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“All of this will lead to theories which are 
much less rigidly of an all-or-nothing nature 

than past and present formal logic. They will 
be of a much less combinatorial, and much 
more analytical, character. In fact there are 

numerous indications to make us believe 
that this new system of formal logic will move 
closer to another discipline which has been 

little linked in the past with logic. This is 
thermodynamics, primarily in the form it was 
received from Boltzmann, and is that part of 
theoretical physics which comes nearest in 

some of its aspects to manipulating and 
measuring information.”


John von Neumann, Collected Works, Vol. 5, p.304



Questions

• Are Large Language Models (LLMs) reasoning?


• How is that reasoning represented at a computational level?


• How does that reasoning emerge during the training process? 


• What kind of mathematical / statistical phenomena is that emergence?


• What is the emergent logic of large scale learning machines?

Encountered in the “wild”
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Proofs, Programs and 
Learning



Proofs as Constructions



Proofs, Programs and Learning

• In Nature many structures arise through learning processes


• In 1948 Turing introduced the idea of “unorganised machines” (essentially a kind of 
neural network) that could be driven towards organisation by interaction with data, 
and proposed this as a model of human development.


• Are trained neural networks “programs”?


• If we identify the structure of a proof with the structure of its construction, and 
view learning processes as “constructions”, it leads us to ask about the logical 
structure of learning processes.



Introduction to Singular 
Learning Theory



Bayesian Statistics

• Bayesian statistics is about learners making observations of a generating process in 
the environment, and attempting to predict it. The basic ingredients are the true 
distribution , the class of models  with parameter  and prior .  


• The more samples  you see from the true distribution, the better 
able you are to find a model  which “fits” those samples.


• But it’s not enough to just fit the data, since ultimately you want to predict.


• Bayesian statistics gives a powerful mathematical framework for reasoning about 
the tradeof between explaining the data you have already seen, and predicting the 
data you are about to see.

q(x) p(x |w) w ∈ W φ(w)

Dn = {X1, …, Xn}
p(x |w)



• Basic ingredients: true distribution , the class of models  with parameter  and 
prior  and samples  from the true distribution.


•  and 


• This yields a formula for the Bayesian posterior (belief after seeing data)





where  is called the partition function or marginal likelihood.


• The predictive distribution is . According to Bayesian statistics, this is 

how you “should” believe in future samples from the true distribution.

q(x) p(x |w) w ∈ W
φ(w) Dn = {X1, …, Xn}

p(Dn |w) =
n

∏
i=1

p(Xi |w) p(w |Dn)p(Dn) = p(w, Dn) = p(Dn |w)φ(w)

p(w |Dn) =
1
Zn

p(Dn |w)φ(w)

Zn = ∫ p(Dn |w)φ(w)dw

p*(x) = ∫ p(x |w)p(w |Dn)dw

Bayesian Statistics



• Basic ingredients: true distribution , the class of models  with parameter 
 and prior  and samples  from the true distribution. 

The Bayesian posterior .


• Recall  is how likely this model thinks the data is. If you have another 
model  you get  and if that model thinks this data is more likely, that 
is,  then you “should” switch to that model.


• Bayesian model selection: prefer the model with the highest marginal likelihood  
or what is the same, the lowest free energy .

q(x) p(x |w)
w ∈ W φ(w) Dn = {X1, …, Xn}

p(w |Dn) = 1
Zn

p(Dn |w)φ(w)

Zn = p(Dn)
p′￼(x) Z′￼n = p′￼(Dn)

Z′￼n > Zn

Zn
Fn = − log Zn

Bayesian Statistics



• Basic ingredients: true distribution , the class of models  with parameter 
 and prior  and samples  from the true distribution. The 

Bayesian posterior . Prefer the model with the lowest 

free energy .


• Classical Bayesian statistics (BIC): for large ,  where  is the 

negative log likelihood, think of it as the KL divergence between the “best” model 
and the true distribution, and  is the number of parameters (Schwarz).


• Modern Bayesian statistics (WBIC): for large ,  where , the 
learning coefficient, may be less than  (Watanabe).

q(x) p(x |w)
w ∈ W φ(w) Dn = {X1, …, Xn}

p(w |Dn) = 1
Zn

p(Dn |w)φ(w)
Fn = − log Zn

n Fn ≈ nL0 +
d
2

log n L0

d

n Fn ≈ nL0 + λ log n λ
d
2

Bayesian Statistics



• Basic ingredients: true distribution , the class of models  with parameter  and 
prior  and samples . The Bayesian posterior is

. For large , .


• Classical Bayesian statistics only applies to regular models (where the map from parameters  to 
models  is locally injective).


• Neural networks and other models with hidden variables are singular which means that .


• Singular Learning Theory (SLT) is a modern theory of Bayesian statistics, developed by 
Sumio Watanabe and collaborators, over the last twenty years which extends Bayesian statistics 
to singular models (using empirical process theory, functional analysis, algebraic geometry).


• SLT is one of the leading candidates for a mathematical theory of deep learning.

q(x) p(x |w) w ∈ W
φ(w) Dn = {X1, …, Xn}

p(w |Dn) = 1
Zn

p(Dn |w)φ(w) n Fn ≈ nL0 + λ log n

w
p(x |w)

λ < d
2

Singular Learning Theory



Singular Learning Process



• To apply Bayesian statistics we need a generating process, or true distribution.


• Suppose we have for each  a corresponding proof  and for each  a 
proof  and let  be a given function. We take pairs  with 

 as samples from our true distribution and ask: which algorithm 
produced these samples?


• We can imagine a learning process which starts with “confusion” and ends with an 
algorithm for computing , in such a way that the structure of the learning process 
reflects something about the structure of the algorithm.


• Questions: how to set up a “space”  of algorithms in LL? What is the model? 
What kind of structure do learning processes have? What is structure of algorithms?

x ∈ X x : A y ∈ Y
y : B f : X → Y (x, y)

y = f(x) + ε

f

W

Algorithms as endpoints of Learning



Singular Learning Process
Gray Book, Section 7.6.



Setup

• Samples  are independently subject to a true distribution . We denote 
by  our model and  our prior, on parameter space .


• The negative log likelihood is 


• The (Bayes) free energy is defined to be

X1, …, Xn q(x)
p(x |w) φ(w) W

Ln(w) = −
1
n

n

∑
i=1

log p(Xi |w)

Fn = − log∫
n

∏
i=1

p(Xi |w)φ(w)dw

= − log∫ exp(−nLn(w))φ(w)dw



Setup

• The true distribution is  with inputs  and outputs 
. We denote by  our model and  our prior, on 

parameter space . Suppose given samples .


• The model is given by  where 

 is a neural network with weights .


• In this case the log loss is the mean squared error (up to some constants).

q(x, y) = q(y |x)q(x) x ∈ ℝm

y ∈ ℝn p(x, y |w) = p(y |x, w)q(x) φ(w)
W (X1, Y1), …, (Xn, Yn)

p(y |x, w) =
1

(2π)n/2
exp (−

1
2

y − f(x, w)
2)

f(x, w) w

For Neural Networks



Setup
For Neural Networks

Ln(w) = −
1
n

n

∑
i=1

log p(Xi, Yi |w)

= −
1
n

n

∑
i=1

log[ 1
(2π)n/2

exp( −
1
2

Yi − f(Xi, w)
2)q(Xi)]

=
1
2n

n

∑
i=1

Yi − f(Xi, w)
2

−
1
n

n

∑
i=1

log q(Xi) + const.

Empirical entropy of q(x)Mean squared error, i.e. “loss”



Setup
For Neural Networks

Ln(w) =
1
n

n

∑
i=1

1
2

Yi − f(Xi, w)
2

−
1
n

n

∑
i=1

log q(Xi) + const.

Fn = − log∫
n

∏
i=1

p(Xi |w)φ(w)dw

= − log∫ exp(−nLn(w))φ(w)dw

= − log Zn

Zn = ∫ exp(−nLn(w))φ(w)dw

Partition function / model evidence

p(w |Dn) =
1
Zn

exp(−nLn(w))φ(w)

Bayesian posterior



Free Energy Formula
Precise Statement

• Assume relative finite variance [Green, 3.1] in addition to the fundamental 
conditions of [Gray] (excepting realisability) and that there is a point  minimising 

 in the interior of .


• Theorem (Watanabe): We have by [Green, 6.3], see also [WBIC, 
Renormalizability]:

§
w0

L W

§

Fn = nLn(w0) + λ log n − (m − 1)log log n + FR
n + op(1)

• Here  is called the learning coefficient,  is the multiplicity and  is a 
random variable which converges to a random variable in law.

λ ∈ ℚ>0 m ∈ ℕ FR
n



Internal Model Selection

• Model selection is usually thought of something that statisticians do.


• Nontrivial prediction of SLT: model selection can happen automatically in 
Bayesian learning, internally to a single model.


• Given a model  with parameter space  we refer to the emergent 
submodels , between which this internal model selection chooses, as phases. A 
change in  leading to a different choice is called a phase transition.


• For clarity we sometimes call this a Bayesian phase transition.

(p, q, φ) W
Wα

n



Internal Model Selection

Fn = − log∫W
e−nLn(w)φ(w)dw

= − log∑
α

∫Wα

e−nLn(w)φα(w)dw

= − log∑
α

e−Fn(Wα)

• Here  is (essentially) the free energy of the submodel with 

parameter space , prior  where , and the same model , truth  as the original.

Fn(Wα) = − log∫Wα

exp(−nLn(w))φα(w)dw

Wα φ′￼α = 1
Vα

φα Vα = ∫Wα

φα p q



Internal Model Selection
• We can apply the Free Energy Formula to the model  to obtain 

 
 

• Then  
 
 
 
 

• The Bayesian posterior selects phases on the basis of competition between energy, complexity and 
subleading terms (which include prior effects). When the index  changes as a function of  or 
hyperparameters, we say that there has been a phase transition in the Bayesian posterior.

(p, q, φ′￼α, Wα)

α n

Fn(Wα) ≈ nLn(w*α ) + λα log n + cα

Fn = − log∑
α

e−Fn(Wα) ≈ min
α

Fn(Wα)

≈ min
α

[nLn(w*α ) + λα log n + cα]



Thermodynamics
• Now we take the Free Energy Formula and the principle of Internal Model 

Selection and do “thermodynamics” that is, we deduce several interesting facts 
about learning machines from elementary manipulations of the formula


• To start with make two additional simplifying assumptions: replacing  by the 
deterministic  and assuming that .

Ln(w*α )
Lα := L(w*α ) cα = 0

Fn = − log∑
α

e−Fn(Wα) ≈ min
α

Fn(Wα)

≈ min
α

[nLn(w*α ) + λα log n + cα]



Thermodynamics

• If a phase  is dominated by a phase  both with respect to energy  and 
learning coefficient  then  but there is no phase transition 
because this is true for all .


• For there to be a phase transition in  between phases  we need both a 
critical dataset size  and for this transition to not be “screened” by others:

α β Lα > Lβ

λα > λβ Fn(Wα) > Fn(Wβ)
n

n α ⟶ β
n = ncr

Fn(Wα) < Fn(Wβ) Fn(Wα) > Fn(Wβ)Fncr
(Wα) ≈ Fncr

(Wβ)



Thermodynamics

• Assume without loss of generality that  and . Then


• The function  is positive and increasing for  so this has a unique 
solution, which is the critical dataset size .

Lα > Lβ λα < λβ

n/log n n > e
ncr

Fn(Wα) = Fn(Wβ) ⟺ nLα + λα log n = nLβ + λβ log n
⟺ n(Lα − Lβ) = − log n(λα − λβ)

⟺
n

log n
= −

λβ − λα

Lβ − Lα
= −

Δλ
ΔL



Thermodynamics

• If  and   then there is a (candidate) transition Lα > Lβ λα < λβ α ⟶ β

100 200 300 400
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60

70

nLβ + λβ log n

nLα + λα log n

ncr



Thermodynamics

• Assuming that  and  there is a (candidate) phase transition in the 
Bayesian posterior  at . We call this the critical dataset size for the 
transition.


• Type A. Phase transitions in  that change the energy must decrease the energy and 
increase the learning coefficient.

Lα > Lβ λα < λβ

α ⟶ β n = ncr

n

“The learning process produces more accurate models that are more complex,

sacrificing extra bits in the model description for fewer errors”



“Dynamical versus Bayesian Phase Transitions in a Toy Model of Superposition” Z. 
Chen, E. Lau, J. Mendel, S. Wei, D. M, arXiv: 2310.06301.

https://arxiv.org/abs/2310.06301






α → β → γ
Coarse-grained dynamics?

SGD vs Bayes
Coarse-grained

SGD trajectory

Ww*α Wα

w*β Wβ

w*γ

Wγ
Steps

Lo
ss

Dynamical Transition Bayesian Transition



Structure vs Structure

• Associate to a sequent  in linear logic and constraints (e.g. input-output 
behaviour) a learning problem in SLT such that local structure of the learning 
process near a (partial) solution  reflects structure of .


• The kind of structure that we expect to be visible includes “degeneracy”, 
“symmetry”, “factorisation”, “modularity” but we lack examples.


• If we have a robust mathematical theory of the singular learning process in a logical 
setting where we independently understand what “structure” means, it might give us 
hints about how to build a mathematical theory of emergent logic in other learning 
machines.

Γ ⊢ B

π : Γ ⊢ B π



Geometry of Program Synthesis

• Structure of learning processes in SLT


•  structure of singularities 


•  equations among derivatives of negative log likelihood  


•  differential equations in differential linear logic


•  structure of algorithms

↔

↔ L

↔

↔


