J , then lim

←−
G/Gn is such a

limit. Diagramatically, this is the limit of

. . .
θ3−→ G/G2

θ2−→ G/G1
θ1−→ G/G0

Lemma 9.2.18. If G is an abelian topological group whose topology is given by a filtration, then the
two notions of completion (Definition 9.2.15 and Definition 9.2.6) give isomorphic topological abelian
groups.

Proof. LetG be a topological group and (Gn)n a countable fundamental system of subgroup neighbourhoods.
Let ĜT denote the completion a la Definition 9.2.6 and let ĜA denote the completion a la Definition
9.2.15. We define an explicit isomorphism Φ : ĜT −→ ĜA and inverse:

Let (xn)n ∈ ĜT and denote by πn : G −→ G/Gn the projection. The image of (xn)n under π̂n is
eventually constant, that is, if N is such that ∀n,m > N , xn − xm ∈ GN , then for all n > N we have
π(xn) = π(xN+1). Denote this constant by ξN . Our next claim is that (ξn)n is an element of ĜA.
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For each n > 0 the map πn descends to a map θn : G/Gn −→ G/Gn−1 which is such that ξn 7→ ξn−1.
To see this, we pick representatives xn, xn−1 ∈ G of ξn, ξn−1 respectively and notice: xn − xn−1 ∈ Gn ⊆
Gn−1 thus,

θn(ξn) = πn−1(xn) = πn−1(xn−1) = ξn−1

Addition modulo Gn is well defined, thus we have a homomorphism from cauchy sequences to elements
of ĜA, we now show this descends to a map from ĜT .

Let (xn)n and (yn)n be equivalent cauchy sequences and fix n, we show ξxn − ξyn = 0. Since we have a
homomorphism it suffices to show ξx−yn = 0. This follows immediately from the definition of two cauchy
sequences being equivalent.

We define an inverse map ĜA −→ ĜT by taking representatives: let (ξn)n ∈ ĜA and pick xn ∈ G
whose image in G/Gn is ξn. Then we have θn−1(ξn) = ξn−1, in other words, xn − xn−1 ∈ Gn−1. So we
have a cauchy sequence. These maps are clearly inverse to each other.

Exercise 9.2.19. Finish the proof of Lemma 9.2.18 by proving bicontinuity of the given maps.

Notice also that we have two canonical maps φA : G −→ ĜA and φT : G −→ ĜT . These fit into the
follow commuting diagram:

G ĜT

ĜA

φT

φA
Φ (44)

Remark 9.2.20. The definition of ĜA presupposes a fixed choice of subgroups {Gn}n which is a
drawback of this definition. One could invent a notion of equivalent sequences of subgroups but this
is cumbersome considering the fact that the topological definition already has such a notion built into
it. For instance, there may be multiple different sequences which give the same topology on G, and thus
topology theory does not distinguish them.

Proposition 9.2.21. Given three inverse systems {An}, {Bn}, {Cn}. If

0 −→ {An} −→ {Bn} −→ {Cn} −→ 0

is a short exact sequence of inverse systems, then

0 −→ lim
←−

An −→ lim
←−

Bn −→ lim
←−

Cn

is a short exact sequence. Moreover, if {An} is a surjective inverse system, then

0 −→ lim
←−

An −→ lim
←−

Bn −→ lim
←−

Cn −→ 0

is exact.

Proof. Let A denote
∏∞

n=0 An and define a map dA : A −→ A which maps ξn −→ ξn− θn+1(ξn+1). Then
ker dA = lim

←−
An. Then we have the following commutative diagram

0 A B C 0

0 A B C 0

dA dB dC
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so by the snake Lemma (see [7]) we have an exact sequence:

0→ lim
←−

An → lim
←−

Bn → lim
←−

Cn → Coker dA → Coker dB → Coker dC → 0

so it remains to show that if {An} is a surjective inverse system, then Coker dA = 0, that is, dA is
surjective. Given (an)n ∈ A we can solve inductively xi − θi+1(xi+1) = an.

Corollary 9.2.22. Let (G, {Gn}, {θn}) be an inverse system and let

0 −→ G′ −→ G
p−→ G′′ −→ 0

be a short exact sequence of groups. Then the induced sequence

0 −→ Ĝ′ −→ Ĝ −→ Ĝ′′ −→ 0

is exact where Ĝ′ = lim
←−

G′/(G′ ∩Gn) and Ĝ′′ = lim
←−

G′′/p(Gn).

Proof. Apply Proposition 9.2.21 to the exact sequence of inverse systems

0 −→ {G′/(G′ ∩Gn)} −→ {G/Gn} −→ {G/p(Gn)} −→ 0

Corollary 9.2.23. Finite direct sum of abelian groups commutes with completion.

Proof. By Corollary 9.2.22 we have that

0 −→ Cplt(G′) −→ Cplt(G′ ⊕G′′) −→ Cplt(G′′) −→ 0

and
0 −→ Cplt(G′) −→ Cplt(G′)⊕ Cplt(G′′) −→ Cplt(G′′) −→ 0

are both short exact sequences, hence the two middle groups are isomorphic.

Let G be a group and consider a filtration

. . . ⊆ G2 ⊆ G1 ⊆ G0 = G

Denote by p : G −→ G/Gn be the projection, and fix a particular Gn. Then there is a finite family of
subgroups of G/Gn given by

0 = p(Gn) ⊆ p(Gn−1) ⊆ . . . ⊆ p(G1) ⊆ p(G0) = G/Gn

Thus, if G′′ := G/Gn, elements of Ĝ′′ are uniquely determined by finite sequences (x0, ..., xn) where if
j < i, xi mod j = xj, that is, (x0, ..., xn) = (xn, ..., xn) it follows that Ĝ′′ ∼= G′′. Moreover, G′′ ∼= G/G′

and Ĝ′′ ∼= Ĝ/Ĝ′ (by Corollary 9.2.22) and so we have proven:

Lemma 9.2.24. If G is a topological abelian group whose topology is given by a filtration {Gn}n, then

Ĝ/Ĝn
∼= G/Gn

Taking inverse limits we have:

Lemma 9.2.25.
ˆ̂
G ∼= Ĝ

That is, Ĝ is complete:

Definition 9.2.26. If the canonical morphism φ : G −→ Ĝ, φ(g) = (g)n is an isomorphism, then G is
complete.

Remark 9.2.27. Notice that φ : G −→ Ĝ need not be injective.

Remark 9.2.28. Notice by Lemma 9.2.1 that φ has kernel given by

kerφ =
∞⋂
n=0

Gn
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9.3 I-adic completion of a ring/module

Lemma 9.3.1. If A is a ring and I ⊆ A is an ideal, then there is a filtration of the underlying abelian
group of A:

. . . ⊆ I2 ⊆ I ⊆ I0 = A

and so we obtain a topological abealian group Â which indeed is a topological ring.

Proof. Denote the multiplication map by × : A × A −→ A,×(a, b) = ab. Let ab ∈ x + In, then
(a, b) ∈ (a+ In)× (b+ In) ⊆ ×−1(x+ In).

Definition 9.3.2. For a ring A with ideal I, the I-adic completion is the topological ring Â.

Proposition 9.3.3. The canonical map φ : A −→ Â is continuous.

Proof. Since for each a ∈ A the map Ta : A −→ A is a homeomorphism it suffices to prove φ−1(În) is
open for all n, but this set is just In.

For modules we have:

Definition 9.3.4. If G = M is an A-module, with A a topological ring, let I ⊆ A be an ideal. Take
Gn = InM and we obtain the I-topology. Indeed this endows M with the structure of a topological
Â-module (where Â is the I-adic completion). If f : M −→ N is an A-module homomorphism, then
Inf(M) ⊆ InN and so there is an induced continuous function f̂ : M̂ −→ N̂ .

There are other ways of defining the same topology on M :

Definition 9.3.5. Let (Mn) be a filtration of submodules (ie, a filtration of the underlying abelian
group). If the filtration satisfies IMi ⊆Mi+1 then we have an I-filtration and if there exists N ≥ 0 so
that if n > N we have IMn = Mn+1 we have a stable I-filtration.

Lemma 9.3.6. The topology given by any stable I-filtration agrees with the I-topology.

Proof. For arbitrary n we have Mn+N+1 = InMN+1 ⊆ InM . Conversely, for arbitrary m we have
ImM = ImM0 ⊆Mm.

A rational number q ∈ Q is uniquely determined by its base 10 representation, where we allow for
negative powers, q =

∑n
j=0 aj10−j for some n ∈ Z. This representation generalises to the real numbers

by allowing j to be arbitrarily small:

R =
{ ∞∑

j=0

aj10−j | aj ∈ Z
}

Another formulation of the real numbers is given by equivalence classes of Cauchy sequences. Both these
means of constructing the real numbers from the rational numbers can be generalised.

Consider the polynomial ring k[x] where k is a field. Let m denote the maximal ideal (x) ⊆ k[x] and

consider the completion k̂[x] of k[x] with respect to (x). An element of this is an equivalence class of
a cauchy sequences of elements in k[x] represented by (a0, a1, ...) say. For each i, reducing ai modulo
(xi) yields an element âi ∈ k[x], doing this for all i yields an element â0 + â1x + â2x

2 + . . . ∈ kJxK.
Moreover, this element is independent of choice of representative (a0, a1, ...), for if (b0, b1, ...) was another
representative we would have for all i > 0 that bi − ai = 0 mod (x)i. Thus we have a well defined map

k̂[x] −→ kJxK. It is easy to see this is an isomorphism:

Lemma 9.3.7. The completion of k[x] at the ideal (x) is isomorphic to kJxK.
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9.4 The Artin-Rees Lemma

Definition 9.4.1. A graded ring is a ring A together with a countably infinite family of subgroups
{An}n≥0 of the underlying group of A such that A =

⊕
n≥0An and AnAm ⊆ An+m for all n,m ≥ 0.

Thus A0 is a ring and each An is an A-module.
If A is a graded ring then a graded A-module is an A-module along with with a countably infinite

family of submodules {Mn}n≥0 such that M =
⊕

n≥0Mn and AnMm ⊆ Mm+n, thus each Mn is an
A0-module.

We denote
⊕

n>0An by A+.

Definition 9.4.2. Let M,N be graded A-modules, a homomorphism of graded A-modules f :
M −→ N is a homomorphism of modules such that f(Mn) ⊆ Nn for all n ≥ 0.

Lemma 9.4.3. For a graded ring A, the following are equivalent:

� A is Noetherian,

� A0 is Noetherian and A is a finitely generated as an A0-algebra.

Proof. Let A be Noetherian. Then A0
∼= A/A+ and so is Noetherian. Let A+ be generated as an ideal

by α1, ..., αm which we may assume to be homogeneous and of degrees k1, ..., km respectively (notice
each ki > 0). Denote by A′ the A0-subalgebra of A generated by α1, ..., αm. We proceed with the second
claim by showing An ⊆ A′ by induction on n. Clearly, A0 ⊆ A′. Now say n > 0. Let a ∈ An \ A0 so
that a ∈ A+. We can write a =

∑m
i=0 aiαi. We have that deg(ai) = n − ki (where we take ai = 0 if

n− ki < 0). The result then follows by the inductive hypothesis.
The other implication follows from Hilbert’s Basis Theorem.

Notation 9.4.4. Given a (not necessarily graded) ring A and an ideal I we denote the graded ring⊕
n≥0 I

n by I∗. If M is an A-module and Mn is an I-filtration then M∗ =
⊕

n≥0Mn is a graded
I∗-module.

If A is Noetherian and α1, ..., αn are generators for I then I∗ = A[α1, ..., αn] and is Noetherian (by
Lemma 9.4.3). The next main result we are heading towards is:

Proposition 9.4.5. Given a short exact sequence of finitely generated A-modules, with A Noetherian:

0 −→M ′ −→M −→M ′′ −→ 0

the following sequence is also exact:

0 −→ M̂ ′ −→ M̂ −→ M̂ ′′ −→ 0

To prove this, we want to lean on Corollary 9.2.22, however, that Corollary used a fixed choice of
filtration, and the definitions of M̂ ′, M̂ ′′ also used a different fixed choice, do these different choices give
isomorphic modules?

The topology used to construct M̂ ′′ is induced by the filtration (InM ′′)n which is equal to (p(InM))n
(by definition of module homomorphism) but the topology used to construct M̂ ′ is that induced by the
filtration (InM)n and Corollary 9.2.22 uses the sequence (M ′∩InM)n instead. The proof of Proposition
9.4.5 thus reduces to showing these two topologies are equivalent, which is an application of the following
Theorem (the fact that M ′/InM ′ is a surjective inverse system is clear, and considering the equivalence
we are about to prove, this is sufficient):
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Theorem 9.4.6. Let A be a Noetherian ring, I ⊆ A an ideal, M a finitely-generated A-module and M ′

a submodule of M . Then the filtrations (InM ′)n and
(
(InM) ∩M ′)

n
induce equivalent topologies.

To prove Theorem 9.4.6 we will need:

Lemma 9.4.7 (Artin-Rees Lemma). Let A be a Noetherian ring, I ⊆ A an ideal, M a finitely generated
A module, and (Mn)n a stable I-filtration of M . If M ′ is a submodule of M , then (M ′∩Mn)n is a stable
I-filtration of M ′.

for which we need:

Lemma 9.4.8. Let A be Noetherian, and M a finitely generated A-module with an I-filtration (Mn)n.
Then the following are equivalent:

1. M∗ is a finitely generated A∗-module (Notation 9.4.4),

2. the filtration (Mn)n is I-stable.

Proof of Lemma 9.4.8. Each Mn is a finitely generated module over a Noetherian ring and is therefore
itself Noetherian, and thus finitely generated. It follows that Qn :=

⊕n
j=0 Mj is finitely generated. The

A∗-submodule generated by Qn can be explicitly written as

Qn ⊕
∞⊕
j=1

IjMn

which we denote by M∗
n. This is a finitely generated I∗-module (as Mn is a finitely generated A-module)

and so we have an ascending chain
M∗

1 ⊆M∗
2 ⊆ . . .

which eventually stabilises if and only if there exists N such that for all m > N , we have IMm = Mm+1,
which is another way of stating the result.

Converse?

Proof of Lemma 9.4.7. We have I(M ′ ∩Mn) ⊆ IM ′ ∩ IMn ⊆ M ′ ∩Mn+1 and hence (M ′ ∩Mn)n is an
I-filtration. Hence it defines a graded I∗-module which is a submodule of M ′∗ and therefore finitely
generated (as I∗ is Noetherian). The result follows from Lemma 9.4.8.

Proof of Theorem 9.4.6. By Lemma 9.3.6 we have that any two stable I-filtrations induce equivalent
topologies. The result then follows by Lemma 9.4.7.

9.5 Krull’s Theorem

Since there is a homomorphism φ : A −→ Â, we can consider M̂ as an A-module and thus form Â⊗AM .
In the case that M is a finitely generated module over a noetherian ring, this agrees with the completion:

Proposition 9.5.1. For any ring A, if M is finitely-generated then Â ⊗A M −→ M̂ is injective.
Moreover, this is an isomorphism if A is Noetherian.

Proof. Since M is finitely generated there is a short exact sequence

0 −→ N −→ F −→M −→ 0
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We construct the commutative diagram

Â⊗N Â⊗ F Â⊗M 0

0 N̂ F̂ M̂ 0

α β γ

δ

By Corollary 9.2.23 we have that β is an isomorphism. Since the bottom row is exact, δ is surjective,
it follows from these two facts that γ is injective. If A is noetherian, then N is also finitely generated,
thus α is surjective. It then follows from the four Lemma that γ is injective.

Notation 9.5.2. Let I, J ⊆ A be ideals and let Â be the I-completion. We denote by Ĵ the ideal
generated by the image of A −→ Â.

Lemma 9.5.3. Let A be a ring and I ⊆ A an ideal, and n > 0, denote the homomorphism A/In −→
Â/În by ψ. Let J ⊆ A/In be an ideal. Then the image of J under ψ is equal to Ĵ .

Proof. Consider elements of the completion as equivalence classes of cauchy sequences. Let (bn)n be
a cauchy sequence representing an element of Ĵ . Elements of Ĵ are given by linear combinations of
elements in ψ(J) with scalars given by elements in Â/Î, thus we can assume that each bi ∈ J . There
exists N such that for all m > N we have bN − bm ∈ In. Consider the sequence (bN , bN , ...), we claim
this is equivalent to (bn)n. Indeed, (bN − bn)n eventually consists of elements in In and so is eventually
0, establishing the claim.

Proposition 9.5.4. If A is Noetherian, Â its I-adic completion, then

1. Î ∼= Â⊗A I,

2. (In)ˆ = (Î)n,

3. In/In+1 ∼= În/În+1,

4. Î is contained in the Jacobson radical of Â.

Proof. (1): Apply Proposition 9.5.1.

(2): Using (1) applied to I and that tensor product commutes with finite products:

(In)ˆ∼= Â⊗ In ∼= (Â⊗ I)n ∼= (Î)n

(3): By Lemma 9.2.24 we have A/In+1 ∼= Â/În+1. Lemma 9.5.3 then implies In/In+1 ∼= În/În+1.

(4): Â is complete in its Î-adic topology (using (2)). So, for x ∈ Î we have

(1− x, 1− x, 1− x, ...)(1, 1 + x, 1 + x+ x2, ...) = (1− x, 1− x2, 1− x3, ...) = (1, 1, 1, ...)− (x, x2, x3, ...)

and (x, x2, x3, ...) is equivalent to 0, so 1 − x in Â is a unit. That is, x is an element of the Jacobson
radical of Â.

Remark 9.5.5. In the proof of part (4) of 9.5.4 we have used the statement that for any ring R and
any element x ∈ R we have that x is in the jacobson radical if and only if 1− xy is a unit for all y ∈ R.
The reason why we only consider 1 − x is because we claim that Î is contained within the jacobson
radical and we know that Î is itself an ideal, so it suffices to show 1− x is a unit for all x ∈ Î.
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Remark 9.5.6. The proof that In/In+1 ∼= În/În+1 leaves this map implicit and uses the limit definition
of completion. In the special case where (A,m) is a local ring we can show that A/mn ∼= Â/m̂n using
the cauchy sequence definition of completion directly: indeed the composition A −→ Â −→ Â/m̂n is
surjective with kernel mn, and so descends to an isomoprhism A/mn −→ Â/m̂n.

Proposition 9.5.7. Let A be a Noetherian local ring and m its maximal ideal. Then the m-adic
completion of A at m is a local ring with maximal ideal m̂.

Proof. We have that Â/m̂ ∼= A/m is a field and thus m̂ is maximal. It follows from (4) of Proposition
9.5.4 that m̂ is contained within the jacobson radical J which itself is the intersection of all prime ideals
of Â and so is contained in m. Thus m̂ = J, which implies m̂ is the unique maximal ideal of Â.

We classify the kernel of the canonical map M −→ M̂ , this will be another application of Theorem
9.4.6.

Theorem 9.5.8 (Krull’s Theorem). Let A be a Noetherian ring, I ⊆ A an ideal, M a finitely generated
A-module, and M̂ the I-completion of M . Then the kernel E =

⋂∞
n=0 I

nM of the group homomorphism

φ : M −→ M̂ consists of those x ∈M annihilated by some element of the set 1 + I.

Proof. Consider the space E with topology given by the sequence ((InM)∩E)n (which are all equal to
E). This is a space where the only neighbourhood of 0 is all of E itself. By Theorem 9.4.6 we have that
this topology coincides with the topology given by (InE)n. We thus have IE = E. Since M is finitely
generated and A is noetherian, E is also finitely generated and so it follows from the Cayley-Hamilton
Theorem (see [?]) and the fact that IE = E that (1 + α)E = 0 for some α ∈ I.

Conversely, if (1 + α)x = 0 then

x = −αx = α2x = ... ∈
∞⋂
n=1

InM = E

Corollary 9.5.9. Let A be a Noetherian domain, I a proper ideal of A. Then
⋂
n≥0 I

n = 0.

Proof. 1 + I contains no zero divisors nor the element 0.

Corollary 9.5.10. Let A be a Noetherian ring, I an ideal of A contained in the Jacobson radical and
let M be a finitely generated A-module. Then the I-topology of M is Hausdorff, ie,

⋂
n≥0 I

nM = 0.

Proof. Since I is contained in the jacobson radical, every element of 1 + I is a unit.

As an important special case:

Corollary 9.5.11. Let A be a Noetherian local ring, m its maximal ideal, M a finitely generated A-
module. Then the m-topology of M is Hausdorff. In particular, the m-topology of A is Hausdorff.

Corollary 9.5.12. Let A be a Noetherian ring, p a prime ideal of A. Then the intersection of all
p-primary (Definition 2.3.1) ideals of A is the kernel of A −→ Ap.

Proof. Let m = pAp be the maximal ideal of Ap. By Corollary 2.3.10 we have that all the m-primary
ideals of Ap are contained between mn and m for some n. Thus by Corollary 9.5.11 the intersection of
all the m-primary ideals of the Ap is 0. These ideals lift to the p-primary ideals of A. Let l : A −→ Ap

denote the localisation map, we compute ker l where by Corollary 9.5.11 we have 0 =
⋂
n≥0 m

n:

ker l = l−1(0) = l−1(
⋂
n≥0

mn) = l−1(
⋂

m-primary

I) =
⋂

p-primary

I

where the equality labelled ∗ follows from .
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9.6 The completion of a Noetherian ring is Noetherian

We aim to prove:

Theorem 9.6.1. Let A be a Noetherian ring and I an ideal of A. The I-completion Â of A is Noetherian.

The important objects working behind the scenes are:

Definition 9.6.2. Let A be a ring and I an ideal of A. Define:

GI(A) :=
∞⊕
n=0

In/In+1

This is a graded ring, multiplication is defined as [x]n[y]m = [xy]n+m.
Similarly, if M is an A-module and {Mn}n an I-filtration of M , define:

G(M) :=
∞⊕
n=0

Mn/Mn+1

which is a graded GI(A)-module. Let Gn(M) denote Mn/Mn+1.

Theorem 9.6.1 will follow from the following Proposition:

Proposition 9.6.3. Let A be a ring, I an ideal of A, M an A-module, {Mn}n an I-filtration of M .
Suppose that A is complete in the I-topology and that M is Hausdorff in its filtration topology (ie, that⋂
n≥0Mn = 0). Suppose also that G(M) is a finitely generated G(A)-module. Then M is a finitely

generated A-module.

We will need the following two lemmas:

Lemma 9.6.4. Let A be a Noetherian ring, I an ideal of A. Then

1. GI(A) is Noetherian,

2. GI(A) and GÎ(Â) are isomorphic as graded rings,

3. if M is a finitely generated A-module and {Mn}n is a stable I-filtration of M , then GI(M) is a
finitely generated graded GI(A)-module.

Proof. (1) Since A is Noetherian, I is finitely generated, say by x1, ..., xn. Let x̄i be the image of xi in
I/I2. Then GI(A) = (A/I)[x̄1, ..., x̄n]. To see this, consider an element of In/In+1 ⊆ GI(A) which can
be written as

∑
|Λ|=m αΛx̄

Λ where Λ = (λ1, ..., λn), where x̄Λ = x̄λ11 ...x̄
λn
n . Since λ1 + . . . + λn = m we

have that each x̄i has degree 1, that is, x̄i ∈ I/I2 by the definition of multiplication in this ring.
(2) Follows from Proposition 9.5.4.
(3) There exists N ≥ 0 such that MN+n = InMN for all n ≥ 0, hence G(M) is generated as an

A-module by
⊕

n≤N Gn(M). Each Gn(M) = Mn/Mn+1 is Noetherian (being finitely generated modules
over a Noetherian ring) and annihilated by I, hence this is finitely generated as an A/I-module. Hence
G(M) is finitely generated as a G(A)-module.

Lemma 9.6.5. Let φ : A −→ B be a homomorphism of filtered groups (Definition 9.2.8) and let
G(φ) : G(A) −→ G(B), φ̂ : Â −→ B̂ be the induced homomorphism of the associated graded and
completed groups respectively. Then

1. if G(φ) is injective then so is φ̂,
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2. if G(φ) is surjective then so is φ̂.

Proof. Let αm : A/Am −→ B/Bm be the homomorphism induced by φ. Consider the commutative
diagram with exact rows:

0 An/An+1 A/An+1 A/An 0

0 Bn/Bn+1 B/Bn+1 B/Bn 0

Gn(φ) αn+1 αn

which by the snake Lemma induces the exact sequence

0→ kerGn(φ)→ kerαn+1 → kerαn → cokerGn(φ)→ cokerαn+1 → cokerαn → 0 (45)

It’s easy to see that G(φ) injective implies that Gn(φ) is injective for all n, so in this case, kerGn(φ) = 0,
and G0(φ) : A/A1 is the same morphism as α1, so kerα1 = 0. The exact sequence then implies kerα2 = 0,
proceeding by induction we have kerαn = 0 for all n. Inverse limits is a left exact functor (Proposition
9.2.21) and so the first result follows.

A drawing of G(φ) might look like:

. . .
⊕

A3/A4

⊕
A2/A3

⊕
A1/A2

⊕
A0/A1

. . .
⊕

B3/B4

⊕
B2/B3

⊕
B1/B2

⊕
B0/B1

G4(φ) G3(φ) G2(φ) G1(φ)

and so G(φ) surjective implies each Gn(φ) is surjective. Thus cokerGn(φ) = 0. Using (45) it then follows
that each αn is surjective, and thus φ̂ is surjective.

We now move to the proof of Proposition 9.5.7, the essence of the proof will be to begin with
generators of G(M) as a G(A)-module and then pick representatives of these which lie inside M , in fact
these representatives generate M as an A-module. We will construct a finitely generated free A-module
F and homomorphism φ : F −→M which fits into the commutative diagram (of abelian groups):

F M

F̂ M̂

φ

φ̂

the proof will be completed by showing φ is surjective.

Proof of Proposition 9.5.7. Pick a finite set of generators {ξ1, ..., ξr} of G(M) and assume these have
been split into their homogeneous components (that is, assume each ξi is homogeneous). Denote the
degree of ξi by n(i) and pick a representative xi ∈Mn(i) of each ξi. Consider the I-filtration on A given
by (Ik−n(i))k for each n(i) (where Ik−n(i) = A if k − n(i) ≤ 0) and consider F :=

⊕r
i=1 A. Let m be the

least integer such that there exists 1 ≤ i ≤ r such that m− n(i) ≥ 0 then F admits an I-filtration

r⊕
i=1

A =
r⊕
i=1

Im−n(i) ⊆
r⊕
i=1

Im+1−n(i) ⊆
r⊕
i=1

Im+2−n(i) ⊆ . . .
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We now construct a surjective homomorphism of G(A)-modules G(F ) −→ G(M). Let φ : F −→ M be
the homomorphism which maps the ith copy of 1 to xi. This is a homomorphism of filtered groups as:

φ
( r⊕

i=1

Im+k−n(i)
)

= Im+k−n(1)x1 + . . .+ Im+k−n(r)xr

⊆ Im+k−n(1)Mn(1) + . . .+ Im+k−n(r)Mn(r)

⊆Mm+k ⊆Mk

Furthermore, φ is surjective: if m ∈ G(M) then m = α1ξ1 + . . . αrξr where each αi ∈ G(A) is of degree
k − n(i) (with αi = 0 if k − n(i) < 0). So for each non-zero αi we have

φ(αi) = αiξi

and so the image of the sum of the non-zero αi map to m. We now apply Lemma 9.6.5 to deduce that
φ̂ is surjective, we consider the commuting diagram of group homomorphisms

F M

F̂ M̂

φ

α β

φ̂

Now, F is a free A-module and A is complete, it follows that F is complete (by commuting finite direct
sum with completion, Lemma 9.2.23), thus α is an isomorphism. Moreover, M Hausdorff and so β is
injective. It then follows that φ is surjective.

Corollary 9.6.6. With the hypotheses of Proposition 9.6.3, if G(M) is a Noetherian G(A)-module, then
M is a Noetherian A-module.

Proof. Let M ′ ⊆ M be a submodule, we show M ′ is finitely generated. Let M ′
n = M ′ ∩ Mn, then

(M ′
n) is an I-filtration of M ′, and the embedding M ′

n −→ Mn gives rise to an injective homomorphism
M ′

n/M
′
n+1 −→Mn/Mn+1, hence an embedding G(M ′) −→ G(M). Since G(M) is Noetherian, G(M ′) is

finitely generated, also M ′ is Hausdorff, since
⋂
n≥0M

′
n ⊆

⋂
n≥0Mn = 0, hence by Proposition 9.5.7 we

have that M ′ is finitely generated as an A-module.

At long last, we can prove the main result of this Section:

Theorem 9.6.7. If A is a Noetherian ring, I an ideal of A, then the I-completion Â of A is Noetherian.

Proof. We know that GI(A) ∼= GÎ(Â) is Noetherian. Now apply Corollary 9.6.6 to the complete ring Â,

taking M = Â.

Corollary 9.6.8. If A is a Noetherian ring, the power series ring A[[x1, ..., xn]] in n variables is
Noetherian. In particular, k[[x1, ..., xn]] (k a field) is Noetherian.

9.7 Hensel’s Lemma

The goal of this Section is to prove Hensel’s Lemma (Lemma 9.7.4). We begin with an observation
concerning the division algorithm for polynomials in one variable:

Lemma 9.7.1. Let A be an arbitrary ring, f, g ∈ A[x], with deg g > deg f , and assume f is monic.
Then the division algorithm g/f can still be performed yielding g = αf + β with deg β < deg = f ,
moreover, the polynomials α, β are unique in the sense that if α′, β′ are such that deg β′ < deg f and
g = α′f + β′ then α = α′, β = β′.
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Proof. That the division algorithm can still be performed is simply the observation that the only divisions
which occur in the algorithm are with 1 in the denominator as f is monic.

Now we prove the uniqueness claim. We have

g = αf + β, and g = α′f + β′ (46)

and so 0 = (α−α′)f +β−β′. This implies that β−β′, which satisfies deg(β−β′) < deg f , is a multiple
of monic f . Thus β − β′ = 0.

Now 0 = (α − α′)f . The leading coefficinet of (α − α′)f is 0 and also is α − α′ by monotonicity of
f .

We make another observation: say (f1, f2, ...) is a Cauchy sequence in A (with respect to the m-adic
topology), then since A is complete, there exists a ∈ A such that (fn)n and (a)n belong to the same
equivalence class, which is to say (fn − a)n −→ 0. Say b ∈ A was also such that (fn − b)n −→ 0, then
for all i ≥ 0 we have fn − a, fn − b ∈ mi =⇒ b− a ∈ mi, in other words:

(fn − a)n − (fn − b)n = (b− a)n −→ 0 (47)

This means that b− a ∈
⋂∞
i=0 m which, if A is Noetherian, is 0. Thus:

Lemma 9.7.2. In a complete, Noetherian ring, Cauchy sequences have admit limits which are unique.

Notation 9.7.3. If f ∈ A[x] is a polynomial and (A,m) a local ring, we denote by f̄ the image of f in
(A/m)[x].

We are now ready to prove:

Lemma 9.7.4 (Hensel’s Lemma). Let (A,m) be a Noetherian, local, complete ring, and f ∈ A[x] a
monic polynomial of degree n and G,H ∈ (A/m) monic, coprime, polynomials of respective degrees
r, n − r such that f̄ = GH. Then there exists monic polynomials g, h ∈ A[x] respectively of degree
r, n− r such that f = gh.

Proof. We lean on the completeness of A: say we have two sequences (g1, g2, ...), (h1, h2, ...) of monic
polynomials gi, hi ∈ A[x] satisfying:

1. For all i > 0 : deg gi = r, deg hi = n− r,

2. for all i > 0 : f ≡ gihi(modmi),

3. for all i < j : gi ≡ gj(modmi), hi ≡ hj(modmi).

For a general polynomial q ∈ A[x] we will denote the ith coefficient of q by qi. Condition (1) implies the
existence of sequences (g1k, g2k, ...), (h1k,2k , ...) of coefficients of g, h respectively. Moreover, (3) implies
these sequences are Cauchy sequences, so since A is a complete and Noetherian, by Lemma 9.7.2 we
have limits ak, bk ∈ A of (g1k, g2k, ...), (h1k,2k , ...) respectively.

We then define

g = a0 + a1x+ . . .+ ar−1x
r−1 + xr and h = b0 + b1x+ . . .+ bn−r−1x

n−r−1 + xn−r (48)

which we claim is such that f = gh. Let φ : A −→ Â denote the canonical map from a ring to its
completion. To show f = gh it suffices to show the coefficients (f − gh)i for 0 ≤ i ≤ n are all 0, and to
show this, it suffices to show φ

(
(f − gh)i

)
= 0 as A is Noetherian (and so φ has trivial kernel).
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We make a calculation:

φ
(
(f − gh)i

)
= φ

(
(f)i

)
− φ
(
(gh)i

)
= φ

(
fi
)
−

i∑
j=0

φ(aj)φ(bi−j)
)

= (fi −
i∑

j=0

g1jh1,i−j, fi −
i∑

j=0

g2jh2i−j, ...), by construction of aj, bi−j

and so φ
(
(f − gh)i

)
= 0 by (2).

We now move onto constructing (g1, g2, ...), (h1, h2, ...) satisfying (1), (2), (3).
We construct gk, hk satisfying (1), (2) inductively and show they satisfy the following uniqueness

claim: if g′k, h
′
k are such that g′k = G, h′k = H and f ≡ g′kh

′
k(modmk) then g′k ≡ gk, h

′
k = h′k(modmk).

This uniqueness claim implies (3).
For the base case, just pick arbitrary representatives for the coefficients of F,G in A (making sure

to pick 1 for 1 + m) and build g1, h1 from these choices. These clearly satisfy the required properties.
Now assume we have gk, hk for some fixed k ≥ 1 and assume these polynomials satisfy all the

requirements. Set ∆ = f − gkhk, which by the inductive hypothesis is an element of mk[x]. We notice
that

f ≡ ∆ + gkhk(modmk+1) (49)

and so the goal is to write ∆ + gkhk(modmk+1) as a product gk+1hk+1. Since F,G are coprime, there
exists polynomials α, β ∈ A[x] such that

1 ≡ αgk + βhk(modm[x]) (50)

Multiplying both sides by ∆ we have

∆ ≡ ∆αgk + ∆βhk(modmk+1[x]) (51)

For pedagogical reasons we make the following observation, however this next paragraph can be skipped
entirely and the proof still holds: since ∆ ∈ mk we have that ∆2 ∈ m2k ⊆ mk+1 and so we can now write

f ≡ ∆ + ∆αgk + ∆βhk + ∆α∆β

≡ (gk + ∆α)(hk + ∆β)(modmk+1[x])

which makes it look like we have achieved our goal. However we do not have a handle on the degree of
gk + ∆α nor hk + ∆β and so we use the division algorithm to replace ∆α,∆β by polynomails of degree
< r, n− r.

We know that gk, hk are monic, so we divide ∆α by hk to produce γ, ε ∈ A[x] such that

∆α = γhk + ε (52)

We can now write

∆ ≡ (γhk + ε)gk + ∆βhk (53)

≡ εgk + (γgk + ∆β)hk(modmk+1[x]) (54)

We set hk+1 := hk + ε and gk+1 := gk + γgk + ∆β. Thus, calculating modmk+1, we have:

gk+1hk+1 ≡ (gk + γgk + ∆β)(hk + ε) (55)

≡ gkhk + εgk + (γgk + ∆β)hk + (γgk + ∆β)ε (56)

≡
(
gk + (γgk + ∆β)

)(
hk + ε

)
+ (γgk + ∆β)ε (57)
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We now make a few final observations and we have reduced to proving the uniqueness claim. First,
since ∆ ∈ mk[x] it follows from (52) that 0 ≡ γhk + ε(modmk[x]) and so by the uniqueness part of the
division algorithm (Lemma 9.7.1) we have that γ, ε ∈ mk[x]. Thus γgk ∈ mk[x] and so γgk + ∆β ∈ mk[x]
and so (γgk + ∆β)ε ∈ m2k[x] ⊆ mk+1[x]. Combining this with (57) we have

gk+1hk+1 ≡
(
gk + (γgk + ∆β)

)(
hk + ε

)
(modmk+1[x]) (58)

Moreover, by the division algorithm we have deg ε < n − r which implies deg(εgk) < n. Also, f, gk, hk
are all monic and so ∆ (which equals f − gkhk) has degree < n. We have from (53) that

∆− εgk ≡ (γgk + ∆β)hk (modmk+1[x]) (59)

where the left hand side is a degree < n polynomial. Thus deg(γgk +∆β) < r. Considering this, we now
have that gk+1, hk+1 are monic and of respective degrees r, n− r. It now remains to show uniqueness.

This is the easiest part of the proof. We would truly be re-writing verbatim what is in [9] so we do
not reproduce it here.

10 Kähler Differentials

Let k be a field and let A,B,C be k-algebras. Assume we had morphisms f : A −→ B, g : C −→ B
along with a pair of lifts along g: h1, h2 : C −→ A of f , that is, assume the following diagram commutes
for i = 1, 2.

A B

C

f

hi
g (60)

Then h1 − h2 is a morphism which factors through ker f . Moveover, notice that if a, a′ ∈ A are such
that f(a) = f(a′) then for any x ∈ ker f we have ax − a′x = (a − a′)x, thus, if (ker f)2 = 0 then
(a− a′)x = 0 and so ker f becomes an f(A)-module and in fact a C-module by commutativity of (60)
(as g(C) ⊆ f(A)).

Set H = h− h′, let c, d ∈ C and consider the following calculation.

H(cd) = (h− h′)(cd)

= h(cd)− h′(cd)

= h(c)h(d)− h′(c)h′(d)

also,

cH(d) + dH(c) = c(h− h′)(d) + d(h− h′)(c)
= c
(
h(d)− h′(d)

)
+ b
(
h(c)− h′(c)

)
= ch(d)− ch′(d) + dh(c)− dh′(c)

Now, ker f is a C-module and so for any e, e′ ∈ C we have eh(e′) = g(e)h(e′) = h(e)h(e′) = h′(e)h(e′).
Thus we can continue our calculation,

ch(d)− ch′(d) + dh(c)− dh′(c) = h(c)h(d)− h(c)h′(d) + h′(c)h(c)− h′(d)h′(c)

= h(c)h(d)− h′(c)h′(d)

and so the two calculations agree. What we have shown is that H = h − h′ is a k-derivation of C to
ker f .
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Definition 10.0.1. A derivation of A to M (where A is a ring and M is an A-module) is a function
D : A −→M satisfying

� ∀a1, a2 ∈ A,D(a1 + a2) = D(a1) +D(a2), that is D is additive,

� ∀a1, a2 ∈ A,D(a1a2) = a1D(a2) + a2D(a1), that is D satisfies the Leibniz rule.

If moreover A is a k-algebra via a morphism f : k −→ A and D ◦ f = 0 then D is a k-derivation.

Earlier we proved the first half of the following.

Lemma 10.0.2. Let f : A −→ B be a morphism of k-algebras with (ker f)2 = 0 and assume there exist
k-algebra morphisms h1, h2 : C −→ A, g : C −→ B such that the following diagram commutes.

A B

C

f

hi
g (61)

Then h−h′ is a k-derivation. Moreover, if h is a lift of f along g then so is f +D for any k-derivation
D.

Definition 10.0.3. Denote the set of derivations from A to M by Der(A,M) and the set of k-derivations
by Defk(A,M).

Let A be a k-algebra and consider the morphism µ : A ⊗k A −→ A given by µ(x ⊗ y) = xy. Let
I = kerµ denote the kernel of µ and notice that we have a short exact sequence

0 I/I2 (A⊗k A)/I A 0
µ′

(62)

where µ′ is the map on the quotient induced by µ. We introduce some notation, let ΩA/k denote I/I2

and B denote (A⊗k A)/I. So we have a short exact sequence

0 ΩA/k B A 0
µ′

(63)

In fact, this sequence is split; the morphisms

λ1 : A −→ B λ2 : A −→ B

a 7−→ a⊗ 1 a 7−→ 1⊗ a

are such that µ′λi = idA. In fact, Ω2
A/k = 0 and λ1, λ2 are lifts of µ′ along idA:

B A

A

µ′

λi
idA

(64)

and so λ1 − λ2 is a k-derivation of A into ΩA/k.
Now we introduce an A-module M . Say we had a k-derivation D : A −→ M . Define the following

k-algebra A ∗M :
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Definition 10.0.4. The underlying set of A ∗M is A⊕M , but the multiplication is defined by

A ∗M ⊗ A ∗M −→ A ∗M
(a,m)⊗ (a′,m′) 7−→ (aa′, am′ + a′m)

Notice that considering M as a subalgebra of A ∗M we have M2 = 0. Next, define the morphism of
k-algebras:

ϕ : A⊗k A −→ A ∗M
a⊗ a′ 7−→ (aa′, aDa′)

Notice that if x ⊗ y ∈ I then ϕ(x ⊗ y) = (xy, xDy) = (0, xDy) and so ϕ maps I into M . Lastly, since
M2 = 0 we the map ϕ decends to a map f : I/I2 −→M . This map is important because for any a ∈ A
we have

f((λ1 − λ2)(a)) = f(a⊗ 1− 1⊗ a)

= aD(1) +D(a)

= D(a)

(The last line uses the general fact that for any k-derivation D(1) = D(1) + D(1)) which implies
D(1) = 0).

Lastly, we have for any a, a′ ∈ A that a⊗ a′ = (a⊗ 1)(1⊗ a− a⊗ 1) + aa′⊗ 1 and so a⊗ a′− a(λ1−
λ2)(a′) mod I2. That is to say, {λ1 − λ2)(a) | a ∈ A} generates ΩA/k. It follows that the above f is the
unique morphism such that D = f(λ1 − λ2). We have proven everything except for naturality of the
following.

Proposition 10.0.5. There is a natural (in M) bijection

HomA(ΩA/k,M) ∼= Derk(A,M) (65)
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