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1 Tethering

A baby instinctively moves to the softer floor to crawl on, directly engaging
with the concept of “softer.” Similarly, an ignored cry for attention is followed
by a “louder” one. This occurs years before the child comprehends the words
“carpet,” “floorboards,” “crying,” or “screaming.”

The goal of a scientist is to step outside oneself. The scientific method is
built upon experiment: to isolate and observe is to analyze beyond bias. A
young scientist often begins their journey convinced of the method’s success.
But after encountering skepticism—perhaps through the study of the foun-
dations of mathematics—they may come to believe that we are bound by our
senses, that the scientific method is ultimately constrained by human per-
ception. However, even the most cynical mathematician acknowledges that
something happens when we perform mathematics (consider, for instance,
Wigner’s famous essay title, “The Unreasonable Effectiveness of Mathemat-
ics in the Natural Sciences”). So what is it?

Perhaps mathematics is entirely within our minds, or perhaps it reflects
our cognitive structures. Perhaps it emerges from the game-theoretic strate-
gies that helped our ancestors survive, encoded into our neural architecture.
But to what do we apply these strategies? If they correspond to some objec-
tive reality independent of us, then we return to our initial belief: that the
scientific method works. Yet now, objectivity is not about how the universe is
but rather about how we interact with it. Thus, while the scientific method is
inevitably entangled with human perception, we can still be objective about
this very entanglement.

If mathematics is psychology, then how do we apply it? Let us not aban-
don the claim that we do perceive. Consider that our interactions with the
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world are legitimate: I do not know what grass is, but I know that it is
softer than concrete (whatever concrete is). I do not know what a mouth is,
but I know when its noise is insufficient to gain attention. The relationships
between things present themselves first—they are undeniable. Relations be-
tween what? Some kind of objects, one might suppose. But is this truly
so clear? When asked what a horse is, I end up telling a story. This story
contains relations, so we are back where we started. The classic response is
that “it’s there, but we cannot interact with it directly.” My thesis, stated
vaguely, is this: why not conflate “out of reach” with “unreal”? Let us be
bold: I cannot interact with isolated objects, but I can relate to stories and
relationships. Hence, objects do not exist, but abstract relations do.

Let us consider an example. Suppose one reads a history textbook and
learns that Napoleon was born in the Kingdom of France. When, though,
does one learn how many ants crawled over his shoes throughout his life?
Certainly, the integer n representing this number is impossible to determine.
Yet, we believe that this number n exists “out there.” But what if Napoleon
never existed? We do not have proof of his life, nor of his story. Here is
the crucial point: pay attention to the emotional experience of doubting the
facts of Napoleon’s life. One likely experiences a kind of internal eye-roll,
an exasperation at the suggestion. “Sure, we cannot know with certainty,”
one might concede, “but that is true of all history—do we simply give up?”
This reveals what we ourselves bring to history: an implicit acceptance that
certainty is unattainable yet inference is meaningful. Engaging with history
requires conflating “greatest likelihood given the evidence” with “actuality
of events.”

Another example. One does not stumble over the lack of a rigorous defi-
nition of Raskolnikov while reading Crime and Punishment. We comprehend
his internal conflict, his relationships, his turmoil. This occurs well before
we can define “man.” In fact, the situation is reversed: this book helps us
understand what it means to be human. To be a “man” is to struggle; to
live is to question one’s place and time. When the final page turns, we know
more about ourselves. The story provides relationships from which we derive
knowledge. This knowledge feels as though the concept of “man” has come
into sharper focus, yet Raskolnikov does not even exist! Not a single real man
was discussed. Again, notice that internal eye-roll: we instinctively suspend
disbelief while engaging with fiction, allowing it to deepen our understand-
ing. This never would have happened if we dismissed Crime and Punishment
as irrelevant simply because no real man was ever described.
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So why begin mathematics with “objects”? To formally define a “set”
or a “type” is to cut the endeavor short. Relations are fascinating precisely
because we do not know what the objects they relate are. A topologist asks,
“What is space?” A computer scientist asks, “What is an algorithm?” Do
topologies and Turing machines answer these questions? My thesis is this:
no, they provide stories of an environment where spaces or algorithms can
be compared—or rather, related. These theories are narratives requiring a
suspension of disbelief—but not an arbitrary one. Indeed, they demand a
very specific kind of suspension, which is the only “real” part of them. The
sensation of gaining knowledge about what space or an algorithm is arises
from the psychological experience of drawing connections. But the essence
of “space” or “algorithm” itself remains unanswered.

2 Syntax (first order languages/theories)

What does an author ask of the reader when the author is defining foun-
dations? This is left implicit in almost all accounts (with exceptions, [?]).
Here, we state our expectations as clearly as possible, which admittedly is
not very clear as indeed to reconcile what these entities are is part of the
aim of the theory. We bluntly list these objects and provide explanation
afterwards (this explanation constitutes the beginning of the story of these
objects, as alluded to in the Introduction).

1. A finite amount of sorts (or types). We require the ability to identify
particular sorts, and also to distinguish sorts. We also require that a
new sort may be introduced if needed. The limit of the number of sorts
is the limit of one’s abilities, means, and resources to perform the first
two requirements of this dotpoint.

2. For each sort a finite set of variables associated to that sort with the
same requirements as that of 1.

3. A finite amount of function symbols and a finite amount of relation
symbols, both with the same requirements needed as 1.

When one is born into the universe, they may notice (if they are advanced)
that how objects behave is more tangible than what the objects themselves
are. If a rock can be used to hammer a stake into the ground, then a rock
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must be in some way akin to a hammer. One literally utters that the rock,
at least in the instance of pegging the stake, was a “type” of hammer.

As mentioned in the Introduction, relations are immediately interacted
with at the dawn of this universe. Hence the assumption of relation symbols.
Function symbols are similar.

This level of vagueness can be infuriating. More precision can be obtained
by using Turing Machines (which only require finite sets to define) to make
precise the notions of “abilities, means and resources”. In fact, this even
allows one to define computable, infinite sets from finite sets in the exact
way that we as humans interact with infinite sets. Explicitly: we never
interact with the entire set, but we rest assured that if an extra element was
ever needed from the set, we could obtain (and distinguish) it (with the help
from a Turing Machine).

We turn to a more “rigorous” definition in Definition 2.0.1, but we will
remark afterwards that this Definition is both circular and dishonest (Remark
2.0.6). First, the Definition.

Our main reference is the textbook Sketches of an Elephant, by Johnstone
[?].

Definition 2.0.1. A first order signature (or first order language) Σ
consists of the following data.

• A set Σ-Sort of sorts. For each sort A of a signature Σ there exists a
countably infinite set VA of variables of sort A. We write x : A for
x ∈ VA.

• A set Σ-Fun of function symbols, together with a map assigning to
each f ∈ Σ-Fun its type, which consists of a finite, non-empty list of
sorts (with the last sort in the list enjoying a distinguished status): we
write

f : A1 × . . .× An −→ B (1)

to indicate that f has type A1, ..., An, B. The integer n is the arity of
f , in the case n = 0,the function symbol f is a constant of sort B.

• A set Σ-Rel of relation symbols, together with a map assigning to
each R ∈ Σ-Rel its type, which consists of a finite list of sorts: we
write

R ↣ A1 × . . .× An (2)
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to indicate that R has type A1, ..., An. The integer n is the arity of R,
in the case n = 0, the relation symbol R is an atomic proposition.

Using these we construct the terms over Σ.

Definition 2.0.2. The collection of terms Term(Σ) over Σ is the smallest
set subject to the following.

• Any variable x : A is in Term(Σ). The sort A is the type of the term
x : A.

• If f : A1 × . . .×An −→ B is a function symbol and t1, ..., tn are terms
respectively of types A1, ..., An then f(t1, ..., tn) is in Term(Σ). The
type of this term is B.

We now define the formulas:

Definition 2.0.3. We simultaneously define the set F of formulae over Σ
and, for each formula ϕ, the (finite) set of free variables of ϕ.

• Relations: if R ↣ A1 × . . . × An is a relation symbol and t1 :
A1, . . . , tn : An are terms then

R(t1, ..., tn) ∈ F, FV(R(t1, ..., tn)) =
n⋃

i=1

FV(ti) (3)

• Equality: if s, t are terms of the same sort then

s = t ∈ F, FV(s = t) = FV(s) ∪ FV(t) (4)

• Truth: the special symbol

⊤ ∈ F, FV(⊤) = ∅ (5)

• Falsity: the special symbol

⊥ ∈ F, FV(⊥) = ∅ (6)

• Disjunction: if ϕ, ψ are both in F then

ϕ ∨ ψ ∈ F, FV(ϕ ∨ ψ) = FV(ϕ) ∪ FV(ψ) (7)
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• Conjunction: if ϕ, ψ are both in F then

ϕ ∧ ψ ∈ F, FV(ϕ ∧ ψ) = FV(ϕ) ∪ FV(ψ) (8)

• Implication: if ϕ, ψ are both in F then

ϕ⇒ ψ ∈ F,FV(ϕ⇒ ψ) = FV(ϕ) ∪ FV(ψ) (9)

• Negation: if ϕ is in F then

¬ϕ ∈ F, FV(¬ϕ) = FV(ϕ) (10)

• Existential quantification: if x : A is a variable and ϕ is in F then

(∃x : A)ϕ ∈ F, FV((∃x : A)ϕ) = FV(ϕ) \ {x} (11)

• Universal quantification: if x : A is a variable and ϕ is in F then

(∀x : A)ϕ ∈ F, FV((∀x : A)ϕ) = FV(ϕ) \ {x} (12)

Now we define the formal expressions which will serve as axioms for First
Order Theories.

Definition 2.0.4. A first order theory over a first order language Σ is a
set of formulas in Σ.

Example 2.0.5. A first order theory of groups: First we define the first
order language of groups Σ:

• Σ consists of the single sort A.

• There are three function symbols:

∗ : A× A −→ A

( )−1 : A −→ A

e : A

• No relation symbols.
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The first order theory of groups (which we also label Σ) over Σ consists of
the following formulas:

(x ∗ y) ∗ z = x ∗ (y ∗ z),
x ∗ x−1 = e,

x ∗ e = x,

e ∗ x = x

As promised, we Remark on the short-comings of the above definitions.

Remark 2.0.6. We have the following complaints:

• In Definition 2.0.1, what do we mean by a set? ZFC set theory provides
a definition of a set, but this itself is a first order theory, hence this
Definition is inherently circular.

• In Definition 2.0.1, why do we allow for an infinite set of each of the
objects defined? Consider a countably infinite subset V of the real
numbers where each element V is an irrational number. It is not even
determinable by finite means whether a real number r is an element of
V or not, so this boldly dissatisfies desiderata 1 that we can identify
and distinguish sorts.

Is there any hope of addressing the concerns raised in Remark 2.0.6?
One possible approach is to remind ourselves that we are not attempting
to define what Mathematics is, but rather to define a specific mathemati-
cal object—just as one defines a group, a vector space, or any other formal
structure. In this sense, a “First-Order Theory” is the mathematical ob-
ject consisting of a countably infinite set (in the strictest sense) of sorts,
along with a countably infinite set of variables. The key question, then, is
whether these mathematical objects are of genuine interest. This is, indeed,
a meaningful and important question.

Another approach is simply to accept the vague definition provided at the
beginning of this section. Mathematics is inherently philosophical, particu-
larly in its foundations, and it seems inevitable that some degree of imprecise
intuition must precede the formulation of rigorous foundations. Here, we have
offered one such guiding intuition.
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3 Semantics (models of first order theories)

We consider the special case when the number of sorts is equal to 1.

Definition 3.0.1. An interpretation I of a first order language consists
of the following data.

• A non-empty set D called the domain.

• For any function symbol f : A1 × . . .× An −→ B a function

I(f) : Dn −→ D (13)

If f is 0-ary then I(f) is simply a choice of element from D.

• For any relation symbol R ↣ A1 × . . .× An a function

I(R) : Dn −→ {0, 1} (14)

Definition 3.0.2. Let D be a set. A valuation over Σ in a set D is a
function

ν : V −→ D (15)

We also introduce the following notation. If d ∈ D is an element of D, x ∈ V ,
and ν : V −→ D is some valuation, then we have the following valuation.

νx 7→d(y) =

{
d, x = y,

ν(y), x ̸= y
(16)

We now extend an interpretation of a language to a model of a first order
theory (given a choice of valuation).

Definition 3.0.3. Let T be a first order theory over a first order language
L. Let I be an interpretation of L and ν a valuation in the domain D of I.
We extend the interpretation to terms in the following way.

• Iν(x) = ν(x), for any variable x,

• Iν(f(t1, ..., tn)) = I(f)(Iν(t1), ..., Iν(tn)), where f(t1, ..., tn) is a term
constructed from an n-ary function symbol f and n terms ti.
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Then the interpretation is extended to the formulas:

Iν(R(t1, ..., tn)) = 1 iff I(R)(Iν(t1), ..., Iν(tn)) = 1 (17)

Iν(s = t) = 1 iff Iν(s) = Iν(t) (18)

Iν(⊤) = 1 (19)

Iν(⊥) = 0 (20)

Iν(ϕ ∨ ψ) = 1 iff Iν(ϕ) = 1 or Iν(ψ) = 1 (21)

Iν(ϕ ∧ ψ) = 1 iff Iν(ϕ) = 1 and Iν(ψ) = 1 (22)

Iν(ϕ⇒ ψ) = 1 iff Iν(ϕ) = 0 or Iν(ψ) = 1 (23)

Iν(¬ϕ) = 1 iff Iν(ϕ) = 0 (24)

Iν((∃x : A)ϕ) = 1 iff there exists d ∈ D such that Iνx 7→d
(ϕ) = 1 (25)

Iν((∀x : A)ϕ) = 1 iff for all d ∈ D we have Iνx 7→d
(ϕ) = 1 (26)

Let T be a first order theory over a first order language L. Then a model
for T is an interpretation I of L such that for all valuations ν, each formula
ϕ in T we have:

Iν(ϕ) = 1 (27)

Example 3.0.4. Let Σ be the first order theory of groups (see Example
2.0.5). We consider the set Z of integers along with the interpretation I of
the first order language Σ:

I(∗)(n,m) = n+m (28)

I(( )−1)n = −n (29)

I(e) = 0 (30)

Then, the formula
(x ∗ y) ∗ z = x ∗ (y ∗ z) (31)

is interpreted under a valuation ν as

Iν

(
(x ∗ y) ∗ z = x ∗ (y ∗ z)

)
(32)

which evaluations to 1 if and only if for all n,m, r ∈ Z the following equality
holds.

(n+m) + r = n+ (m+ r) (33)

which indeed we see holds true. Similarly, the other formulas are satisfied,
and so this is a model of the first order theory of groups.

Indeed, more generally, a model of a first order theory of groups is simply
a group.
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Remark 3.0.5. We did not use anything special about the category of sets.
If a category C admits appropriate structure, we can indeed construct mod-
els of first order theories in C. In fact, the categorical approach is much
more reasonable, because there is no reason to draw such significance to the
category of sets. The interested reader is directed to [?].

4 Proof (natural deduction)

So far we have discussed language and meaning, or what is the same, syntax
and semantics. Now we discuss proof.

Definition 4.0.1. The deduction rules for the natural deduction are given
as follows.

• Conjunction:

ϕ ψ
∧I

ϕ ∧ ψ
ϕ ∧ ψ

∧E1
ϕ

ϕ ∧ ψ
∧E2

ψ

• Disjunction

ϕ
∨I1

ϕ ∨ ψ
ψ

∨I2
ϕ ∨ ψ ϕ ∨ ψ

[ϕ]i

...
δ

[ψ]j

...
δ

∧Ei,j

δ

• Implication

[ϕ]i

...
ψ

⇒ I iϕ⇒ ψ

ϕ⇒ ψ ϕ
⇒ E

ψ

• Negation

[ϕ]i

...
⊥ ¬I i¬ϕ

¬ϕ ϕ
¬E⊥
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• Universal quantification. In the following, t is an arbitrary term with
the same type as x (which is C). The ∀I rule can only be employed
in the context where the variable y does not occur in (∀x : C)ϕ nor in
any assumption formula upon which (∀x : C)ϕ depends.

ϕ[x := y]
∀I

(∀x : C)ϕ

(∀x : C)ϕ
∀E

ϕ[x := t]

• Existential quantification. The ∃E rule can only be employed in the
context where the variable y does not occur in (∃x : C)ϕ nor in γ.

ϕ[x := t]
∃I

(∃x : C)ϕ (∃x : C)ϕ

[ϕ[x := y]]i

...
γ

∃Ei
γ

• (Respectively) equality, falsum, contradiction.

ϕ = ψ δ
=

δ[ψ := ϕ]
⊥ ⊥E
ϕ

[¬ϕ]i
...
⊥ ⊥Ci

ϕ

A proof is a finite, rooted planar tree with edges labelled by formulas and all
vertices except for the root vertex labelled by a valid instance of a deduction
rule. The leaves of the proof are the assumptions and if there exists a proof
π where the edge connected to the root node is labelled by formula ϕ and Γ
is the set of assumptions of π we write

Γ ⊢ ϕ (34)

Truth and proof
How does proof relate to truth? To explore this question, we first consider a
different one: what comes first, logic or mathematics? If mathematics is truly
founded upon a logical framework—such as the first-order theory of ZFC set
theory—then logic must precede mathematics. But what if, hypothetically,
ZFC set theory were capable of proving something we believe to be false?
Suppose ZFC could prove that the integer 1 is equal to the integer 0. Would
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we question the nature of integers, or would we question ZFC set theory?
Clearly, we would question ZFC set theory; we would search for an error
in our formalization. In this way, the relationship is inverted—mathematics
becomes the standard against which we judge the adequacy of our logical
system.

Perhaps there is an alternative perspective. One might argue that even
if a foundational system of mathematics implied that 1 = 0, this would
not necessarily mean the system was wrong ; rather, it could indicate that it
describes a different structure—one where 1 and 0 are indeed equal. However,
this argument only reinforces the primacy of mathematics, since it relies on
the unwavering belief that the integer 1 is not equal to the integer 0. But
where does this conviction come from? More fundamentally, what underlies
our belief that 0 and 1 are distinct?

This line of thinking leads to a Platonist viewpoint: that mathematical
objects—like numbers, sets, and spaces—exist independently of us, and that
logic is merely a human-constructed language for interacting with them as
intimately as possible.

Truth as Existence
Returning to our original question—how proof relates to truth—we can now
suggest an answer that is more digestible from a Platonist perspective: state-
ments are true simply when they are. For example, the integer 1 is not equal
to the integer 0; there is no conceivable way for it to be otherwise. This truth
is reflected in proof, such as a formal derivation in the first-order theory of
ZFC set theory.

To make this compelling, however, one must first accept the Platonic
ideal of ZFC sets, so that symbols such as ∅, denoting the empty set, refer
to something real. But this is precisely where ZFC as a foundational choice
becomes peculiar, even unsettling. The very notion of a set—as opposed
to a ZFC set—is ambiguous, since naive set theory, which initially seemed
to capture our intuitive understanding, was shaken by Russell’s Paradox.
Furthermore, the choice of ZFC as the foundation of mathematics is itself
arbitrary. If ZFC is inadequate, what should we choose instead?

This is where the topos-theoretic approach offers a more flexible and il-
luminating alternative. Rather than being bound to a single foundational
system, one can instead choose the mathematical objects in which they have
the strongest Platonist belief—provided these objects, along with their mor-
phisms, form a topos. Whether one believes in locally compact Hausdorff
spaces, modules over a ring, or even ZFC sets, any of these can serve as
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models (as defined in Section 3) for syntactic theories. In this framework,
one chooses the topos in which the syntax operates, making this approach
remarkably accommodating. Truth, then, is simply that which holds within
the chosen topos.

Thus, when we assert the truth of a statement proven within a first-order
theory, we are ultimately appealing to the Platonic ideal of ”truth” as it
exists within the Platonist world of ZFC sets—or, more precisely, within the
chosen topos. One might argue that what we are actually doing is translating
various first-order theories into the first-order theory of ZFC sets, but this
translation itself is guided by belief. It is to this underlying belief that
we attribute the Platonic existence of truth within the chosen foundational
system. We can now offer the following informal definition, a precise version
of which is given in Definition 4.0.3.

Definition 4.0.2 (Vague definition). A first order statement ϕ is true under
assumptions Γ when it is true in all models where the assumptions hold. We
write Γ |= ϕ.

Definition 4.0.3. Let I be an interpretation of a first order language L, let
ϕ be a formula in L, and let Γ be a set of formulas.

• I |= ϕ if Iν(ϕ) = 1 for all valuations ν.

• I |= Γ if I |= ϕ for all ϕ ∈ Γ.

• Γ |= ϕ if I |= ϕ for all interpretations I which satisfy I |= Γ.

We will refer losely to the inference rules of Definition 4.0.1 along with the
choice of first order languages as the allowed sentences as classical natural
deduction. Generally speaking, a logical system consists of a language
along with deduction rules and a definition of proof. We will not formalise
these abstract definitions here though.

Definition 4.0.4. Let T be a first order theory and I,J two interpretations
of T. A morphism of interpretations η : I −→ J is a family of functions
η = {ηA : I(A) −→ J (A)}A∈Σ−Sort, indexed by the sorts of the first order
signature Σ of T, subject to the following.
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• For each function symbol f : A1×. . .×An −→ B the following Diagram
commutes.

I(A1)× . . .× I(An) I(B)

J (A1)× . . .× J (An) J (B)

I(f)

ηA1
×...×ηAn ηB

J (f)

(35)

• For each relation symbol R ↣ A1 × . . . × An the following triangle
commutes.

I(A1)× . . .× I(An)

J (A1)× . . .× J (An) {0, 1}

ηA1
×...×ηAn

I(R)

J (R)

(36)

A morphism of interpretations η : I −→ J is an isomorphism if there
exists another morphism of interpretations η−1 : J −→ I such that for all
sorts A ∈ Σ we have η−1η(A) = A = ηη−1(A).

Lemma 4.0.5. Let T be a first order theory, I,J be interpretations and ϕ
be a formula. Say there exists an isomorphism of intepretations η : I −→ J .
Then for any formula ϕ we have

I |= ϕ if and only if J |= ϕ (37)

Sketch. It suffices to show that if I |= ϕ, then for any valution ν of J we
have Jν(ϕ) = 1.

Proceed by induction on the construction of ϕ. Notice that ϕ ̸= ⊥,
otherwise there every interpretation µ of I would satisfy Iµ(ϕ) = 0 which
contradicts I |= ϕ. Thus, the base cases are ϕ = ⊤, R(t1, . . . , tn) for some
relation symbol R and terms t1, . . . , tn. The result holds trivially in the
former case and follows easily from commutativity of (35), (36). The rest is
a matter of routine checks.

5 Completeness of a theory

Theorem 5.0.1 (Compactness Theorem). Let T be a first order theory.
Then T admits a model if and only if T′ admits a model for all finite T′ ⊆ T.
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Proof. Assume every finite T′ ⊆ T has a model. We construct a model for T
via Henkin’s method:

1. Language Expansion: Add countably many new constants {ci}i∈N
to the language of T.

2. Sentence Enumeration: Let {ϕi}i∈N enumerate all closed formulas
in the expanded language.

3. Henkin Theory Construction: Build T∗ =
⋃

n Tn inductively:

• T0 := T
• For Tn+1:

– If Tn ∪ {ϕn} is consistent, set Tn+1 := Tn ∪ {ϕn}
– Else if Tn ∪ {¬ϕn} is consistent, set Tn+1 := Tn ∪ {¬ϕn}
– If ϕn = ∃xψ(x), add ψ(c) to Tn+1 for a fresh constant c

4. Term Model Construction: Define domain D as equivalence classes
of closed terms:

[t] = {t′ | T∗ ⊢ t = t′}

Interpret function symbols and relations:

fI([t1], . . . , [tn]) := [f(t1, . . . , tn)]

([t1], . . . , [tn]) ∈ RI ⇔ T∗ ⊢ R(t1, . . . , tn)

5. Truth Verification: By induction on formula complexity:

I |= ϕ⇔ T∗ ⊢ ϕ

Thus I |= T.

The converse is immediate: any model of T automatically models all its
finite subsets.

Definition 5.0.2 (Complete Theory). A first order theory T is complete if
for every formula ϕ:

T ⊢ ϕ or T ⊢ ¬ϕ
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5.1 Skolemization and Cardinality Results

Lemma 5.1.1 (Skolemization). If T has a model, then its Skolemization
S(T) has a model.

Proof. Let I |= T. For each axiom ϕ = ∀x1∃y1 · · · ∀xn∃ynψ, define Skolem
functions using the Axiom of Choice:

• For i = 1, choose f1(x1) such that:

I |= ∀x1ψ(y1 7→ f1(x1))

• For i > 1, inductively define fi(x1, . . . , xki) satisfying:

I |= ∀x1 · · · ∀xkiψ(yi 7→ fi(x))

Extend I to interpret Skolem functions as J (fi) = Fi. By construction:

J |= S(ϕ) ∀ϕ ∈ T ⇒ J |= S(T)

Lemma 5.1.2 (Lower Löwenheim-Skolem). Let T be a countable theory with
infinite model I. For any infinite κ ≤ |I(A)|, there exists J |= T with
|J (A)| = κ.

Proof. Let D ⊆ I(A) with |D| = κ. Define E as the closure of D under
Skolem functions in S(T):

E :=
⋃
n∈N

En where

{
E0 = D

En+1 = En ∪ {f(e) | f ∈ S(T), e ∈ Ek
n}

Since S(T) has countably many functions and κ is infinite:

|E| = κ

Define J by restricting I to E:

J (f) := I(f) ↾En

J (R) := I(R) ↾En

Skolem functions ensure existential witnesses remain in E, hence J |=
T.
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Lemma 5.1.3 (Upper Löwenheim-Skolem). Let T have infinite model I.
For any infinite κ ≥ |I(A)|, there exists J |= T with |J (A)| = κ.

Proof. Expand the language with κ new constants {cα}α<κ. Let:

X := {cα ̸= cβ | α < β < κ}

Every finite T′ ⊆ T ∪ X has model: interpret new constants as distinct
elements in I (possible since I(A) is infinite). By Compactness (Theorem
5.0.1), T ∪ X has model K with |K(A)| ≥ κ. Apply Lemma 5.1.2 to obtain
J |= T with |J (A)| = κ.

Corollary 5.1.4 (Löwenheim-Skolem Theorem). If T has an infinite model,
then for any infinite cardinal κ, T has a model of size κ.

Proof. Immediate from Lemmas 5.1.2 and 5.1.3.

5.2 Completeness Test

Lemma 5.2.1 (Los-Vaught Test). Let T satisfy:

1. T has no finite models

2. T is κ-categorical for some infinite κ

Then T is complete.

Proof. Suppose T incomplete. Then ∃ϕ with T ⊬ ϕ and T ⊬ ¬ϕ. By Com-
pleteness Theorem:

∃I,J |= T with I |= ϕ, J |= ¬ϕ

By Löwenheim-Skolem (Theorem 5.1.4), obtain models I ′,J ′ of size κ.
By κ-categoricity:

I ′ ∼= J ′

But since interpretation isomorphism preserves truth:

I ′ |= ϕ⇔ J ′ |= ϕ

Contradiction since I ′ |= ϕ and J ′ |= ¬ϕ.
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