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1 Tethering

A baby correctly moves to the softer floor to crawl on. Immediately interacting
with the concept of softer. Similarly, an ignored cry for attention is followed
by a louder cry. This takes place years before the concepts of carpet, floor
boards, cry, scream are comprehended or “understood”.

The goal of a scientist is to step outside oneself. The scientific method
is built upon experiment. To isolate and observe is to analyse beyond bias.
The first tempting thought is that this is done so successfully. The second
tempting thought is that we are bounded by our senses. The third tempting
thought is that mathematics transcends this. The fourth tempting thought
is that mathematics is psychology.

If mathematics is psychology then how do we apply it? A standard
response is to return to the second tempting thought. Let us not abandon
just yet the claim that we do see. That is, consider for a moment that
our interactions are legitimate. I don’t know what grass is, but I know
when it is softer than concrete (whatever concrete is). I don’t know what
a mouth is, but I know when its noise is insufficient to gain attention. The
relationships present themselves first, indeed, they’re undeniable. Relations
between what? Well clearly some kind of object... Is this really so clear
though? When asked what a horse is I end up telling a story. This story
contains relations, so we are back at the start. The classic response is that
“it’s there but we cannot interact with it directly”. My thesis in writing put
vaguely is this: why not conflate “out of reach” with “unreal”? Let us be
arrogant, I cannot interact with an isolated object, but I can relate to stories
and relations. Hence, objects do not exist, but abstract relations do.

1



Let us take a step back and consider an example. Say one reads a History
textbook. One learns that Napoleon was born in the Kingdom of France.
When though does one learn how many ants crawled over the roofs of his
shoes throughout the course of his life? Certainly the integer n representing
this number is impossible to calculate. However, we believe that this integer
n exists “out there”. What if Napoleon never existed, though? We do not
have proof of his life nor his story. The crucial point is the following: pay
attention to the emotional experience as I argue that we don’t know the
facts of Napoleon’s story. I suspect this emotion is of some kind of “internal
eye-roll”, where one accepts “sure, perhaps we cannot know, but that is
true of all History, do we simply give up?” Hence, one notices, what they
themselves brought to History. We have noticed that the past is inaccessible
with certainty. Is the correct response to sit down with ones arms folded
refusing to engage? To state the point explicitly: studying History is a
meaningful endeavour, but only when one adopts an acceptance for inference.
A ticket of approval to allow one’s own mind to conflate “greatest likelihood,
given the evidence”, with “actuality of events”.

Another example. One does not stumble over the lack of rigorous definition
of Raskolnikov whilst reading Crime and Punishment. One comprehends
quickly his internal conflict, and his personal relationships. Again, this is
done well before one knows the definition of “man”. In fact, the situation is
backwards as this book helps us know, to be “man” is to struggle, to live is
to question one’s place and one’s time. When the final page turns we know
more of ourselves. The story provides relationships from which we derive
knowledge. This knowledge feels like the object of “man” has come further
into clarity, but Raskolnikov does not even exist! The entire time not a single
actual man was discussed. Now notice, that similar eye-roll sensation. Once
again we have brought something to the situation at hand. We suspend our
belief and let the thought experiment proceed. Afterwards our understanding
has deepened, this never would have happened if took seriously the notion
that Crime and Punishment tells us nothing of man because never once is
an actual man ever discussed.

So why discuss “objects” at the start of mathematics? To write clearly
what a “set” or a “type” is cuts the entire endeavour short. Relations are
interesting precisely because we do not know what the objects they relate
are. A topologist asks “what is space”? A computer scientist “what is
an algorithm”? Do Topologies and Turing Machines answer these questions?
My thesis is the following: no, they provide stories of an environment where
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spaces or algorithms can be compared, or rather, related. These theories
and relationships are stories which require the participant be in suspension
of disbelief, but not arbitrarily. Indeed, these stories demand a particular
suspension of disbelief, which is the only “real” part of them. The sensation
of deriving knowledge of what spaces or algorithms are after engaging in this
story is in the psychological emotion of drawing connections. What space is,
or what an algorithm is, in fact is never answered.

2 Syntax (first order languages/theories)

What does an author ask of the reader when the author is defining foundations?
This is left implicit in almost all accounts (with exceptions, [3]). Here, we
state our expectations as clearly as possible, which admittedly is not very
clear as indeed to reconcile what these entities are is part of the aim of the
theory. We bluntly list these objects and provide explanation afterwards
(this explanation constitutes the beginning of the story of these objects, as
alluded to in the Introduction).

1. A finite amount of sorts (or types). We require the ability to identify
particular sorts, and also to distinguish sorts. We also require that a
new sort may be introduced if needed. The limit of the number of sorts
is the limit of the ones abilities, means, and resources to perform the
first two requirements of this dotpoint.

2. For each sort a finite set of variables associated to that sort with the
same requirements as that of 1.

3. A finite amount of function symbols and a finite amount of relation
symbols, both with the same requirements needed as 1.

When one is born into the universe, they may notice (if they are advanced)
that how objects behave is more tangible than what the objects themselves
are. If a rock can be used to hammer a stake into the ground, then a rock
must be in some way akin to a hammer. One literally utters that the rock,
at least in the instance of pegging the stake, was a “type” of hammer.

As mentioned in the Introduction, relations are immediately interacted
with at the dawn of this universe. Hence the assumption of relation symbols.
Function symbols are similar.
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This level of vagueness can be infuriating. Indeed, it is the author’s
opinion that in fact this is as good as it gets. We turn to a more “rigorous”
definition in Definition 2.0.1, but we will remark afterwards that this Definition
is both circular and dishonest (Remark 2.0.6). First, the Definition.

Our main reference is the textbook Sketches of an Elephant, by Johnstone
[4].

Definition 2.0.1. A first order signature (or first order language) Σ
consists of the following data.

� A set Σ-Sort of sorts. For each sort A of a signature Σ there exists a
countably infinite set VA of variables of sort A. We write x : A for
x ∈ VA.

� A set Σ-Fun of function symbols, together with a map assigning to
each f ∈ Σ-Fun its type, which consists of a finite, non-empty list of
sorts (with the last sort in the list enjoying a distinguished status): we
write

f : A1 × . . .× An −→ B (1)

to indicate that f has type A1, ..., An, B. The integer n is the arity of
f , in the case n = 0,the function symbol f is a constant of sort B.

� A set Σ-Rel of relation symbols, together with a map assigning to
each R ∈ Σ-Rel its type, which consists of a finite list of sorts: we
write

R � A1 × . . .× An (2)

to indicate that R has type A1, ..., An. The integer n is the arity of R,
in the case n = 0, the relation symbol R is an atomic proposition.

Using these we construct the terms over Σ.

Definition 2.0.2. The collection of terms Term(Σ) over Σ is the smallest
set subject to the following.

� Any variable x : A is in Term(Σ). The sort A is the type of the term
x : A.

� If f : A1 × . . .×An −→ B is a function symbol and t1, ..., tn are terms
respectively of types A1, ..., An then f(t1, ..., tn) is in Term(Σ). The
type of this term is B.
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We now define the formulas:

Definition 2.0.3. We simultaneously define the set F of formulae over Σ
and, for each formula φ, the (finite) set of free variables of φ.

� Relations: if R � A1 × . . . × An is a relation symbol and t1 :
A1, . . . , tn : An are terms then

R(t1, ..., tn) ∈ F, FV(R(t1, ..., tn)) =
n⋃
i=1

FV(ti) (3)

� Equality: if s, t are terms of the same sort then

s = t ∈ F, FV(s = t) = FV(s) ∪ FV(t) (4)

� Truth: the special symbol

> ∈ F, FV(>) = ∅ (5)

� Falsity: the special symbol

⊥ ∈ F, FV(⊥) = ∅ (6)

� Disjunction: if φ, ψ are both in F then

φ ∨ ψ ∈ F, FV(φ ∨ ψ) = FV(φ) ∪ FV(ψ) (7)

� Conjunction: if φ, ψ are both in F then

φ ∧ ψ ∈ F, FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ) (8)

� Implication: if φ, ψ are both in F then

φ⇒ ψ ∈ F,FV(φ⇒ ψ) = FV(φ) ∪ FV(ψ) (9)

� Negation: if φ is in F then

¬φ ∈ F, FV(¬φ) = FV(φ) (10)
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� Existential quantification: if x : A is a variable and φ is in F then

(∃x : A)φ ∈ F, FV((∃x : A)φ) = FV(φ) \ {x} (11)

� Universal quantification: if x : A is a variable and φ is in F then

(∀x : A)φ ∈ F, FV((∀x : A)φ) = FV(φ) \ {x} (12)

Now we define the formal expressions which will serve as axioms for First
Order Theories.

Definition 2.0.4. A first order theory over a first order language Σ is a
set of formulas in Σ.

Example 2.0.5. A first order theory of groups: First we define the first
order language of groups Σ:

� Σ consists of the single sort A.

� There are three function symbols:

∗ : A× A −→ A

( )−1 : A −→ A

e : A

� No relation symbols.

The first order theory of groups (which we also label Σ) over Σ consists of
the following formulas:

(x ∗ y) ∗ z = x ∗ (y ∗ z),

x ∗ x−1 = e,

x ∗ e = x,

e ∗ x = x

As promised, we Remark on the short-comings of the above definitions.

Remark 2.0.6. We have the following complaints:
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� In Definition 2.0.1, what do we mean by a set? ZFC set theory provides
a definition of a set, but this itself is a first order theory, hence this
Definition is inherently circular.

� In Definition 2.0.1, why do we allow for an infinite set of each of the
objects defined? Consider a countably infinite subset V of the real
numbers where each element V is an irrational number. It is not even
determinable by finite means whether a real number r is an element of
V or not, so this boldly dissatisfies desiderata 1 that we can identify
and distinguish sorts.

Is there any chance at resolving the complains of Remark 2.0.6? One
work around is the say to oneself that we are not defining what Mathematics
is, but instead we are defining a mathematical object itself, just as one
defines a group, or a vector space, etc. Hence, a “First Order Theory” is
the mathematical object consisting of a countably infinite set (truly a set) of
sorts, and a countably infinite set of variables... This first question here, is
“are these mathematical objects interesting”? This is a good question...

Another work around is the accept the vague definition given at the
beginning of this Section. Mathematics is an inherently philosophical endeavour,
especially when considering foundations, so surely some kind of imprecise
muse is required before foundations are defined. Here, we have provided one
such.

3 Semantics (models of first order theories)

We consider the special case when the number of sorts is equal to 1.

Definition 3.0.1. An interpretation I of a first order language consists
of the following data.

� A non-empty set D called the domain.

� For any function symbol f : A1 × . . .× An −→ B a function

I(f) : Dn −→ D (13)

If f is 0-ary then I(f) is simply a choice of element from D.

7



� For any relation symbol R � A1 × . . .× An a function

I(R) : Dn −→ {0, 1} (14)

Definition 3.0.2. Let D be a set. A valuation over Σ in a set D is a
function

ν : V −→ D (15)

We also introduce the following notation. If d ∈ D is an element of D, x ∈ V ,
and ν : V −→ D is some valuation, then we have the following valuation.

νx 7→d(y) =

{
d, x = y,

ν(y), x 6= y
(16)

We now extend an interpretation of a language to a model of a first order
theory (given a choice of valuation).

Definition 3.0.3. Let T be a first order theory over a first order language
L. Let I be an interpretation of L and ν a valuation in the domain D of I.
We extend the interpretation to terms in the following way.

� Iν(x) = ν(x), for any variable x,

� Iν(f(t1, ..., tn)) = I(f)(Iν(t1), ..., Iν(tn)), where f(t1, ..., tn) is a term
constructed from an n-ary function symbol f and n terms ti.

Then the interpretation is extended to the formulas:

Iν(R(t1, ..., tn)) = 1 iff I(R)(Iν(t1), ..., Iν(tn)) = 1 (17)

Iν(s = t) = 1 iff Iν(s) = Iν(t) (18)

Iν(>) = 1 (19)

Iν(⊥) = 0 (20)

Iν(φ ∨ ψ) = 1 iff Iν(φ) = 1 or Iν(ψ) = 1 (21)

Iν(φ ∧ ψ) = 1 iff Iν(φ) = 1 and Iν(ψ) = 1 (22)

Iν(φ⇒ ψ) = 1 iff Iν(φ) = 0 or Iν(ψ) = 1 (23)

Iν(¬φ) = 1 iff Iν(φ) = 0 (24)

Iν((∃x : A)φ) = 1 iff there exists d ∈ D such that Iνx 7→d
(φ) = 1 (25)

Iν((∀x : A)φ) = 1 iff for all d ∈ D we have Iνx7→d
(φ) = 1 (26)
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Let T be a first order theory over a first order language L. Then a model
for T is an interpretation I of L such that for all valuations ν, each formula
φ in T we have:

Iν(φ) = 1 (27)

Example 3.0.4. Let Σ be the first order theory of groups (see Example
2.0.5). We consider the set Z of integers along with the interpretation I of
the first order language Σ:

I(∗)(n,m) = n+m (28)

I(( )−1)n = −n (29)

I(e) = 0 (30)

Then, the formula
(x ∗ y) ∗ z = x ∗ (y ∗ z) (31)

is interpreted under a valuation ν as

Iν
(
(x ∗ y) ∗ z = x ∗ (y ∗ z)

)
(32)

which evaluations to 1 if and only if for all n,m, r ∈ Z the following equality
holds.

(n+m) + r = n+ (m+ r) (33)

which indeed we see holds true. Similarly, the other formulas are satisfied,
and so this is a model of the first order theory of groups.

Indeed, more generally, a model of a first order theory of groups is simply
a group.

Remark 3.0.5. We did not use anything special about the category of
sets. If a category C admits appropriate structure, we can indeed construct
models of first order theories in C. In fact, the categorical approach is much
more reasonable, because there is no reason to draw such significance to the
category of sets. The interested reader is directed to [2].

4 Proof (natural deduction)

So far we have discussed language and meaning, or what is the same, syntax
and semantics. Now we discuss proof.
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Definition 4.0.1. The deduction rules for the natural deduction are given
as follows.

� Conjunction:

φ ψ
∧I

φ ∧ ψ
φ ∧ ψ

∧E1
φ

φ ∧ ψ
∧E2

ψ

� Disjunction

φ
∨I1

φ ∨ ψ
ψ

∨I2
φ ∨ ψ φ ∨ ψ

[φ]i

...
δ

[ψ]j

...
δ
∧Ei,j

δ

� Implication

[φ]i

...
ψ

⇒ I iφ⇒ ψ

φ⇒ ψ φ
⇒ E

ψ

� Negation

[φ]i

...
⊥ ¬I i¬φ

¬φ φ
¬E⊥

� Universal quantification. In the following, t is an arbitrary term with
the same type as x (which is C). The ∀I rule can only be employed
in the context where the variable y does not occur in (∀x : C)φ nor in
any assumption formula upon which (∀x : C)φ depends.

φ[x := y]
∀I

(∀x : C)φ

(∀x : C)φ
∀E

φ[x := t]

� Existential quantification. The ∃E rule can only be employed in the
context where the variable y does not occur in (∃x : C)φ nor in γ.
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φ[x := t]
∃I

(∃x : C)φ (∃x : C)φ

[φ[x := y]]i

...
γ
∃Ei

γ

� (Respectively) equality, falsum, contradiction.

φ = ψ δ
=

δ[ψ := φ]
⊥ ⊥E
φ

[¬φ]i

...
⊥ ⊥Ci

φ

A proof is a finite, rooted planar tree with edges labelled by formulas and all
vertices except for the root vertex labelled by a valid instance of a deduction
rule. The leaves of the proof are the assumptions and if there exists a proof
π where the edge connected to the root node is labelled by formula φ and Γ
is the set of assumptions of π we write

Γ ` φ (34)

How does proof relate to truth? To answer this question we begin with a
different question: what comes first, logic or mathematics? If mathematics is
truly built upon a logical foundation (for instance, if mathematics is founded
upon the first order theory of ZFC sets) then our answer is that logic comes
first. However, what if, hypothetically speaking, ZFC set theory was capable
of proving something we believe to be false? Say ZFC could prove that the
integer 1 is equal to the integer 0. Would we question the nature of integers?
Or would we question ZFC set theory? Of course, we would question ZFC
set theory, indeed, we would try to “find the error” in our formalisation. Now
the tables have turned, and it is mathematics which we are measuring the
quality of our logical system against.

Perhaps an alternative explanation exists. Maybe one would suggest that
even if a certain foundation of mathematics were to suggest that 1 = 0, that
does not necessarily mean it is wrong, it just means it is not talking about
the integers, and instead is talking about some other system where indeed
1 does equal 0. This suggestion only further highlights that mathematics
comes first, as this suggestion is born on the stubborn belief that the integer
1 is not equal to the integer 0. So where does this stubborn belief in the
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integers 0 and 1 come from? Moreover, where does the stubborn belief that
they are distinct come from?

This is a platonist viewpoint: that mathematical (along with other theoretical)
objects exist and logic is a language designed by humans in order to interact
with those objects on as intimate of a level as humanly possible.

So what is the point being made here? The point, is we can loop back
to our original question, that of how proof relates to truth, and suggest an
answer which can be more easily digested if the platonist perspective is borne
in mind. Statements are true exactly when they are. For instance, the integer
1 is not equal to the integer 0, “there is no way that it can be”. This truth
relates to proof by way of the fact that it can be proven using (for example)
the first order theory of ZFC sets.

For this to become more compelling, one must apriori believe in the
platonic ideal of ZFC sets so that, for example, the notation ∅, which
denotes the empty set, is talking about something. This is the point where
the particular choice of the ZFC as our foundation is parculiar and indeed
confusing. The platonic ideal of a set (as apposed to the platonic ideal of a
ZFC set) is itself a questionable object, because it seems like such a thing
ought to be described by naive set theory, and Russell’s Paradox prompts us
to question our faith. Moreover, ZFC is out dated and highly arbitrary as a
foundation of mathematics. The solution? Simply choose a different theory,
but which one?

This is where the topoi approach is more elating, as one may choose the
mathematical object they have the strongest platonic belief in (provided the
collection of such objects along with their morphisms form a topos), and use
that belief to help them swallow the legitimacy of this entire approach. For
instance, if one believes in locally compact, hausdorff spaces, or modules over
some ring, or even ZFC sets, then any of these can be used as the models (in
the sense of Section 3) for the syntactic theories. That is, one may choose
which topos the syntax is talking about. This is a very accomodating way
to perform mathematics. Any topos can be taken as the universe which
platonically exists, and then the language of first order theories can be used
to reason about them. The concept of truth is that which pertains to the
topos in question.

This means that what we really mean when we talk about the truth of a
statement which has been proven in some first order theory, is the platonic
ideal of “truth” as it exists with respect to the platonic world of ZFC sets
(because we have chosen the topos of ZFC sets here) holds. One could argue
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this, saying that in fact what we are doing is translating different first order
theories into the first order theory of ZFC sets, but the point is that one
is lead by belief when one writes out the definition of the first order theory
of ZFC sets, it is to this underlying belief that we attribute the platonic
belief/existence of truth with respect to this topos. We can thus make the
following vague definition, a precise version of which is given in Definition
4.0.3.

Definition 4.0.2 (Vague definition). A first order statement φ is true under
assumptions Γ when it is true in all models where the assumptions hold. We
write Γ |= φ.

Definition 4.0.3. Let I be an interpretation of a first order language L, let
φ be a formula in L, and let Γ be a set of formulas.

� I |= φ if Iν(φ) = 1 for all valuations ν.

� I |= Γ if I |= φ for all φ ∈ Γ.

� Γ |= φ if I |= φ for all interpretations I which satisfy I |= Γ.

We will refer losely to the inference rules of Definition 4.0.1 along with the
choice of first order languages as the allowed sentences as classical natural
deduction. Generally speaking, a logical system consists of a language
along with deduction rules and a definition of proof. We will not formalise
these abstract definitions here though.

Definition 4.0.4. Let T be a first order theory and I,J two interpretations
of T. A morphism of interpretations η : I −→ J is a family of functions
η = {ηA : I(A) −→ J (A)}A∈Σ−Sort, indexed by the sorts of the first order
signature Σ of T, subject to the following.

� For each function symbol f : A1×. . .×An −→ B the following Diagram
commutes.

I(A1)× . . .× I(An) I(B)

J (A1)× . . .× J (An) J (B)

I(f)

ηA1
×...×ηAn ηB

J (f)

(35)
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� For each relation symbol R � A1 × . . . × An the following triangle
commutes.

I(A1)× . . .× I(An)

J (A1)× . . .× J (An) {0, 1}

ηA1
×...×ηAn

I(R)

J (R)

(36)

A morphism of interpretations η : I −→ J is an isomorphism if there
exists another morphism of interpretations η−1 : J −→ I such that for all
sorts A ∈ Σ we have η−1η(A) = A = ηη−1(A).

Lemma 4.0.5. Let T be a first order theory, I,J be interpretations and φ
be a formula. Say there exists an isomorphism of intepretations η : I −→ J .
Then for any formula φ we have

I |= φ if and only if J |= φ (37)

Sketch. It suffices to show that if I |= φ, then for any valution ν of J we
have Jν(φ) = 1.

Proceed by induction on the construction of φ. Notice that φ 6= ⊥,
otherwise there every interpretation µ of I would satisfy Iµ(φ) = 0 which
contradicts I |= φ. Thus, the base cases are φ = >, R(t1, . . . , tn) for some
relation symbol R and terms t1, . . . , tn. The result holds trivially in the
former case and follows easily from commutativity of (35), (36). The rest is
a matter of routine checks.

5 Completeness of a theory

Theorem ?? states that classical natural deduction is complete. There, we
were not referring to a particular first order theory, instead we were referring
to classical natural deduction on a whole. Thus, there ought not be any
confusion when we introduce completeness of a theory in Definition 5.0.1
below.

Definition 5.0.1. A first order theory T over a first order language Σ is
complete if every statement is either proveable or disproveable. That is, for
every formula φ of Σ we have

T ` φ or T ` ¬φ (38)
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Theorem 5.0.2 (Compactness Theorem). Let T be a first order theory.
Then T admits a model if and only if T′ admits a model for all finite T′ ⊆ T.

Proof. Any proof π of any sequent T ` φ is finite, and so there exists only
a finite number of axioms used in π. Thus, there exists some subset A′ ⊆ A
such that TA′ ` φ. The contrapositive to this is that if TA′ ` φ for all finite
A′ ⊆ A then T ` φ. The result then follows by the completeness Theorem.

The other direction is trivial.

For the remainder of this section we will only consider first order theories
which are over first order languages with a single sort A. Thus, we will drop
the type from the notation of a variable next to a quantifier. For instance, a
formula (∃x : A)φ will simply be written ∃xφ.

Definition 5.0.3. Assume all axioms φ of T have been written so that if
“∀x” and “∀y” occur in φ then x 6= y. Let φ be a formula in a first order
theory T. Consider the set {x1, . . . , xn} of variables of φ bound by a universal
quantifier and assume the labelling is so that i < j implies ∀xi occurrs to the
left of ∀xj. Let {y1, . . . , ym} be the set of variables φ bound by an existential
quantifier and assume the labelling is so that i < j implies ∃yi occurrs to
the left of ∃yj. For each i = 1, . . . ,m let ki denote the number of universal
quantifiers to the left of yi plus the number of free variables of φ. Define m
Skolem function symbols

fi : Aki −→ A (39)

For each i = 1, . . . ,m let E(φ, i) denote the formula given by removing
from φ the ith occurrence of “∃x” (any x, any A) along with all other such
occurrences (including those with different x, different A) to the left of it.
For example, if φ = ∃x∃yψ for some formula ψ, then E(φ, 1) = ∃yψ and
E(φ, 2) = ψ. Add all the function symbols fi to the first order language
which T is defined over. The depth i Skolemisation of φ, S(φ, i) is the
following formula.

S(φ, i) := E(φ, i)[yj := fj(x1, . . . , xkj)]j=1,...,i (40)

The depth i Skolemisation of T is the first order theory S(T, i) whose
axioms are given by S(φ, i) where φ is an axiom of T.

We will write S(φ),S(T) respectively for S(φ,m),S(T,m).
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Example 5.0.4. Say φ = ∀x1∃y1∀x2x1 + x2 = y1. Then

S(φ) = ∀x1∀x2x1 + x2 = f(x1) (41)

Lemma 5.0.5. If there exists a model I of T then there exists a model J of
the Skolemisation S(T) of T.

Proof. We will use the notation of Definition 5.0.3.
Fix a model I of T. Let φ be an axiom of T. Let f1, . . . , fn be the Skolem

function symbols of respective arities k1, . . . , kn which appear in S(φ) but
not in φ. We define functions F1, . . . , Fn which will be used to model the
function symbols f1, . . . , fn. These functions are defined by induction on
i ∈ {1, . . . , n}. We fix i ∈ {1, . . . , n} and define Fi in terms of the functions
{Fj | j < i} which is defined to be the empty set in the case i = 1.

Remove the occurrences of “∀x1”, . . . , “∀xki” from E(φ, i) and denote the

result E(φ, i). Let (d1, . . . , dki) ∈
(
I(A)

)ki be an arbitrary length ki tuple of
elements in I(A). Since I is a model of T, there exists at least one element
ei(d1, . . . , dmi

) ∈ I(A) so that for any valuation ν : V −→ I(A) if we consider
the following valuation

µ = ν(x1 7→ d1, . . . , xmi
7→ dmi

,

y1 7→ F1(d1, . . . , dk1), . . . , yi−1 7→ Fi−1(d1, . . . , dki−1
),

yi 7→ ei(d1, . . . , dmi
))

we have
Iµ(E(φ, i)) = 1 (42)

Make a choice of ei(d1, . . . , dmi
) for each tuple (d1, . . . , dmi

). This defines a
function.

Fi : I(A)mi −→ I(A)

(d1, . . . , dmi
) 7−→ ei(d1, . . . , dmi

)

We define for each i = 1, . . . , n

I(fi) = Fi (43)

and we have successfully extended the model of T to a model of S(T).

The following proof is an adaptation of that in [8].
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Lemma 5.0.6 (Lower Lowenheim-Skolem Theorem). Let T be a first order
theory over a first order language L with one sort A and at most countably
infinitely many axioms, and at most countably infinitely many function symbols.
Let I be a model of T such that |I(A)| has infinite cardinality. For any
infinite cardinal κ ≤ |I(A)| there exists a model J of T such that |J (A)| = κ.

Proof. Let D ⊆ I(A) be a subset of cardinality κ. In general, given a model
K of some first order theory and a formula φ, then there exists a formula of
the form

Q1x1 . . .Qnxnφ
′ (44)

where Qi ∈ {∀,∃}, φ′ is quantifier free, and which satisfies

K |= φ if and only if K |= Q1x1 . . .Qnxnφ
′ (45)

The formula Q1x1 . . .Qnxnφ
′ is given by bringing the quantifiers of φ “out

the front”. Thus it suffices to consider the case where all formulas of T are
written in the form (45).

Now we consider the Skolemisation S(T) of T. Since there exists a model
T it follows by Lemma 5.0.5 that there exists a model I of S(T).

For each function symbol f in the first order language associated to S(T),
consider the set im I(f) �D. Pick an arbitrary valuation ν : V −→ I(A) of I
over I(A). Taking the union of D, im(D), and the image im(I(f) �D) for all
function symbols f ∈ Σ− fun in the first order language associated to S(T)
we define a set E.

E := D ∪ im(ν) ∪
⋃

f∈Σ−fun

im(I(f) �D) (46)

We remark that since V is countably infinite, im(ν) is at most countably
infinite, and since there are at most countably infinitely many function
symbols in T, it follows that the cardinality of E is equal to that of D.
That is,

|E| = |D| = κ (47)

We will define a model J of T with domain E. Define

J (A) := E (48)

For each function symbol f : Am −→ A in the language associated to T,
define

J (f) = I(f) �Dm (49)
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For each relation symbol R � Am define

J (R) = I(R) �Dm (50)

Let φ be an axiom of T. Let µ : V −→ E be a valuation. We will show
Jµ(φ) = 1. Recall that φ is of the form (44). In Σ− fun there are n Skolem
function symbols f1, . . . , fn with respective arities k1, . . . , kn. For each of
these, define

di = Iµ(fi)(µ(x1), . . . , µ(xki)) ∈
⋃

f∈Σ−fun

im(I(f) �D) (51)

We then have
Iµ(x1 7→d1,...,xn 7→dn)(S(φ)) = 1 (52)

Thus, if we let J to be the same as I but where we assign no interpretation
to the Skolem function symbols (as they do not appear in the language
associated to T) then we have

Jµ(φ) = Iµ(x1 7→d1,...,xn 7→dn)(S(φ)) = 1 (53)

This shows that J is a model for T.

There is also an upper version of the Lowenheim-Skolem Theorem.

Lemma 5.0.7 (Upper Lowenheim-Skolem Theorem). Let I a model of T
such that |I(A)| has infinite cardinality. For any infinite cardinal κ > |I(A)|
there exists a model J of T such that |J (A)| = κ.

Proof. Let X be a set of cardinality κ and for each x ∈ X define a constant
cx and let C be this set of constants. Define the following set of sentences.

X := {cx 6= cy | x 6= y ∈ X} (54)

We will show using the compactness Theorem 5.0.2 that the theory TC whose
language is given by T along with all constants in C and whose axioms are
given by those in T along with the sentences X admits a model.

Let X ′ ⊆X be a finite subset of X and let CX ′ be the set of constants
which appear in any sentence in X ′.

Consider the theory TX ′ defined analogously to TX . This theory admits
a model K, defined in the following way: let {yx}x∈X ′ be a set of distinct
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elements of I(A), since I(A) is infinite in cardinality, this can always be
done. The remainder of the interpretation is given by I. It is clear that
K |= TX ′ .

It follows that there exists a model J of TC such that |L(A)| ≥ κ.
The model J in the statement then exists by the Lower Lowenheim-Skolem
Theorem.

Corollary 5.0.8 (Lowenhiem-Skolem Theorem). Say T admits a model I
so that I(A) is infinite in cardinality. Then for any cardinal κ there exists a
model J of T so that |J (A)| = κ.

Proof. By Lemmas 5.0.6, 5.0.7.

Lemma 5.0.9 ( Loś-Vaught test). Let T be a first order theory over Σ.
Assume T satisfies the following.

� Σ has only 1 sort, A say.

� T has no finite models (that is, for every model I we have I(A) is an
infinite set.

� There exists some infinite cardinal κ for which there is exactly one
model of T of size κ up to isomorphism.

Then T is complete.

Proof. Assume for a contradiction that T is not complete, that is, there
exists some formula φ such that T 6` φ and T 6` ¬φ. By the completeness
Theorem this means there exists a models I,J such that

I |= φ, J |= ¬φ (55)

Since all models of T are infinite, we have that I,J are infinite. By the
Lowenheim-Skolem Theorem it follows that there exists a model I ′ of size κ
so that I ′ |= φ and a model J ′ also of size κ so that J ′ |= ¬φ. However,
since there is only one model of T up to isomorphism we have by Lemma
4.0.5 that J ′ |= φ which is a contradiction.
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[6] W. Troiani, Gödel’s First Incompleteness Theorem https:

//williamtroiani.github.io/Notes/FirstIncompletenessTheorem.

tex.pdf

[7] Restall, In John Shand (ed.), Fundamentals of Philosophy. Routledge.
pp. 64 (2003)
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