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1 Introduction

Gödel’s First Incompleteness Theorem holds in a very broad setting, indeed, observe the following vague
statement.

Proposition 1.0.1. [Gödel’s First Incompleteness Theorem (vague)] Let L be any formal system of arithmetic
(at least strong enough to describe the basic statements about addition and multiplication) whose set of axioms
and set of deduction rules are both computable. Then L is necessarily either incomplete, or inconsistent.

We progressively make this statement more precise. To begin, we define the first order language which we
will be working with (see [1] for Definitions of a first order language and a first order theory).

Definition 1.0.2. The first order language Q consists of the following.

� A single sort A.

� Four function symbols:

0 :A

S :A −→ A

+ :A× A −→ A

× :A× A −→ A
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� No relation symbols.

The first order theory Q consists of the following axioms.

∀x,¬(x = S(x)), (1)

∀x,¬(S(x) = 0) (2)

∀x∀y, S(x) = S(y) =⇒ x = y (3)

∀x,¬(x = 0) =⇒ ∃y, x = S(y) (4)

∀x, x+ 0 = x (5)

∀x∀y, x+ S(y) = S(x+ y) (6)

∀x, x× 0 = 0 (7)

∀x∀y, x× S(y) = (x× y) + x (8)

Remark 1.0.3. The first order theory Q is the familiar first order theory of Peano arithmetic but with the
axiom schema corresponding to induction omitted. This theory Q is often called Robinson arithmetic in
literature.

Since Q does not admit the inductive axiom, it is hardly surprising that Q is incomplete, indeed, one can
prove rather simply that Q cannot prove nor disprove the statement

∀x, 0 + x = x (9)

see [2, §8.4] for a proof. The more interesting question is whether Q can be consistently completed, a notion
we now make precise.

Definition 1.0.4. Let L be a consistent first order theory (see [4] for the basic definitions, complete,
consistent, etc). The system L is consistently completable if there exists a first order theory L′ satisfying
the following.

� Every axiom of L is provable in L′.

� L′ is consistent and complete.

A common miss-understanding of Gödel’s First Incompleteness Theorem is that Q (and hence the first
order theory of Peano arithmetic) is not consistently completable. This is not true, as the following Example
demonstrates.

Example 1.0.5. Given a consistent first order theory L, it was shown in [4, Theorem 1] how to construct a
new first order theory L∗ satisfying the following.

� Every axiom of L is provable in L∗,

� L∗ is consistent and complete (and saturated, which won’t be used here).

Applying this to Q and we obtain Q∗, which contains Q, is consistent, and complete. Hence, Q is consistently
completable (assuming it is consistent).

Indeed, the phrase “...whose set of axioms and set of deduction rules are both computable” in Proposition
1.0.1 cannot be ignored. We make this phrase precise by working with general recursive functions and relations.
We define “general recursive” in Definition 2.0.1. Indeed, the general recursive functions and relations play
an important role in the theory of computation more broadly, but this is not necessary to understand Gödel’s
Theorem. For the current purposes, the role of general recursive functions and relations will be to carve out
a subset of formulas which satisfy a representability criteria (Proposition 1.0.6 below).

In the following lemma, we denote the formula in Q corresponding to a natural number n by n, for example,
2 denotes S(S(0)).
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Proposition 1.0.6. Let f : Nm −→ N be a general recursive function. Then there exists a relation F with
free variables x1, . . . , xm, y satisfying:

If f(n1, ..., nm) = k then Q ` ∀y, F [xi := ni]
m
i=1 ⇐⇒ y = k (10)

where F [xi := ni]
m
i=1 denotes the formula F with ni substituted for all free occurrences of xi for i = 1, . . . ,m.

Moreover, if a relation r ⊆ Nm is general recursive, then there exists a formula R in Q with free variables
x1, ..., xn satisfying the following.

If (n1, ..., nm) ∈ r then Q ` R[xi := ni]
m
i=1

If (n1, ..., nm) 6∈ r then Q ` ¬R[xi := ni]
m
i=1

Proposition 1.0.6 is in fact the core of the argument for Gödel’s First Incompleteness Theorem. It is
proved and discussed further in Section 2. This is where the class of general recursive relations is paramount,
a similar statement to Proposition 1.0.6 but without the hypothesis that R is general recursive is false.

We are now cornered into making a very precise definition of “computable sets”, as if all sets are defined
to be computable, then Gödel’s First Incompleteness Theorem does not hold.

A set will be computable if there exists a general recursive funciton which in some way “recognises” the
elements. General recursive functions have the natural numbers as their domains though, so we need to encode
the elements of the set into natural numbers first, but not any encoding will do as what if this encoding itself
is non-computable?

Thus we will fix a particular encoding of first order formulas into natural numbers. This is done using
Gödel numbers, defined in the following way.

Definition 1.0.7. Given a term or formula ϕ of Q, we associate a natural number _ϕ^ ∈ N in the following
way.

� To each letter in the alphabet associated to Q we associate an integer according to the following table.

γ(0) = 1 γ(S) = 3 γ(+) = 5 γ(×) = 7

γ(() = 9 γ()) = 11 γ(¬) = 13 γ(∧) = 15

γ(∨) = 17 γ(=⇒) = 19 γ(∀) = 21 γ(∃) = 23

γ(=) = 25 γ(x1) = 2 γ(x2) = 4 . . .

To each term or formula ϕ is an associated sequence of symbols s1 . . . sn which spell out ϕ, that is, as words
ϕ = s1 . . . sn. Denoting the ith (in magnitude) prime number by pi, we define:

_ϕ^ = p
γ(s1)
1 · · · pγ(sn)

n (11)

Example 1.0.8. We calculate the Gödel number associated to the formula S(0) = 0 + 1.

_S(0) = 0 + 1^ = _S(0) = 0 + S(0)^

= 2γ(S)3γ(()5γ(0)7γ())11γ(=)13γ(0)17γ(+)19γ(S)23γ(()29γ(0)31γ())

= 23395171111231311751932392913111

= 191352835104285876966611134901860756135433453873754327850773507007732920

Definition 1.0.9. Let X be a set, and for each x ∈ X assume there is some integer x uniquely associated
to x. The characteristic function of X is the function χX : N −→ N which for every x ∈ X is such that
χX(x) = 0 and for all other x ∈ N is such that χX(x) = 1.

A set of first order formulas X is general recursive if the characteristic function of the set of Gödel
numbers of the formulas of X is general recursive.

3



Definition 1.0.10. A first order theory T is effectively, consistently, completable if there exists a first
order theory T′ satisfying the following.

� The set of axioms in T′ is general recursive.

� The set of deduction rules in T′ is general recursive.

� Every axiom rule of T is provable in T′.

� T′ is consistent and complete.

Before stating our version of Gödel’s First Incompleteness Theorem, we make a historical remark. Proposition
1.0.1 stated that L is either incomplete or inconsistent, but in fact this is not what was first proved by Gödel.
The original paper [3] instead proves the weaker claim where the word “inconcistent” is replaced by “ω-
inconsistent”, which we define precisely in Definition 6.0.2. It was Rosser who in [5] relinquished Gödel’s
Theorem of the assumption of ω-consistency. The important fact for now is that ω-consistency implies
consistency, but the converse does not hold, so Rosser’s result is strictly stronger than what Gödel original
wrote.

We can now state our version of Gödel’s First Incompleteness Theorem precisely.

Theorem 1.0.11 (Gödel’s First Incompleteness Theorem (precise)). If Q is ω-consistent, then Q is not
effectively, consistently completable.

The argument will proceed by first defining a particular first order sentence, the Gödel sentence GQ. This
sentence will have the following properties.

If Q is consistent, then Q 6` GQ (12)

If Q is ω-consistent, then Q 6` ¬GQ (13)

That such a sentence exists is remarkable. It is not simple to write GQ down. We discuss this sentence and
its construction more carefully in Section 6.

2 General Recursive Functions and Relations

First we define which functions constitue the “computable” ones. These will be the general recursive functions.

Definition 2.0.1. The set Ψ of general recursive functions is defined inductively.

� First, the base cases.

– The constantly 0 function z : N −→ N, z(n) = 0 is in Ψ.

– The successor function s : N −→ N, s(n) = n+ 1 is in Ψ.

– For any natural number n let m ≤ n and denote by πnm : Nn −→ N the projection onto the mth

component. For each such pair (n,m) the function πnm is in Ψ.

� Now the inductive cases.

– If g : Nm −→ Nr and h1, ..., hm : Nt −→ N are in Ψ, then the composite g ◦ (h1, ..., hm) is in Ψ.

– Say f : Nm+1 −→ N is a function for which there exists g, h ∈ Ψ are such that

f(0, n1, ..., nm) = h(n1, ..., nm) (14)

f(k + 1, n1, ..., nm) = g(k, f(k, n1, ..., nm), n1, ..., nm) (15)

then f is in Ψ.

4



A function f for which there exists functions g, h ∈ Ψ adhering to conditions (14) and (15) is said to be
defined by primitive recursion via g, h. A function defined inductively by the axioms thus given along with
the following extra axiom is general recursive.

� Let f : Nm −→ N be a function in Ψ such that for all (n2, ..., nm) ∈ Nm−1 there exists n1 ∈ N such that
f(n1, ..., nm) = 0. Consider the function denoted µf : Nm−1 −→ N which maps (n2, ..., nm) to the least
n ∈ N such that f(n, n2, ..., nm) = 0. All such µf are in Ψ.

A general recursive relation R ⊆ Nm is a relation for which there exists a general recursive function
f : Nm −→ N satisfying:

f(n1, ..., nm) =

{
0, (n1, ..., nm) ∈ R
1, (n1, ...., nm) 6∈ R

(16)

Remark 2.0.2. Notice the slight oddity that f in (16) maps to 0 if (n1, ..., nm) is an element of R, and maps
to 1 if (n1, ..., nm) is not an element of R.

Remark 2.0.3. Note, in the penultimate clause of Definition 2.0.1, we allow for the case that m = 0. In this
situation, this clause becomes the following.

� Say f : N −→ N is a function for which there exists g ∈ Ψ and h ∈ N such that

f(0) = h (17)

f(k + 1) = g(k, f(k)) (18)

This allows for definitions of general recursive functions of the following form. These two examples will be
used later.

sg(0) = 0 sg(0) = 1

sg(k + 1) = 1 sg(k + 1) = 0

Note: one may wonder if the case when m = 1 is allowed in the final clause of Definition 2.0.1, but this just
states again that the zero function is general recursive.

Example 2.0.4. The predecessor function is general recursive.

P (0) = 0

P (k + 1) = k

Here, the constant function n 7−→ k is general recursive because it is the composite of k copies of the successor
function composed with the zero function.

The cut-off subtraction function is general recursive.

−(0, x) = x

−(k + 1, x) = P (−(k, x))

We will write x− y for −(y, x).
The distance function is general recursive.

d(0, x) = x

d(y, x) = (x− y) + (y − x)

Note the distance function is not the zero function (read carefully!)
We establish some general methods for constructing general recursive functions/relations.
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Lemma 2.0.5. If f : N −→ N is a general recursive function, then the relation R defined by

(n,m) ∈ R iff f(n) = m (19)

is a general recursive relation.

Proof. The characteristic function χR of R is given by the following.

χR(n,m) = sg(d(f(n),m)) (20)

Example 2.0.6. The formulas n = m and n < m are general recursive. They respectively have characteristic
functions given sg(d(n,m)) and sg(m− n).

Lemma 2.0.7. If R, S ⊆ N are general recursive relations, then so are Rc and R ∪ S.

Proof. Let χR, χS be the characteristic functions of R, S respectively. The characteristic function of Rc is
equal to sg(χR). The characteristic function of R ∪ S is equal to the product χR × χS, and it can be shown
that multiplication is a general recursive function.

Remark 2.0.8. A helpful way to think about Lemma 2.0.7 is in the special case where R, S are defined by
properties P,Q. Lemma 2.0.7 in this case says that if R, S are general recursive, then so are the relations
defined by the properties “not P”, “P and Q”, “P or Q”, “P implies Q”.

Lemma 2.0.9. Let R ⊆ N be a general recursive relation and f : N −→ N a general recursive function. The
following two relations are general recursive.

E ⊆ N, where n ∈ E iff there exists x ∈ N, x ≤ f(n) such that x ∈ R
F ⊆ N, where n ∈ F iff for all x ∈ N such that x ≤ f(n) we have x ∈ R

Proof. It can easily be shown that the factorial function n 7−→ n! is general recursive. Let χR denote the
characteristic function of R. We first define the following general recursive function.

χ̂E(0) = χR(f(0))× χR(f(0)− 1)× . . .× χR(0)

χ̂E(j + 1) = χR(j + 1)× χ̂E(j)

The characteristic function of E is then equal to the general recursive function χ̂(f( )) which maps n 7−→
χ̂(f(n)).

For F , we first define the following general recursive function.

χ̂F (0) = χR(0)

χ̂F (j + 1) = χR(j + 1) + χ̂F (j)

The characteristic function of F is then equal to the general recursive function sg(χ̂F (f( ))) which maps
n 7−→ sg(χ̂F (f(n))).

3 The general recursive functions and the general recursive relations

are representable

Definition 3.0.1. A f : Nm −→ N is representable if there exists a formula F (x1, ..., xm, y) in Q with free
variables x1, ..., xm, y such that F satisfies the following.

If f(n1, ..., nm) = k then Q ` ∀y, F (n1, ..., nm, y)⇐⇒ y = k (21)
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We say that f is strongly represented by F .
A relation r ⊆ Nm is representable if there exists a formula R(x1, ..., xm) in Q with free variables x1, ..., xn

such that R satisfies the following.

If (n1, ..., nm) ∈ r then Q ` R(n1, ..., nm)

If (n1, ..., nm) 6∈ r then Q ` ¬R(n1, ..., nm)

We say that r is strongly represented by R.

The main result of this Section is the following.

Lemma 3.0.2. The general recursive functions and the general recursive relations are representable.

Our method of proof will be to focus on the general recursive functions, and then prove the statement
about general recursive relations as a Corollary. We begin with a general recursive function f : Nm −→ N and
mimic the construction of f to construct the required formula F . However, we wish to avoid proving directly
that if f is defined by primitive recursion via g, h, that such an F exists, as this turns out to be difficult. So,
we begin with a new classification of the general recursive functions.

3.1 The β-function

Definition 3.1.1. Let Φ denote the set constructed inductively from the following.

� First, the base cases.

– The constantly 0 function z : N −→ N is in Φ.

– The successor function s : N −→ N, s(n) = n+ 1 is in Φ.

– For any natural number n let m ≤ n and denote by πnm : Nn −→ N the projection onto the mth

component. For each such pair (n,m) the function πnm is in Φ.

– The addition function a : N× N −→ N, a(n,m) = n+m.

– The multiplication function m : N× N −→ N,m(n,m) = nm is in Φ.

– The characteristic function χ∆ of the diagonal relation ∆ ⊆ N× N defined by

(n,m) ∈ ∆ if and only if n = m (22)

is in Φ.

� Now the inductive cases.

– If g : Nm −→ N and h1, ..., hm : Nr −→ N are in Φ, then the composite g(h1, ..., hr) is in Φ.

– Let f : Nm −→ N be a function in Ψ such that for all (n2, ..., nm) ∈ Nm−1 there exists n1 ∈
N such that f(n1, ..., nm) = 0. Consider the function denoted µf : Nm−1 −→ N which maps
(n2, ..., nm) to the least n ∈ N such that f(n, n2, ..., nm) = 0, we denote this natural number n by
µn.f(n, n2, ..., nm). All such µf are in Φ.

Lemma 3.1.2. In the notation of Definitions 2.0.1, 3.1.1 we have that Ψ = Φ. In other words, the inductive
definition of the set Φ gives an alternate definition of the general recursive functions.

It is relatively straight forward to prove that the extra base cases of Definition 3.1.1 are general recursive,
the real work in proving Lemma 3.1.2 will come from showing that the inductive clauses are sufficient for
describing a general recursive function f : Nm+1 −→ N which is defined from primitive recursion via g, h. We
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sketch the argument now: for every natural number k ∈ N and every sequence (n1, ..., nm) ∈ Nm of natural
numbers, there is a finite sequence associated to h(k, (n1, ..., nm)):(

f(0, n), f(1, (n1, ..., nm)), ..., f(k, (n1, ..., nm))
)

(23)

Next, we develop a family of functions {αk : Nk −→ N}∞k=1 and another function β : N× N −→ N subject to
the following: if (y0, ..., ym) is a sequence of natural numbers, then for all i = 0, ...,m we have:

β(αm+1(y0, ..., ym), i) = yi (24)

Hence, if d ∈ N encodes sequence (23), then the function β can be used to describe h:

h(k, (n1, ..., nm)) = β(d, k + 1) (25)

It then will remain to show that β ∈ Φ. In fact, many such β exist, we present a particular choice in Definition
3.1.10, while Definition 3.1.3 defines the general class of suitable functions.

Definition 3.1.3. Let A := {αk : Nk −→ N}∞k=1 be a family of functions. A β-function corresponding to A
is a function N× N −→ N satisfying the following properties.

1. For every length m+ 1 sequence (y0, ..., ym) of natural numberswe have β(αm+1(y0, ..., ym), i) = yi.

2. In the notation of Lemma 3.1.2, we have β ∈ Φ.

Remark 3.1.4. Notice that we do not ask that the αk are in Φ. Also, we do not have any requirement in
Definition 3.1.3 on the behaviour β when applied to elements (d, i) where d is not in the image of any αk.
Hence, a β-function should be though of as a computable decoder, even in the presence of non-computable
encoders αk.

We begin with a particular construction of the family {αk}∞k=1. Since we wish to describe a sequence of
natural numbers via a single natural number, the Chinese Remainder Theorem is a natural place to begin.

Theorem 3.1.5 (Chinese Remainder Theorem). Let x0, ..., xm be a sequence of coprime natural numbers.
Denote by x the product x0 . . . xm. The following is an isomorphism, where we write [l]k for the integer l
modulo k.

c : Z/xZ −→ Z/x0Z× . . .× Z/xmZ (26)

[m]x 7−→ ([m]x0 , ..., [m]xm) (27)

We will have to calculate a suitable choice for x0, ..., xm before the Chinese Remainder Theorem can be
used. The following Lemma tells us our choice.

Lemma 3.1.6. Let y0, ..., ym be a sequence of natural numbers. Denote by j the following natural number.

j = max(m, y0, ..., ym) + 1 (28)

and for i = 0, ...,m define the following:
xi = 1 + (i+ 1)j! (29)

Then the following properties are satisfied.

� The x0, ..., xm are relatively prime.

� For each i = 0, ...,m we have yi < xi.
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Proof. Let i 6= k and consider the difference xi − xk:

(1 + i)j!− (1 + k)j! = (i− k)j! (30)

Say p divides (i− k)j!. Notice that i− k is at most n and we have chosen j > n, so if p divides i− k then p
divides j!. Thus it suffices to assume p divides j!. We thus have that division of 1 + (i+ 1)j! by p is 1, so in
particular p does not divide 1 + (i+ 1)j! = xi for any i 6= k.

We have shown that if p divides xk and xi − xk then p does not divide xi, a contradiction.
The second clause is easy, we notice that yi < j < j! < xi.

We now outline our method for representing a sequence (y0, ..., ym) of natural numbers via a single
natural number d. First we construct a (x0, ..., xm) as given in (29), then we calculate c−1([y0]x0 , ..., [ym]xm),
where c−1 is the inverse of the isomorphism given by the Chinese Remainder Theorem 3.1.5. Notice that
c−1([y0]x0 , ..., [ym]xm) is an element of Z/xZ (where x = x0 . . . xm), we let d denote the least, positive
representative of the equivalence class c−1([y0]x0 , ..., [ym]xm). Hence, we have described a family of functions:

αk+1 : Nk+1 −→ N (31)

(y0, ..., ym) 7−→ d (32)

Now we show the existence of a corresponding β-function, we sketch the general idea here. Let (y0, ..., ym)
be a sequence of natural numbers and let y denote αm+1(y0, ..., ym). We require a function β : N × N −→ N
so that for all such sequences we have β(y, i) = yi. By the discussion above, we can recover yi from y by
constructing x0, ..., xm and then yi = [y]xi . Now a subtlety arises, the integer xi is defined as 1 + (i + 1)j!
where j is defined as max(m, y0, ..., ym) + 1, hence, if we were to construct yi from y alone we would need a
way to construct y0, ..., ym, so this is a circular approach!

However, if we already had access to the integer j! then this problem would go away. So, we can define a
function β∗ : N×N×N −→ N subject to β∗(y, j!, i) = yi. Then it is simply a matter of finding a way to encode
the pair (y, j!) as a single integer, in other words, we need to define an injective function J : N×N� N such
that J ∈ Φ. We do this in Definition 3.1.7.

Definition 3.1.7. Define the following functions.

J : N× N −→ N (33)

(x, y) 7−→ 1

2
(x+ y)(x+ y + 1) + x (34)

K : N× N −→ N (35)

(x, y) 7−→ minx′ ≤ y,∃y′ ≤ x, x = J(x′, y′) (36)

L : N× N −→ N (37)

(x, y) 7−→ min y′ ≤ y,∃y′ ≤ x, x = J(x′, y′) (38)

Lemma 3.1.8. In the notation of Definition 3.1.7, the function J is injective, and for all (x, y) ∈ N× N we
have:

K(J(x, y), J(x, y)) = x (39)

L(J(x, y), J(x, y)) = y (40)

Remark 3.1.9. The exact definition of the functions J,K, L are not important, we just need them to be
functions in Φ (see Definition 3.1.1) and equations (39), (40) to hold.

Also, one might wonder why we didn’t define K(x, y) = µx′.∃y′ ≤ x, x = J(x′, y′), this is because if we
did, then K would be in Φ only if J is surjective, which we wish not to check.

We can now define our β-function.
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Definition 3.1.10. Define the following.

β∗ : N× N× N −→ N β : N× N −→ N (41)

(l, y, i) 7−→ rem(1 + (i+ 1)l!, y) (y, i) 7−→ β∗(K(y), L(y), i) (42)

Lemma 3.1.11. Let (y0, ..., ym) be a sequence of natural numbers, j = max(m, y0, ..., ym)+1, y = αm(y0, ..., ym),
d = J(j, y) β : N× N −→ N be as given in Definition 3.1.10. Then for all i = 0, ...,m we have:

β(d, i) = yi (43)

Proof. This is a simple calculation.

β(d, i) = β∗(K(d), J(d), i)

= β∗(j, y, i)

= rem(1 + (i+ 1)j!, y)

= yi

We now use the function β to prove Lemma 3.1.2.

Proof of Lemma 3.1.2. We leave as an exercise the fact that the functions defined in the base case are elements
of Ψ. We prove here that if f : Nm+1 −→ N is a function defined by primitive recursion via g, h then f ∈ Φ.

First define the relation R ⊆ Nm+2 where (d, y, n1, ..., nm) ∈ R if and only if the following holds.

β(d, 0) = f(n1, ..., nm) and for all k < y, β(d, k + 1) = g(k, β(d, k), n1, ..., nm) (44)

We observe that the relation R is general recursive, and let χR : Nm+2 −→ N denote its characteristic function
and define the following.

ĥ : Nm+1 −→ N (45)

(y, n1, ..., nm) −→ µd.χR(d, y, n1, ..., nm) (46)

We then have:
h(y, n1, ..., nm) = β(ĥ(y, n1, ..., nm), y) (47)

3.2 Representability

Now we can prove that the general recursive functions are representable in Q.

Lemma 3.2.1. In the notation of Definition 3.1.1, the functions z, s, πnm, a,m, χ∆ are all representable in Q.

Proof. First, consider the function z : N −→ N. We claim this is represented by the formula ϕz given by
y = 0. We must show that for any n ∈ N we have Q ` ϕz(n, y)⇐⇒ y = 0. We have taken ϕz to be y = 0, so
in fact we must show Q ` y = 0⇐⇒ y = 0. We consider the following prooftree.

[y = 0]1
(=⇒ I)1

y = 0 =⇒ y = 0

[y = 0]2
(=⇒ I)2

y = 0 =⇒ y = 0
∧Iy = 0 =⇒ y = 0 ∧ y = 0 =⇒ y = 0

ϕz(n, y)⇐⇒ y = 0
(∀I)

∀y, ϕz(n, y)⇐⇒ y = 0

It is similarly trivial to show the following.
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� The function s is represented by ϕs(x, y) defined as y = x+ 1.

� The function πmn is represented by ϕπm
n

(x1, ..., xn, y) defined as y = xm.

� The function a is represented by ϕa(x1, x2, y) defined as x1 + x2 = y.

� The function m is represented by ϕm(x1, x2, y) defined as x1 × x2 = y.

It is also simple to prove that χ∆ is representable, but it requires an intermediate step. First we show that if
n 6= m then Q ` ¬(n = m).

To this end, say n 6= m and assume further that n > m. We construct a proof with premise n = m and then
use finitely many applications of the axiom ∀x∀y, S(x) = S(y) =⇒ x = y to deduce that Q ` S(. . . S(0)) = 0.
Using (∃I) we can thus infer that Q ` ∃x, S(x) = 0 which contradicts the axiom ∀x,¬(S(x) = 0). This
establishes the claim.

It is now straight forward to show that χ∆ is represented by ϕχ∆
(x1, x2, y) defined as (x1 = x2 ∧ y =

0) ∨ (¬(x1 = x2) ∧ y = 1).

Lemma 3.2.2. If g, h : N −→ N are represented by G(x, y) and H(x, y) respectively, then the composite gh
is represented in Q by the following term which we denote by F (x, y).

∃z,H(x, z) ∧G(z, y) (48)

Proof. Say n,m ∈ N are such that gh(n) = m. Let k ∈ N be such that h(n) = k. Then by assumption, we
have the following.

Q ` ∀y,H(n, y)⇐⇒ y = k (49)

Q ` ∀y,G(k, y)⇐⇒ y = m (50)

We then have the following prooftree.

k = k

∀y,H(n, y)⇔ y = k
(∀E)

H(n, k)⇔ k = k
(∧E)

k = k ⇒ H(n, k)
(⇒ E)

H(n, k)

[y = m]1
m = m

∀y,G(k, y)⇔ y = m
(∀E)

G(k,m)⇔ m = m
(∧E)

m = m⇒ G(k,m)
(= E)

G(k,m)
(∧I)

G(k, y)
(∧I)

H(n, k) ∧G(k, y)
∃I

F (n, y)
(⇒ I)1

y = m⇒ F (n, y)

[F (n, y)]2

H(n, k) ∧G(k, y)
(∧E)

G(k, y)

∀y,G(k, y)⇔ y = m
(∀E)

G(k, y)⇔ y = m
(∀E)

G(k, y)⇔ y = m
(= E)y = m

∃Ey = m
(⇒ E)2

F (n, y)⇒ y = m
(∧I)

F (n, y)⇔ y = m
(∀I)

∀y, F (n, y)⇔ y = m

We have shown:
If gh(n) = m then Q ` ∀y, F (n, y)⇐⇒ y = m (51)

as required.

Lemma 3.2.3. Let g : Nm −→ Nr and h1, ..., hm : N −→ Nr be representable functions. Then the composite
g(h1, ..., hm) is representable.

Proof. Similar to the proof of Lemma 3.2.2 and is left as an exercise.

In what follows, we write w < n+ 1 for ∃w′, w′ + w = n+ 1.

Lemma 3.2.4. Let f : Nm −→ N be a representable function, represented by F (x1, ..., xm, y) say. The
function µf is represented by the following formula which we denote by G.

G(x2, ..., xm, y) := F (y, x2, ..., xm, 0) ∧ ∀w,w < y =⇒ ¬F (w, x2, ..., xm, 0) (52)

Before proving Lemma 3.2.4, we prove some preliminary lemmas.
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Lemma 3.2.5. For all n > 0 we have that Q ` ∀w,w < n+ 1 =⇒ w = 0 ∨ . . . ∨ w = n.

Proof. We proceed by induction on n. First consider the case where n = 0. We need to show that Q `
∀w,w < S(0) =⇒ w = 0. Throughout, if a proof π has assumptions p1, ..., pn we will write π(p1, ..., pn). First
we consider the following prooftree which we denote by ζ(¬(x = 0),∀w,w < S(0)).

¬(x = 0)

∀x,¬(x = 0) =⇒ ∃y, S(y) = x
(∀E)

¬(x = 0) =⇒ ∃y, S(y) = x
(⇒ E)

∃y, S(y) = x

[S(y′) = x]

x < S(0)

∃w′, x+ S(w′) = S(0)
(= E)

∃w′, S(y′) + S(w′) = S(0)
(∃I)

∃y′′∃w′, S(y′′) + S(w′) = S(0)
(∃E)

∃y′′∃w′, S(y′′) + S(w′) = S(0)

We can now construct the following, which we denote ξ(¬(x = 0),∀w,w < S(0)).

ζ(¬(x = 0), x < S(0))

...
[∃y′′∃w′, S(y′′) + S(w′) = S(0)]

[∃w′, S(y′′) + S(w′) = S(0)]

[S(y′′) + S(w′) = S(0)]

∀x∀y, y + S(x) = S(y + x)
(∀E)

∀y, y + S(w′) = S(y + w′)
(∀E)

S(y′′) + S(w′) = S(y′′ + S(w′))
(= E)

S(y′′ + S(w′)) = S(0)
(∃I)

∃w′, S(y′′ + S(w′)) = S(y′′ + S(w′))
(∃I)

∃y′′∃w′, S(y′′ + S(w′)) = S(0)
(∃E)

∃y′′∃w′, S(y′′ + S(w′)) = S(0)
(∃E)

∃y′′∃w′, S(y′′ + S(w′)) = S(0)

From ξ(¬(x = 0), x < S(0)) we can construct a proof of ∃y′′∃w′, w′+ y′′ = 0 with assumption ¬(x = 0) in the
following way, we label this proof ν(¬(x = 0),∀w,w < S(0)).

ξ(¬(x = 0), x < S(0))

...
∃y′′∃w′, S(y′′ + S(w′)) = S(0)

[∃w′, S(y′′ + S(w′)) = S(0)]

[S(y′′ + S(w′)) = S(0)]

∀x∀y, S(x) = S(y) =⇒ x = y
(∀E)

∀y, S(y′′ + S(w′)) = S(y) =⇒ y′′ + S(w′) = y
(∀E)

S(y′′ + S(w′)) = S(0) =⇒ y′′ + S(w′) = 0
(=⇒ E)

y′′ + S(w′) = 0
(∃E)

y′′ + S(w′) = 0
(∃E)

y′′ + S(w′) = 0
(∃I)

∃w′, y′′ + S(w′) = 0
(∃I)

∃y′′∃w′, y′′ + S(w′) = 0

From this, a contradiction can be drawn, and hence we end up at the following prooftree.

ν([¬(x = 0)]1, [x < S(0))]2

...
[∃y′′∃w′, y′′ + S(w′) = 0]

[∃w′, y′′ + S(w′) = 0]

y′′ + S(w′) = 0

∀x∀y, x+ S(y) = S(x+ y)
(∀E)

∀y, y′′ + S(y) = S(y′′ + y)
(∀E)

y′′ + S(w′) = S(y′′ + w′)
(= E)

S(y′′ + w′) = 0
(∃I)

∃z, S(z) = 0
(∃E)

∃z, S(z) = 0
∃E∃z, S(z) = 0

[S(z) = 0]

∀x,¬(S(x) = 0)
(∀E)

¬(S(z) = 0)
(⊥I)⊥

(∃E)⊥ (⊥C)1

x = 0 (⇒ I)2

x < S(0) =⇒ x = 0
(∀I)

∀x, x < S(0) =⇒ x = 0

For the inductive step, we assume that Q ` ∀w,w < n+ 1 =⇒ w = 0 ∧ . . . ∧ w = n and show that
Q ` ∀w,w < n+ 2 =⇒ w = 0 ∧ . . . ∧ w = n+ 1. First we introduce some derived rules.

∃y, x+ S(y) = z
(∃S)

∃y, S(x+ y) = z

∃y, S(x+ y) = S(z)
(SE)∃∃y, x+ y = z

∃x, t ∃y, u = v
(= E)∃∃x∃y, t[u := v]

This first rule comes from the following prooftree.

∃y, x+ S(y) = z

[x+ S(y′) = z]

∀x∀y, x+ S(y) = S(x+ y)
(∀E)

∀y, x+ S(y) = S(x+ y)
(∀E)

x+ S(y′) = S(x+ y′)
(= E)

S(x+ y′) = z
(∃I)

∃y, S(x+ y) = z
(∃E)

∃y, S(x+ y) = z

12



The second rule comes from the following.

∃y, S(x+ y) = S(z)

[S(x+ y′) = S(z)]

∀x∀y, S(x) = S(y) =⇒ x = y
(∀E)

∀y, S(x+ y′) = S(y) =⇒ x+ y′ = y
(∀E)

S(x+ y′) = S(z) =⇒ x+ y′ = z
(=⇒ E)

x+ y′ = z
(∃I)∃y, x+ y = z
(∃E)∃y, x+ y = z

The third rule:

∃x, t
∃y, u = v

[(u = v)[y := y′]] [t[x := x′]]
(= E)

t[x := x′][u[y := y′] := v[y := y′]]
(∃I)

∃y, t[x := x′][u := v]
(∃I)

∃x∃y, t[u := v]
(∃E)

∃y, t[u := v]
(∃E)

∃x∃y, t[u := v]

We will also make use of the following derived rule, for which we add commutativity as an axiom to Q. That
is, we assume now that Q also admits the axiom ∀x∀y, x+ y = y + x.

∃x∃y, S(x) + y = t
(C)∃∃x∃y, y + S(x) = t

We first consider the following prooftree which we denote by π.

∀w∃w′, w + S(w′) = n+ 2
(∀E)

∃w′, w + S(w′) = n+ 2
(∃S)

∃w′, S(w + w′) = n+ 2
(SE)∃∃w′, w + w′ = n+ 1

¬(w = 0)

∀x¬(x = 0) =⇒ ∃w′′, x = S(w′′)
(∀E)

¬(w = 0) =⇒ ∃w′′, w = S(w′′)
(=⇒ E)

∃w′′, w = S(w′′)
(= E)∃∃w′∃w′′, S(w′′) + w′ = n+ 1

(C)∃∃w′∃w′′, w′ + S(w′′) = n+ 1

We can now make use of the inductive hypothesis to prove ∃w′, (w+S(w′) = n+ 2)∧ (w′ = 0∨ . . .∨w′ = n).
From this we can prove ∀w,w = 1 ∨ . . . ∨ w = n+ 1, as the proof has an assumption ¬(w = 0). The result
then follows.

The familiar trichotomy axiom, that for all natural numbers n we have n = 0∨ n > 0 is also proveable by
Q. This is the content of the next Lemma and indeed this will be used in the proof of Lemma 3.2.4.

Lemma 3.2.6. The trichotomy axiom is provable in Q, that is, for all n ∈ N we have Q ` ∀x, x < n ∨ x =
n ∨ n < x.

Now we sketch a proof of Lemma 3.2.4.

Proof of Lemma 3.2.4. Assume that µf(n2, ..., nm) = k, we first show that Q ` ∀y, y = k =⇒ G(n2, ..., nm, y).
Notice that by the following proof tree it is sufficient to show Q ` G(n2, ..., nm, k).

[y = k]1 G(n2, ..., nm, k)
(= E)

G(n2, ..., nm, y)
(=⇒ E)1

y = k =⇒ G(n2, ..., nm, y)
(∀I)

∀y, y = k =⇒ G(n2, ..., nm, y)
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To show Q ` ∀y,G(n2, ..., nm, k) it suffices by (∧I) to show the following.

Q ` F (k, n2, ..., nm, 0), Q ` ∀w,w < k =⇒ ¬F (w, n2, ..., nm, 0) (53)

The first of these is easy because it follows directly from the fact that f(k, n2, ..., nm) = 0. For the second of
these, it suffices by Lemma 3.2.5 to prove the following for all n < k:

Q ` ¬F (n, n2, ..., nm, 0) (54)

Since µf(n2, ..., nm) = k we have for all n < k that there exists ln > 0 satisfying f(n, n2, ..., nm) = ln. Since f is
represented by F we have Q ` ∀y, F (n, n2, ..., nm, y)⇐⇒ y = ln and hence Q ` F (n, n2, ..., nm, 0)⇐⇒ 0 = ln.
Hence, Q,F (n, n2, ..., nm, 0) ` 0 = ln leads to a contradiction as ln > 0.

Now we need to show Q ` ∀y,G(n2, ..., nm, y) =⇒ y = k. We do this by showing Q,G(n2, ..., nm, y) `
¬(k < y)∧¬(y < k) which by Lemma 3.2.6 then implies that Q,G(n2, ..., nm, y) ` y = k. It then follows from
(⇒ I) and (∀I) that Q ` ∀y,G(n2, ..., nm, y) =⇒ y = k.

Hence, the proof has been reduced to considering the following two prooftrees. We have seen in (53)
already that Q ` F (k, n2, ..., nm, 0), let π be any proof of F (k, n2, ..., nm, 0).

π
...

F (k, n2, ..., nm, 0)

[k < y]1

G(n2, ..., nm, y)
(∧E)

∀w,w < y =⇒ ¬F (w, n2, ..., nm, 0)
(∀E)

k < y =⇒ ¬F (k, n2, ..., nm, 0)
(⇒ E)

¬F (k, n2, ..., nm, 0)
(¬E)⊥ (¬I)1

¬(k < y)

In the following prooftree, we use the fact that Q ` ∀w,w < k =⇒ ¬F (w, n2, ..., nm, 0) as shown earlier in
this proof, let ζ be any proof of ∀w,w < k =⇒ ¬F (w, n2, ..., nm, 0).

G(n2, ..., nm, y)
(∧E)

F (y, n2, ..., nm, 0)

[y < k]1

ζ
...

∀w,w < k =⇒ ¬F (y, n2, ..., nm, 0)
(∀E)

y < k =⇒ ¬F (y, n2, ..., nm, 0)
(⇒ E)

¬F (y, n2, ..., nm, 0)
(¬E)⊥ (¬I)1

¬(y < k)

Proposition 3.2.7. Every general recursive function is representable.

Proof. By Lemma 3.1.2 it suffices to prove the result by induction on the structure of Φ as given in Definition
3.1.1. The result then follows from Lemmas 3.2.1, 3.2.2, 3.2.3, 3.2.4.

Corollary 3.2.8. Every general recursive relation is representable.

Proof. Let r ⊆ Nm be a general recursive relation. By definition the characteristic function χr of r is general
recursive, where χr is defined as follows.

χr(n1, ..., nm) =

{
0, (n1, ..., nm) ∈ r
1, (n1, ..., nm) 6∈ r

(55)

Since χr is general recursive, it follows from Proposition 3.2.7 that there exists a relation R(x1, ..., xm, y)
subject to:

Q ` ∀y,R(n1, ..., nm, y)⇐⇒ y = 0 (56)
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We now consider the formula R(x1, ..., xm, 0) which we denote R̂(x1, ..., xn). We claim that R̂(x1, ..., xn)
represents r. Let (n1, ..., nm) be such that (n1, ..., nm) ∈ r. Then Q ` ∀y,R(n1, ..., nm, y)⇐⇒ y = 0. Observe
now the following prooftree.

rflx0 = 0

∀y,R(n1, ..., nm, y)⇐⇒ y = 0
(∧E)

∀y, y = 0 =⇒ R(n1, ..., nm, y)
(∀E)

0 = 0 =⇒ R(n1, ..., nm, 0)
(=⇒ E)

R(n1, ..., nm, 0)

We have shown:
If (n1, ..., nm) ∈ r, then Q ` R̂(n1, ..., nm) (57)

Now, say (n1, ..., nm) 6∈ r. We thus have Q ` R̂(n1, ..., nm, y)⇐⇒ y = 1. We then have the following prooftree.

...
¬(0 = S(0))

[R(n1, ..., nm, 0)]1

∀y,R(n1, ..., nm, y)⇐⇒ y = 1
(∧E)

∀y,R(n1, ..., nm, y) =⇒ y = 1
(∀E)

R(n1, ..., nm, 0) =⇒ 0 = 1
(=⇒ E)

0 = 1
(¬E)⊥ (¬I)1

¬(R(n1, ..., nm, 0))

We have shown:
If (n1, ..., nm) 6∈ r, then Q ` ¬

(
R̂(n1, ..., nm)

)
(58)

Completing the proof.

4 Gödel Numbering

Due to the advancement and modern presence of computer machines, it is not surprising that the natural
numbers are capable of encoding and expressing complex sentences. For instance, one could map every
character inside this document to its associated ASCII integer, concatenate all these integers, and then read
the result as a natural number n. This natural number has “more” inside it than the raw number n, but if
read in the correct way, in fact expresses an exposition on Gödel’s First Incompleteness Theorem.

That integers can encode data is a key part of Gödel’s argument. Ultimately, Gödel’s argument comes
down to defining a formula (the Gödel sentence GQ) whose provability infers a relationship of natural numbers
which expresses (when interpreted in the correct way) a paradox.

The particular choice of encoding taken here is largely arbitrary, many other codings could be (and have
been) used and still result in a correct argument. See Definition 1.0.7 for the encoding.

Remark 4.0.1. Later, we will need to be able to extract the term/formula ϕ from the integer _ϕ^ in the
situation where we know that _ϕ^ is the Gödel number for some formula, hence we require that the mapping
ϕ 7−→ _ϕ^ is injective. This is why we the definition of _ϕ^ involves the exponents of prime numbers.

5 Towards the Gödel sentence

In Section 2 we constructed many examples of general recursive functions, relations, and formulas. In this
Section, we construct more elaborate general recursive relations, which will be crucial in defining the Gödel
sentence, GQ.
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5.1 Diagonalisation

Notation 5.1.1. In the following, if a formula ϕ of Q admits one free variable y, then we will write ϕ(y).

Definition 5.1.2. The diagonalisation of a formula ϕ(y) of Q is the following formula which we denote by
∆(ϕ(y)):

∃y, y = _ϕ(y)^ ∧ ϕ(y) (59)

We next construct a function diag : N −→ N which given maps a number n which is the Gödel number of
a formula ϕ(y) to diag(n) = _∆(ϕ(y))^.

Lemma 5.1.3. The function

num : N −→ N
n 7−→ _n^

is general recursive.

Proof. We can define this as follows.

num(0) = 2γ(0) = 21 = 2

num(j + 1) = 2γ(S) × num(j) = 23 × num(j) = 8× num(j)

Definition 5.1.4. The concatination of two Gödel numbers n,m, denoted n ∗m is given as follows. First
write n = p_s1^

1 . . . p_sn^
n and m = p_t1^

1 . . . p_tm^
m . Then n ∗m is the integer pt11 . . . p

sn
n p

t1
n+1 . . . p

tm
n+m.

A fact we will not prove is the following.

Fact 5.1.5. The function

diag : N −→ N
n 7−→ _∃y, y =^ ∗ num(n) ∗ _∧^ ∗ n

is general recursive.

Remark 5.1.6. Notice that in the special case where n is the Gödel number of some formula ϕ(y), ie,
n = _ϕ(y)^ then diag(n) = _∆(ϕ(y))^.

5.2 “Proof of”

We have shown how to represent any formula ϕ by an integer, its corresponding Gödel number _ϕ^. Now we
want to represent entire proofs with integers. This will be done by first constructing a “linear” representation
of a proof tree. This is simply done by stacking a tree into a single trunk following the convention of putting
the right branch at every binary deduction rule underneath the left branch. We given an example.

axϕ
(∨I)Lψ ∨ ϕ

axγ
(∨I)Rγ ∨ δ
∧I

(ψ ∨ ϕ) ∧ (γ ∨ δ)
 

axϕ
(∨I)Lψ ∨ ϕ
axγ
(∨I)Rγ ∨ δ

∧I
(ψ ∨ ϕ) ∧ (γ ∨ δ)

In the situation where there are more than one binary connective in the proof tree, we methodically work
from the top of the tree (nearest the leaves) down to the root. Hence, a proof tree can be identified with a
sequence of formulas, reading the truncated tree from top to bottom. It is to this sequence of formulas, we
associated a super Gödel number.
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Definition 5.2.1. Let ϕ1, ..., ϕn be a sequence of formulas. The super Gödel number of this sequence is
given by the following.

p_ϕ1^
1 . . . p_ϕn^

n (60)

There is now the following crucial fact, we will shall leave unproven.

Fact 5.2.2. There is a relation proofof ⊆ N × N which on a pair of natural numbers (n,m) where n is the
super Gödel number of a proof of a formula ϕ, and m = _ϕ^. This relation is general recursive.

The proof of Fact 5.2.2 is where the bulk of the busy work of Gödel’s Theorem lies. We leave references
of work which goes through the proof of this part in more detail: [6], [3], [2], however we note that these
resources use simpler proof systems, the author knows of no detailed account of the proof of Fact 5.2.2 (as
stated with respect to Gentzen’s Natural Deduction).

6 Gödel’s Sentence

In Section 5 we mentioned that the function diag : N −→ N and the relation proof ⊆ N × N are general
recursive. The composition of general recursive functions remains general recursive, so the following relation
is general recursive.

gdl ⊆ N× N, where (n,m) ∈ gdl iff (n, diag(m)) ∈ proofof (61)

Since this is general recursive, and general recursive relations are strongly representable in Q (Lemma 3.0.2)
there exists a formula GDL of Q satisfying the following.

(n,m) ∈ gdl implies Q ` GDL(n,m)

(n,m) 6∈ gdl implies Q ` ¬GDL(n,m)

We then define U(y) to be the formula ∀x,¬GDL(x, y). The Gödel sentence is then the Diagonalisation of
this.

GQ is ∆(U(y)) which is ∃y, y = _U(y)^ ∧ U(y) (62)

We have the following proof trees.

∃y, y = _U(y)^ ∧ U(y)
∃E

U(_U(y)^)

and so GQ can also be taken to be U(_U(y)^). In turn, this formula is the same as ∀x,¬GDL(x, _U(y)^).
We now prove the following.

Lemma 6.0.1. If Q is consistent, then Q 6` GQ.

Proof. Say Q ` GQ and let π be a proof of GQ. We let m be the super Gödel number (Definition 5.2.1) of π.
Since GQ is the diagonalisation of U(y), we hence have (m, _U(y)^) ∈ gdl, which as GDL represents gdl implies
that Q ` GDL(m, _U(y)^). However, we have assumed that Q ` GQ, ie, Q ` ∀x,¬GDL(x, _U(y)^). Hence, in
particular, Q ` ¬GDL(m, _U(y)^). Hence we have contradicted our assumption that Q is consistent.

Lastly, we wish to show that if Q is consistent, then Q 6` ¬GQ, however as mentioned in the introduction,
we will only prove this in the context where Q is ω-consistent.

Definition 6.0.2. The first order theory Q is ω-inconsistent if there exists a formula ϕ(x) such that
Q ` ∃x, ϕ(x) and for all integers m we have Q ` ¬ϕ(m).

If Q is not ω-inconsistent, then it is ω-consistent.

Fact 6.0.3. If Q is ω-consistent, then it is consistent.
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Lemma 6.0.4. If Q is ω-consistent, then Q 6` ¬GQ.

Proof. Say Q ` ¬GQ. Then Q ` ∃x,GDL(x, _U(y)^). Now, since Q is ω-consistent, it is in particular
consistent, and so Q ` ¬GQ implies that Q cannot prove GQ. Hence, for every integer m ∈ N we have
that m is not the super Gödel number of a proof of GQ. Hence, by strong representability, we have that
Q ` ¬GDL(m, _U(y)^), for each integer m ∈ N. This contradicts the assumption that Q is ω-consistent, and
so we have that Q 6` ¬GQ.

7 Is the use of general recursive functions problematic?

What is the role of the general recursive functions in the proof of Gödel’s First Incompleteness Theorem?
Essentially, they are a convenient means to describe Gödel’s sentence, which is simply some formula inside
the first order theory Q. Hence, the fact that these functions are general recursive is not their important
property, but instead, the underlying representing formulas are what matter.

Notice that in order to prove Lemma 6.0.1, all we need to know is that if m is the super Gödel number
of a proof of π, then Q ` GDL(m, _U(y)^), hence, as long as this can be shown, the fact that gdl is a general
recursive function is not important.

In fact, in order to prove Lemma 6.0.4 all we need to know is that if Q 6` GQ then for every integer m ∈ N
we have that Q ` ¬GDL(m, _U(y)^).

Moreover, the proof of Proposition 3.2.7 that every general recursive function is representable, took the
inductive structure of the definition of a general recursive function and mimicked this construction inside Q
along with natural deduction to construct a representing formula.

Hence, the role of general recursive functions inside the entire proof, is essentially just a convenient way
to describe the construction of the Gödel sentence, and is in fact not a crucial part of the proof.

We outline here a way to prove Gödel’s First Incompleteness Theorem without making mention of general
recursive functions, we will also use an abstract notion of Gödel Numbering, meaning that we do not fix a
particular such translation from proofs to integers. First, fix an injective translation from formulas in Q to
natural numbers, given a formula F in Q we denote by F its translation. Also, fix an injective translation
from proofs to natural numbers, for any proof π we let π denote its translation. The next step is to prove the
following Lemma.

Lemma 7.0.1. There exists a formula F (x, y) with two free variables x, y subject to the following properties.

� Given a proof π of ∀x, F (x, y) we have Q ` F (π,∀x, F (x, y)).

� If there is no proof of ∀x, F (x, y) then for each natural number m ∈ N we have Q ` ¬F (m,∀x, F (x, y)).

Then Lemmas 6.0.1, 6.0.4 can easily be adapted to accomodate Lemma 7.0.1.
Hence, the introduction of general recursive functions to this argument is a detour, one could be more

direct by simply working with the underlying representing formulas right from the beginning. However, this
is not so simple, as what is the underlying representing formula of a function defined by primitive recursion?
Recall, that we showed that these such functions are representable by making use of a β-function (Definition
3.1.3).

In fact, not only is the introduction of general recursive functions not necessary, it can be argued that it is
indeed problematic; what is a general recursive function? The point of Gödel’s First Incompleteness Theorem
is to show a counterintuitive result concerning the theory of arithmetic. Before this is organised, how can
we discuss the general recursive functions? One must accept a kind of Platonic existence of general recursive
functions, but then what slips in when we do this? After all, we wish to talk about these functions, so what
language do we use? A first order theory of some kind....?

It is the author’s opinion that, one ought to present Gödel’s First Incompleteness Theorem on the level
of the representing formulas, in order to stay completely contained in the realm of logic and language. Only
then can the philosophical implications be considered before moving onto further mathematical discourse.
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