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1 Quantum computing

The goal of this document to define a mathematical system of qubits as
well as their measurements, time evolutions, etc, and then to develop a
theory of error correction upon this foundation. An optional next step after
understanding this mathematics is to find a physical phenomena adhering to
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these conditions. This step which we refer to as optional though is not part
of this document.

Our standard of information will be sequences of binary integers. The
form this information can be encoded into during transmission however will
be more liberal. A bit of quantum information, that is, a qubit, will be any
norm 1 element of the complex Hilbert space H := C2. Actually, we identify
elements of H with linear operators from C into H and use Dirac notation.
For example, |0〉 : C −→ H denotes the map defined by linearity and the
rule 1 7−→ (1, 0), whereas |1〉 denotes the map defined by linearity and the
rule 1 7−→ (0, 1).

Definition 1.0.1. A qubit is a copy of the C-Hilbert space C2.
The state of a qubit C2 is a vector |ψ〉 ∈ C2 of norm 1.
A pair (C2, |ψ〉) consisting of a qubit C2 and a state |ψ〉 ∈ C2 is a

prepared qubit and we say C2 has been prepared to |ψ〉.

If clarity is needed, we will refer to a binary integer as a classical bit.
This is to help distinguish our standard of information from qubits just
defined. If we write a state |ψ〉 of a qubit H as a linear combination of
the standard basis vectors

|ψ〉 = α |0〉+ β |1〉 (1)

We think of |α|2 and |β|2 respectively as probabilities of the state |ψ〉 being
in state |0〉 or state |1〉 respectively. A qubit where α 6= 0 and β 6= 0 is a
superposition state.

We can now be more precise; our goal is to develop a theory of communication
of classical bits via qubits. The manipulation and transmission of classical
bits via qubits will loosely be referred to as quantum computing. For any
physical computation to take place, it is crucial that reliable error correction
is possible, simply due to the huge number of components and interactions
involved. The following is our central question.

Question 1.0.2. What tolerance for error does quantum computing allow
for?

This is answered formally by Theorem 4.0.9, which classifies necessary
and sufficient conditions for a collection of errors to be correctable.

So far, however, we have only considered systems consisting of a single
qubit. Since a system consisting of multiple qubits, any of which may be
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in superposition, may itself be in a superposition state, the definition of a
composite system of qubits is not as simple as the product of qubits, in the
category of Hilbert spaces.

More precisely, say we had two qubits prepared respectively to states
|ψ〉 , |ϕ〉. Then the pair (|ψ〉 , |ϕ〉) may also be in superposition. That is, the
state

α(|ψ〉 , |ϕ〉) + β(|ψ〉 , |ϕ〉) (2)

where |α|2 + |β|2 = 1 is a valid state of the combined system consisting of the
two qubits. Thus, states of pairs of systems are vectors in a subspace of the
Hilbert space freely generated by the pairs (|ψ〉 , |ϕ〉) of states of the qubits.
in fact, we will take the composite system to be the tensor product of the two
spaces, which means we need to justfiy the bilinearity conditions too. At the
time of writing, the author does not know a satisfying way to motivate these
conditions mathematically (although L(X × Y ) ∼= L(X) ⊗ L(Y ) is surely
relevant).

A qubit as well as any composite of a finite collection of qubits are
examples of finite dimensional complex Hilbert spaces. We define a state
space to be any finite dimensional Hilbert space H.

Definition 1.0.3. Let H1,H2 be two state spaces. The composite state
space is H1⊗H2. A state of a composite system is a vector |ψ〉 ∈ H1⊗H2

which can be written as a linear combination of pure tensors

α1 |ψ1〉+ . . .+ αn |ψn〉 ∈ H1 ⊗H2 (3)

where the coefficients satisfy |α1|2 + . . .+ |αn|2 = 1. The condition that each
|ψi〉 is a pure tensor means

∀i = 1, . . . , n, ∃
∣∣ψ1

i

〉
∈ H1,∃

∣∣ψ2
i

〉
∈ H2, |ψi〉 =

∣∣ψ1
i

〉
⊗
∣∣ψ2

i

〉
(4)

Remark 1.0.4. The tensor product is not a product in the category of
Hilbert spaces. This is because the states such as (3) are not necessarily
determined by a choice of state in H1, and a choice of state in H2. Thus,
it is not a surprise that we observe “bizarre” behavior, as our definition of
a coupled system is not given by the standard mathematical definition of
product. A comparison between the monoidal structure of the category of
Hilbert spaces and a hypothetical product can be found in [3]).

What degree of access do we have to superposition states? The answer,
naturally, is we have access to what we can measure. Rather than one
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particular outcome, we define a measurement as a family of possible outcomes
with assocaited probabilities; the states of state spaces are probabilistic,
and so the measurements will be too. Moreover, we do not assume that
measurement leaves the state uneffected, and so measurements are operators
upon the state space.

Definition 1.0.5. A measurement on a state space H is a finite family
of linear operators {Mm : H −→ H}m∈M satisfying the completeness
condition. ∑

m∈M

M †
mMm = I (5)

An element m ∈M is an outcome (simply a set of labels).
The resulting state after measurement {Mm}m∈M and outcome m is:

Mm |ψ〉√
p(m)

(6)

Remark 1.0.6. Associated to every measurement and state vector |ψ〉 there
is a value

p(m) := 〈ψ|M †
mMm |ψ〉 = ‖Mm |ψ〉‖2 (7)

It follows from (5) that p(m) ≤ 1 for all m, |ψ〉. We understand p(m) as
the probability of outcome m on the measurement {Mm}m∈M. Under this
interpretation, we think of (5) as requiring that the probabilities p(m) sum
to 1.

The possibility of superposition states is a liberation, and measurements
needing to satisfy the completeness condition is a limitation. For instance,
where a classical bit is in one of two states (0 or 1) a qubit has an infinite
number of possible states (a liberation). On the other hand, only orthogonal
states can be distinguished, due to the completeness condition (Lemma 1.0.7
below) (a limitation).

Lemma 1.0.7. Let |ψ1〉 , |ψ2〉 be non-orthogonal states of a qubit H. There
is no measurement {Mm : H −→ H}m∈M with 1, 2 ∈M satisfying:

p(1) = 〈ψ1|M †
1M1 |ψ1〉 = 1 and p(2) = 〈ψ2|M †

2M2 |ψ2〉 = 1 (8)

Proof. Assume such a measurement exists. Since |ψ1〉 , |ψ2〉 are non-orthogonal,
there exists |ϕ〉, orthorgonal to |ψ1〉 such that

|ψ2〉 = α |ψ1〉+ β |ϕ〉 (9)
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for some α, β ∈ C satisfying |α|2 + |β|2 = 1. Moreover, since |ψ1〉 , |ψ2〉 are
non-orthogonal, we have β 6= 1. We have

1 = 〈ψ2|ψ2〉 (10)

= 〈ψ2|M †
2M2 |ψ2〉 (11)

= (ᾱ 〈ψ1|+ β̄ 〈ϕ|)M †
2M2(α |ψ1〉+ β |ϕ〉) (12)

= |α|2 〈ψ1|M †
2M2 |ψ1〉+ ᾱβ 〈ψ1|M †

2M2 |ϕ〉 (13)

+ β̄α 〈ϕ|M †
2M2 |ψ1〉+ |β|2 〈ϕ|M †

2M2 |ϕ〉 (14)

Now, by the completeness condition, we have

〈ψ1|
∑
m∈M

M †
mMm |ψ1〉 = 〈ψ1| I |ψ1〉 = 1 (15)

This, combined with p(1) = 1 implies 〈ψ1|M †
2M2 |ψ1〉 = 0. In other words,

‖M2 |ψ1〉‖2 = 0. This implies M2 |ψ1〉 = 0 (the zero vector). Thus, (13)
implies:

1 = |β|2 〈ϕ|M †
2M2 |ϕ〉 = |β|2‖M2 |ϕ〉‖2 ≤ |β|2 < 1 (16)

This stands in contradiction to (8).

The liberty of superposition means the following are four valid states of
a single qubit.

|0〉+ |1〉√
2

|0〉 − |1〉√
2

− |0〉+ |1〉√
2

− |0〉 − |1〉√
2

(17)

Since these are non-orthogonal though, Lemma 1.0.7 renders these indistinguishable.
Desigining algorithms amongst the push and pull of superposition and measurement
is the art of quantum computing. An example of such an art piece is the
possibility of transferring two classical bits of information via a single qubit.
This possibility is surprising given the previous observation.

Example 1.0.8. The following is a state of the composite system H :=
C2 ⊗ C2.

|00〉+ |11〉√
2

∈ H (18)

Consider the following matrices, we note that these matrices will play an
important role later too.

I :=

(
1 0
0 1

)
X :=

(
0 1
1 0

)
Y :=

(
0 −i
i 0

)
Z :=

(
1 0
0 −1

)
(19)
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To make the action of Y simpler we will consider iY . These act on basis
elements as follows.

I |0〉 = |0〉 I |1〉 = |1〉
X |0〉 = |1〉 X |1〉 = |0〉
iY |0〉 = − |1〉 iY |1〉 = |0〉
Z |0〉 = |0〉 Z |1〉 = − |1〉

Applying a choice of these unitary matrices to the first qubit results in the
following states of the combined system.

I :
|00〉+ |11〉√

2

X :
|10〉+ |01〉√

2

iY :
|01〉 − |10〉√

2

Z :
|00〉 − |11〉√

2

(20)

A priori, we may have agreed on a correspondence between the operators
I,X, iY, Z and respectively the classical bits 00, 10, 01, 11. Moreover, the
states (20) are orthogonal, so Lemma 1.0.7 does not rule out the possibility
of distinguishing these states.

Orthogonal states can be distinguished via measurement, this is the content
of Lemma 1.0.9 below. Let us emphasise the crucial point of this example:
although state (18) is in superposition, the system itself is still thought of
as a pair of qubits, one in one hand, one in the other. Thus, if Alice holds
the first qubit, and performs one of the transformations (19) then 2 bits of
information can be transferred by sending this single qubit to Bob, who holds
the second qubit. Bob performs a measurement to distinguish which of the
four states (20) the combined system is in, and then extracts the classical
bits from the result.

Lemma 1.0.9. If |ψ1〉 , . . . , |ψn〉 are orthogonal states of a state space, then
there exists a measurement {Mm}m∈M such that for all i = 1, . . . , n:

p(i) = 〈ψi|M †
iMi |ψi〉 = 1 (21)
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Proof. The operator

E :=
n∑

i=1

|ψi〉 〈ψi| (22)

is equal to the identity when restricted to the subspace Span{|ψ1〉 , . . . , |ψn〉}
and when written with respect to the basis |1〉 , . . . , |n〉 of this subspace. A
trick to extend this to a measurement of the whole space, and written with
respect to the standard basis is to add an operator M0 defined by I−E. The
set {|ψi〉 〈ψi|}i=1,...,n ∪M0 is a measurement distinguishing |1〉 , . . . , |n〉.

Example 1.0.8 assumed that Alice was able to perform one of the unitary
operators (19) to her qubit. For single qubits, all the unitary operators
constitute the operations we can perform to qubits.

Definition 1.0.10. Let H be a state space. A single step time evolution
of H is a unitary operator U on H. A single step time evolution of a
state vector |ψ〉 with respect to U is the pair (|ψ〉 , U |ψ〉).

An evolution of H is a sequence of unitary operators (U1, ..., Un) on H,
an evolution of a state vector |ψ〉 with respect to the evolution (U1, ..., Un)
is the sequence (|ψ〉 , U1 |ψ〉 , ..., Un . . . U1 |ψ〉).

Example 1.0.8 falls into the special setting where the measurement used
to distinguish the states (20) is projective, ie, all the measurement operators
are projectors.

Definition 1.0.11. A linear transformation P is a projector if P 2 = P .

These simple measurements are sufficient in many situations.
The exact relationship between projective measurements and measurements

is given by Proposition 1.0.13 below which says in a precise sense that general
measurements are projective measurements augmented by a unitary operator.

Lemma 1.0.12. Let W ⊆ V be a subspace of a Hilbert space V , and let
U : W −→ V be a unitary operator. Then U extends to a unitary U ′ operator
on all of V .

Proof sketch. Define U ′ = U ⊗ IdW⊥ .

Proposition 1.0.13. Let {Mm}m∈M be a measurement on H. Then there
exists a projective measurement {Pm}m∈M, a state space Q, and a unitary
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operator U : H⊗Q −→ H⊗Q such that for any state |ψ〉 of the composite
system H⊗Q and any n ∈M:

〈ψ|U †P †nPnU |ψ〉 = 〈ψ|M †
nMn |ψ〉 (23)

Proof. Let Q be the Hilbert space freely generated by the set {|1〉 , ..., |m〉}.
Define the following linear map.

U : H −→ H⊗Q (24)

|ψ〉 =
∑
m∈M

Mm |ψ〉 ⊗ |m〉 (25)

We first prove this is unitary, by Corollary A.2.8 it suffices to check that
〈ψ|U †U |ψ〉 = 〈ψ|ψ〉 for arbitrary |ψ〉 ∈ H. We perform the following
calculation, note: we have written 〈ψ|M †

m ⊗ 〈m| for the linear functional
which sends a⊗ b to the product 〈ψ|M †

ma 〈m| b.

〈ψ|U †U |ψ〉 =
( ∑

m∈M

〈ψ|M †
m ⊗ 〈m|

)( ∑
m′∈M

Mm′ |ψ〉 ⊗ |m′〉
)

=
∑
m∈M

∑
m′∈M

〈ψ|M †
mMm′ |ψ〉 〈m|m′〉

=
∑
m∈M

〈ψ|M †
mMm′ |ψ〉

= 〈ψ|ψ〉

We now want to extend U to a unitary operator on all of H⊗Q using Lemma
1.0.12, however we must first identify H with a subspace of H ⊗ Q. There
are many ways this can be done, here we choose the basis vector |1〉 ∈ Q to
be special, and identify H with H⊗ Span |1〉 ⊆ H ⊗Q.

Now consider the following projective measurement on H⊗Q:

Pm := Iq ⊗ |m〉 〈m| (26)
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Then the probability outcome n occurs is:

p(n) = 〈ψ|U †PnU |ψ〉

=
( ∑

m∈M

〈ψ|M †
m ⊗ 〈m|

)
IQ ⊗ |n〉 〈n|

( ∑
m′∈M

Mm′ |ψ〉 ⊗ |m〉
)

=
( ∑
m∈M

〈ψ|M †
m ⊗ 〈m|

) ∑
m′∈M

Mm′ |ψ〉 ⊗ |n〉 〈n|m〉

=
∑
m∈M

(
〈ψ|M †

m ⊗ 〈m|
)
Mn |ψ〉 ⊗ |n〉

=
∑
m∈M

〈ψ|M †
mMn |ψ〉 〈m|n〉

= 〈ψ|M †
nMn |ψ〉

Remark 1.0.14. The defining equation (25) of the linear map (24) may
look opaque. We derive it from a more natural starting point here. See [2,
§Partial Trace] for a justification of the natural isomorphisms used in the
following calculation.

Hom(Q,Hom(H,H)) ∼= Hom(Q⊗H,H) (27)
∼= Hom(H,H⊗Q∗) (28)

Then, by identifying Q with Q∗ via the anti-linear, isometric bijection given
by the Riesz Representation Theorem (see Corollary A.1.4), a linear map
H −→ H ⊗ Q can be given by a linear map Q −→ H ⊗H. We claim that
(24) corresponds under this correspondence to the following linear map.

Q −→ Hom(H,H) (29)

|m〉 7−→Mm (30)

We now validate this claim. This is a matter of a calculation.(
|m〉 7→Mm

)
7−→

(
|m〉 ⊗ |ψ〉 7→Mm |ψ〉

)
(31)

7−→
(
ψ 7→

∑
m∈M

Mm |ψ〉 ⊗ |m〉
)

(32)

See Corollary [2, 1.2.6] for a justification of the last step.
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2 The density operator

Let us consider again the Bell state

1√
2

(|00〉+ |11〉) (33)

thought of as the state of a composite system consisting of two qubits. In
Section 1 we thought of this state as having probability 1/2 that the first and
second qubits are in state |0〉, and a probably 1/2 that the first and second
qubits are in state |1〉. So what is the probability of the first qubit being in
state |0〉? Presumably 1/2, but how do we know this?

In short, we have not been precise enough with how the state of a
combined system reflects the states of the individual systems.

Obtaining this precision will in fact require reformulating the entirety
of what has been done so far, right down to the definition of what a qubit
is... Such expositions are excrutiating, so here we provide a justification. In
the one qubit case, there is no “combined system”, we only have a single
qubit. Thus, Section 1 is perfectly valid. In fact, even in situations where
composite systems are considered, but scrutinising analysis of the subsystems
is not, Section 1 remains valid. For instance, Example 1.0.8 was perfectly
precise.

In situations where combined systems are considered and precise analysis
of the indivisual subsystems is relevant, such as Example 2.1.10 below, the
formalisation of Section 1 is insufficient.

Again, the complication comes from the decision that a composite system
is not described as a product, but rather a tensor product. Had a composite
system been described as a product, then we would have projection morphisms
which would be able to relate the multi-qubit case to the single-qubit case.
Here though, we need some way of moving from the tensor product of several
qubits to a subcollection of qubits. Our tool of choice will be the partial trace
operator.

2.1 Partial trace

For an introduction to the partial trace operator, see [2]
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Example 2.1.1. We calculate the partial trace of the operator

ρ :=
( |00〉+ |11〉√

2

)(〈00|+ 〈11|√
2

)
=
|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|

2

First consider Trace2(|00〉 〈00|). We have, where we write Eij : C2 −→ C2

for the linear map which maps the ith basis vector to the jth basis vector,
and similarly for Fij (just applied to the second copy of C2)

|00〉 〈00| = E00 ⊗ F00 (34)

and so
Trace2(|00〉 〈00|) = Trace(F00)E00 = |0〉 〈0| (35)

Similarly,

|11〉 〈00| = E01 ⊗ F01, |00〉 〈11| = E10 ⊗ F10, |11〉 〈11| = E11 ⊗ F11 (36)

and so

Trace2(|11〉 〈00|) = Trace(F00)E11 = 0 (37)

Trace2(|11〉 〈00|) = Trace(F00)E11 = 0 (38)

Trace2(|11〉 〈11|) = Trace(F11)E11 = |1〉 〈1| (39)

we thus have

Trace2(ρ) =
|0〉 〈0|+ |1〉 〈1|

2
= I/2 (40)

In fact, Example 2.1.1 can be interpreted as deriving the state of a
subsystem from a composite system. This involves identifying the state
1√
2
(|00〉+|11〉) with the operator ρ of Example 2.1.1. The following definition

generalises Definition 1.0.1 in this way, and also generalises further by allowing
for an ensemble of states, each weighted by some probability.

Now we can interpret Calculation (40) as extracting the state of the
second qubit (as an isolated system) from the composite system. We see the
resulting operator corresponds to the state 1

2
(|0〉 + |1〉) which fits what was

said at the start of this section that the state of a single qubit has probability
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1/2 of being in state |0〉 , |1〉 respectively when the combined system is in state
(33).

Since positive operators on finite dimension Hilbert spaces are Hermitian
(Lemma A.2.12) it follows from the Spectral Decomposition Theorem A.2.2
that positive operators on finite dimensional Hilbert spaces are diagonalisable.
It follows that if moreover the trace of a positive operator H is finite, then
there exists a finite set of vector |ψ1〉 , . . . , |ψn〉 and probabilities p1, . . . , pn ∈
[0, 1] so that

H =
n∑

i=1

pi |ψi〉 〈ψi| (41)

Thus we have the following definition of a density operator, which is thought
of as an “ensemble of states”.

Definition 2.1.2 (Intrinsic definition of density operator). Let H be finite
dimensional. A density operator is a positive operator ρ : H −→ H with
trace equal to 1.

Definition 2.1.3. Let H = C2 ⊗ C2 be a composite system given by the
tensor product of two qubits. we have density operator ρ on H, then tracing
over the first copy of C2 (respectively, the second copy of C2) yields the
following operators

Trace2(ρ), Trace1(ρ) (42)

We observe a few convenient properties of the trace operator, then give
the definitions of measurement and time evolution for density operators.
Once this is done, we can exhibit another interesting phenoma pertaining to
Quantum Computing (Example 2.1.10).

Definition 2.1.4. The trace of an operator T : H −→ H is the trace of any
(and hence all) matrix representations of T .

The trace of an operator can be computed using a unit vector.

Lemma 2.1.5. Let A be an operator on a Hilbert space H and let |ψ〉 ∈ H
be a unit vector in H. We have the following formula:

Trace(A |ψ〉 〈ψ|) = 〈ψ|A |ψ〉 (43)
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Proof. In general, if |v1〉 , ..., |vn〉 is an orthogonal basis for H, and let A is
an operator on H if we write A |vj〉 = a1j |v1〉+ . . .+ anj |vn〉, then we have

〈vi|A |vj〉 = aij (44)

and so

TraceA =
n∑

i=1

〈vi|A |vi〉 (45)

Applying this to the current statement to be proved, let |ψ〉 be a unit vector
in H and let {|ψ〉 , |v2〉 , ..., |vn〉} be an orthogonal basis for H (using Gram-
Schmidt, say). Then

Trace(A |ψ〉 〈ψ|) = 〈ψ|A |ψ〉 〈ψ|ψ〉+
n∑

i=2

〈vi|A |ψ〉 〈ψ|vi〉

= 〈ψ|A |ψ〉

We see now that Section 1 concerned itself with pure states, where we
identify a state vector |ψ〉 with the operator |ψ〉 〈ψ| (that is, we identify the
vector |ψ〉 with the projection onto this vector). We now describe how to
generalise the Definitions of Section 1 to the case of mixed states.

Definition 2.1.6. A measurement on a state space H is a family of linear
operators {Mm : H −→ H}m∈M satisfying∑

m∈M

M †M = I (46)

Associated to every measurement and density operator ρ there is a value

p(m) = Trace(M †
mMmρ) (47)

which is understood as the probability p(m) of outcome m on measurement
{Mm}m∈M.

Also, there is a resulting density operator,:

ρm :=
M †

mρMm

Trace(M †
mMmρ)

(48)
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Definition 2.1.6 becomes more transparent when we pick a diagonalisation
of ρ. Say

ρ =
n∑

i=1

pi |ψi〉 〈ψi| (49)

We have

p(m) =
n∑

i=1

pip(m | i)

=
n∑

i=1

pi 〈ψi|M †
mMm |ψi〉

=
n∑

i=1

pi Trace(M †
mMm |ψi〉 〈ψi|)

= Trace(M †
mMmρ)

where the last equality follows from linearity of the Trace.
The resulting density operator is:

ρm :=
n∑

i=1

p(i | m)
M |ψi〉 〈ψi|M †

p(m | i)
(50)

we then use Bayes Theorem:

p(i | m)/p(m | i) = pi/p(m) (51)

to obtain:

ρm =
n∑

i=1

pi
Mm |ψi〉 〈ψi|M †

m

p(m)
=

n∑
i=1

MmρM
†
m

Trace(M †
mMρ)

(52)

Lemma 2.1.7. For a pure state density operator |ψ〉 〈ψ| Definitions 2.1.6
and 1.0.5 agree once |ψ〉 〈ψ| has been identified with |ψ〉.

Definition 2.1.8. Let H be a state space. A single step time evolution
on H is a unitary operator U : H −→ H. A single step time evolution of
a density operator ρ with respect to U is the pair (ρ, UρU †).

An evolution of H is a sequence of unitary operators (U1, ..., Un) on H,
an evolution of a density operator ρ with respect to the evolution (U1, ..., Un)
is the sequence (ρ, UρU †, ..., Un . . . U1ρU

†
1 . . . U

†
n).
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Definition 2.1.9. Let H1,H2 be two state spaces. The composite state
space isH1⊗H2. We often describe a state ofH1⊗H2 using the terminology
“H1 is in state ρ1 and H2 is in state ρ2”, this simply describes the state
ρ1 ⊗ ρ2 ∈ H1 ⊗H2.

With this higher level of fidelity in our theory, we can show another
interesting phenomena pertaining to quantum computation.

Example 2.1.10 (Quantum teleportation). Superposition states clearly have
“awareness” of each other, because if we had a pair of qubits which we
prepared to the state

|00〉+ |11〉√
2

(53)

and the first qubit was measured and found to be in the state |0〉, then we
know with certainty that the second qubit is in state |00〉, as the combined
state |01〉 is not an option. Again, this fact can be leaned on to provide an
application. The following example shows how a qubit can be sent from one
party Alice to another Bob, by only sending a pair of classical bits, provided
Alice and Bob are in possession of another pair of qubits which together are
in a superposition state.

Consider a pair of qubits which together as a composite system are in the
Bell state

|00〉+ |11〉√
2

(54)

Assume that Alice is in posession of the first of these qubits, and Bob is in
posession of the second.

Introduce a new qubit H which is in some state |ψ〉 = α |0〉+ β |1〉. The
system consisting of all three qubits is in state

1√
2

(α |0〉+ β |1〉)(|00〉+ |11〉)

=
1√
2

(
α |0〉 (|00〉+ |11〉) + β |1〉 (|00〉+ |11〉)

)
Alice applies the following unitary matrix (which is written with respect to
the ordered basis |00〉 , |01〉 , |10〉 , |11〉)

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (55)
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to her pair of qubits, resulting in the following state:

1√
2

(
α |0〉 (|00〉+ |11〉) + β |1〉 (|10〉+ |01〉)

)
(56)

Then she applies the following unitary matrix to her first qubit

1√
2

(
1 1
1 −1

)
(57)

resulting in the following state.

1

2

(
α(|0〉+ |1〉)(|00〉+ |11〉) + β(|0〉 − |1〉)(|10〉+ |01〉)

)
(58)

This state can be rewritten as follows.

1

2

(
|00〉 (α |0〉+ β |1〉) + |01〉 (α |1〉+ β |0〉)

+ |10〉 (α |0〉 − β |1〉) + |11〉 (α |1〉 − β |0〉)
)

Now, Alice can perform a measurement on her two qubits, and depending on
which outcome |00〉 , |01〉 , |10〉 , |11〉 the state of Bob’s qubit is respectively
α |0〉+ β |1〉 , α |1〉+ β |0〉 , α |0〉 − β |1〉 , α |1〉 − β |0〉.

Alice can then send Bob the classical bits 00, 01, 10, 11 respectively indicating
that Bob should apply the Unitary matrix respectively I,X, Z, ZX, recovering
Alice’s qubit |ψ〉 = α |0〉+ β |1〉.

2.2 Environment

A system interacting with an environment can be modelled as a composite
system where one of the systems is the original one in question and the other
is the environment.

However, there are particulars we want to consider. We do not want
to allow for non-pure states between the system and the environment, and
we specifically want to trace over the environment each time. The correct
definition is that of a quantum operation given below.

Definition 2.2.1. An open quantum system is the tensor product of
two state spaces Hp ⊗He where Hp is the principal system and He is the
environment.
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Definition 2.2.2. The time evolution of an open quantum system is
that of Definition 1.0.10 where an open quantum system is thought of as a
composite system (Definition 1.0.3).

A quantum operation on an open quantum system Hp⊗He is a triple
(E , ρe, U) consisting of an operator

E : Hom(Hp,Hp) −→ Hom(Hp,Hp) (59)

a state ρe ∈ He and a unitary operator U on the entire open quantum
system Hp ⊗ He. This data is required to satisfy the following for all ρ ∈
Hom(Hp,Hp).

E(ρ) = TraceHe(U(ρ⊗ ρe)U †) (60)

Remark 2.2.3. Let Hp⊗He be an open quantum system and let |1〉 , ..., |n〉
be a basis for He. We think of |1〉 , ..., |n〉 as operators C −→ He and write
id⊗ |i〉 for the composite Hp −→ Hp ⊗ C −→ Hp ⊗ He. We have for any
operator f : Hp ⊗He −→ Hp ⊗He that

TraceHe(f) =
n∑

i=1

(id⊗〈i|)f(id⊗ |i〉) (61)

See [2] for background.

We let |1〉 , ..., |n〉 be a basis for He and use (61) to rewrite (60) in the
special case where ρe = |j〉 〈j|.We have

E(ρ) = TraceHe(U(ρ⊗ |j〉 〈j|)U †) (62)

=
n∑

i=1

(id⊗〈i|)(U(ρ⊗ |j〉 〈j|)U †)(id⊗ |i〉 (63)

Now we make the observation that

ρ⊗ |j〉 〈j| = (ρ⊗ id)(id⊗ |j〉)(id⊗〈j|) (64)

= (id⊗ |j〉)(ρ⊗ id)(id⊗〈j|) (65)
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Substituting (65) into (63) we obtain:

n∑
i=1

(id⊗〈i|)(U(ρ⊗ |j〉 〈j|)U †)(id⊗ |i〉)

=
n∑

i=1

(id⊗〈i|)U(id⊗ |j〉)(ρ⊗ id)(id⊗〈j|)U †(id⊗ |i〉)

=
n∑

i=1

(id⊗〈i|)U(id⊗ |j〉)(id⊗〈j|)U †(id⊗ |i〉)

=
n∑

i=1

EiρE
†
i

where Ei = (id⊗〈i|)(U((id⊗ |j〉).
We thus have a second Definition of a quantum operation:

Definition 2.2.4. Given a state space H (notice, we do not ask for an
open quantum system), a quantum operation is a pair (E , {E1, ..., En})
consisting of an operator

E : Hom(H,H) −→ Hom(H,H) (66)

and a finite set {E1, ..., En} of operators on H subject to the following
conditions, where ρ ∈ Hom(H,H) is arbitrary.

E(ρ) =
n∑

i=1

EiρE
†
i ,

n∑
i=1

E†iEi = I (67)

We now have two different definitions of quantum operations, Definition
2.2.2 and Definition 2.2.4. We have already seen in Remark 2.2.3 how to
obtain a quantum operation in the sense of Definition 2.2.4 given a quantum
operation in the sense of Definition 2.2.2, now we show the converse.

Remark 2.2.5. LetH be a state space and {E1, ..., En} a quantum operation
on H. We introduce the Hilbert space (C2)⊗n which we denote by He and
define the following unitary operator.

U : H −→ H⊗He (68)

|ψ〉 7−→
n∑

i=1

Ei |ψ〉 ⊗ |i〉 (69)
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We show that this is unitary.

〈ψ|U †U |ψ〉 =
n∑

j=1

〈ψ|E†i ⊗ 〈j|)
n∑

i=1

Ei |ψ〉 ⊗ |i〉

=
n∑

j=1

n∑
i=1

〈ψ|E†jEi |ψ〉 〈j|i〉

=
n∑

k=1

〈ψ|E†kEk |ψ〉

= 〈ψ|ψ〉
We identify the space H with the subspace H ⊗ Span |1〉 ⊆ H ⊗ He, where
|1〉 ∈ H is an arbitrarily chosen vector in He, and hence by Lemma 1.0.12
the operator U extends to a unitary operator on all of H ⊗ He. The next
step is to show the following for density operator ρ :=

∑m
i=1 pi |ψi〉 〈ψi|:

trHe(U(ρ⊗ |1〉 〈1|)U †) =
n∑

k=1

EkρE
†
k (70)

This is shown by the following calculation.

trHe(U(ρ⊗ |1〉 〈1|)U †) = trHe(U(
n∑

i=1

pi |ψi〉 〈ψi| ⊗ |1〉 〈1|)U †)

= trHe(
n∑

i,j,k=1

piEj |ψi〉 〈ψi|E†k ⊗ |j〉 〈k|)

= trHe(
n∑

j,k=1

EjρE
†
k ⊗ 〈j|k〉)

= trHe(
n∑

l=1

ElρE
†
l ⊗ |l〉 〈l|)

=
n∑

l=1

ElρE
†
l

3 Error correction

The more informed two parties are, the more communication may be prone
to error while still sustaining certainty on the intended message. This is
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because both parties can “error correct” the other.
Throughout, H denotes a qubit C2, that is, the complex Hilbert space

C2.

Definition 3.0.1. A message is a state |ψ〉 ∈ H⊗n, for some n. An error is
a pair of states (|ϕ〉 , |ψ〉) where |ϕ〉 , |ψ〉 ∈ H⊗n for some n, note that an error
may be such that |ϕ〉 = |ψ〉. The message |ϕ〉 is the intended message and
|ψ〉 is the received message.

Definition 3.0.2. An n-encoding of a single state (sometimes just an
encoding) is an injective linear map ι : H −→ H⊗n. An n-encoding of a
message |m〉 ∈ H⊗k is an n-encoding ι along with a message |m〉 ∈ H⊗nk
for which there exists |m′〉 ∈ H⊗k satisfying ι⊗k |m′〉 = |m〉.
Definition 3.0.3. A quantum error correcting code (QECC) is a pair
Q = (H, S) consisting of a state space H along with a set of operators S on
H. The elements of S are the stabilisers. The codespace HS of Q is the
maximal subspace of H invariant under all the operators in S.

In Section 5 we will present a method for proving when a set of vectors
generate the codespace of a quantum error correction code.

3.1 Examples

Throughout, H denotes a qubit C2, that is, the complex Hilbert space C2.

Definition 3.1.1. We define the following operators:

X :=

(
0 1
1 0

)
Y :=

(
0 −i
i 0

)
Z :=

(
1 0
0 −1

)
H :=

1√
2

(
1 1
1 −1

)
The matrices X, Y, Z are the Pauli matrices, and H is the Hadamard
matrix.

We make the passing observation that all of X, Y, Z,H square to the
identity matrix. The basis vectors

H |0〉 =
1√
2

(|0〉+ |1〉), H |1〉 =
1√
2

(|0〉 − |1〉) (71)

are the Bell states and are denoted |+〉 , |−〉 respectively. Notice that as
already stated, H2 = I, so H |+〉 = |0〉 and H |−〉 = |1〉.
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Definition 3.1.2. The standard basis |0〉 , |1〉 of H induces a basis of H⊗n,
we denote |0〉 ⊗ . . .⊗ |0〉 by |0 . . . 0〉, etc.

Notation 3.1.3. Given a Pauli matrix W ∈ {X, Y, Z} the operator on H⊗n
given by the tensor product consisting of W in the ith slot (for i ≤ n) and
the identity operator in all other slots by Wi. For example, the operator Z1

on H⊗3 is the operator Z ⊗ I ⊗ I.
Given a collection of Pauli matrices Wi1 , ...,Wim ∈ {X, Y, Z} where 0 <

i1 < . . . < im ≤ n we denote by Wi1 . . .Wim the composition Wi1 ◦ . . . ◦Wim .
For example, the operator Z1Z2 on H⊗3 is the operator

(Z ⊗ I ⊗ I) ◦ (I ⊗ Z ⊗ I) = Z ⊗ Z ⊗ I : H⊗3 −→ H⊗3 (72)

Consider the bit flip encoding

BitFlip : H −→ H⊗3 (73)

|0〉 7−→ |000〉 (74)

|1〉 7−→ |111〉 (75)

then an encoding of a message with respect to this encoding might be |000111000〉,
but could not be |000111001〉. We call Encoding 73 the bit flip encoding.
As another example, we consider the phase flip encoding.

PhaseFlip : H −→ H⊗3

|0〉 7−→ |+ + +〉
|1〉 7−→ |− −−〉

Definition 3.1.4. A bit flip error is an error (|ϕ〉 , |ψ〉) where |ϕ〉 is an
encoding of a message with respect to the encoding BitFlip⊗m for some m,
such that Xi |ϕ〉 = |ψ〉 for some i.

A phase flip error is an error (|ϕ〉 , |ψ〉) where |ϕ〉 is an encoding of a
message with respect to the the encoding PhaseFlip⊗m, such that Zi |ϕ〉 = |ψ〉
for some i.

Let (|ϕ〉 , |ψ〉) be a bit flip error. The following algorithm takes as input
|ψ〉 and reconstructs |ϕ〉:

Algorithm 3.1.5 (Bit flip correction). Input: a received message |ψ〉,
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1. perform the following projective measurements:

〈ψ|Z1Z2 |ψ〉 with resulting state |ψ′〉 , (76)

followed by
〈ψ′|Z2Z3 |ψ′〉 (77)

let (r1, r2) be the pair of results from these measurements.

2. It will be shown that r1, r2 ∈ {1,−1}, and the resulting state of the
second measurement is |ψ〉.

3. Now retrieve |ϕ〉 based on the values of r1, r2:

� if (r1, r2) = (1, 1), return |ψ〉,
� if (r1, r2) = (−1, 1), return X1 |ψ〉,
� if (r1, r2) = (1,−1), return X3 |ψ〉,
� if (r1, r2) = (−1,−1), return X2 |ψ〉

We now prove correctness of Algorithm 3.1.5:

Proof. It will be helpful to first notice:

Z1Z2 |000〉 = |000〉 Z1Z2 |001〉 = |001〉
Z1Z2 |010〉 = − |010〉 Z1Z2 |011〉 = − |011〉
Z1Z2 |100〉 = − |100〉 Z1Z2 |101〉 = − |101〉
Z1Z2 |110〉 = |110〉 Z1Z2 |111〉 = |111〉

Let |ψ〉 := a |010〉 + b |101〉 be a state, ie, an element of H⊗3. We perform
the measurement Z1Z2 followed by Z2Z3:

〈ψ|Z1Z2 |ψ〉 = (a 〈010|+ b 〈101|)Z1Z2(a |010〉+ b |101〉)
= (a 〈010|+ b 〈101|)(−a |010〉 − b |101〉)
= −a2 − b2 = −1

and

〈ψ|Z2Z3 |ψ〉 = (a 〈010|+ b 〈101|)Z1Z2(a |010〉+ b |101〉)
= (a 〈010|+ b 〈101|)(−a |010〉 − b |101〉)
= −a2 − b2 = −1
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We can infer from the fact that both of these came out as −1 that it was the
second bit which was flipped, and so we can correct this. However, what is
the impact of this measurement on the state? Again we calculate:

Z1Z2(a |010〉+ b |101〉) = Z1(−a |010〉+ b |101〉)
= −a |010〉 − b |101〉

and

Z2Z3(−a |010〉 − b |101〉) = Z2(−a |010〉+ b |101〉)
= a |010〉+ b |101〉

and so the measurements (in the end) did not impact our state.

Later, using the theory of stabiliser codes, we will show that in fact single
bit flip errors form the full set of correctable errors using Z1Z2, Z1Z3, Z2Z3.

Let (|ϕ〉 , |ψ〉) be a phase flip error. The following algorithm takes as
input |ψ〉 and reconstructs |ϕ〉:

Algorithm 3.1.6 (Phase flip correction). Input: a received message |ψ〉:

1. perform the following projective measurements:

〈ψ|X1X2 |ψ〉 with resulting state |ψ′〉 (78)

followed by
〈ψ′|X2X3 |ψ′〉 (79)

let (r1, r2) be the pair of results from these measurements.

2. It will be shown that r1, r2 ∈ {1,−1} and the resulting state of the
second measurement is |ψ〉.

3. Now retrieve |ϕ〉 based on the values of r1, r2:

(a) if (r1, r2) = (1, 1), return |ψ〉,
(b) if (r1, r2) = (−1, 1), return Z1 |ψ〉
(c) if (r1, r2) = (1,−1), return Z3 |ψ〉,
(d) if (r1, r2) = (−1,−1), return Z2 |ψ〉
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Proof. In fact all our work is already done. We simply note that Z |+〉 =
|−〉 , Z |−〉 = |+〉 (and so phase flip acts like bit flip for |+〉 , |−〉), and that
in general

H⊗nZi1 . . . ZijH
⊗n = Xi1 . . . Xij (80)

The result then follows from the proof of correctness for Algorithm 3.1.5.

What if we wanted to correct an error where we knew the received message
corresponded to the intended message by either a bit flip or a phase flip. This
can be done by combining the two approaches above. Define the following
encoding:

Definition 3.1.7. The Shor encoding is:

Shor : H −→ H⊗9 (81)

where
Shor(|ψ〉) = BitFlip ◦PhaseFlip |ψ〉 (82)

Algorithm 3.1.8. On input |ψ〉:

1. Perform the following projective measurements:

〈ψ|Z1Z2 |ψ〉 with resulting state |ψ′〉
〈ψ′|Z2Z3 |ψ′〉 with resulting state |ψ〉
〈ψ|Z3Z4 |ψ〉 with resulting state |ψ′′〉
〈ψ′|Z4Z5 |ψ′′〉 with resulting state |ψ〉
〈ψ′|Z5Z6 |ψ〉 with resulting state |ψ′′′〉
〈ψ′|Z6Z7 |ψ′′′〉 with resulting state |ψ〉
〈ψ′|Z7Z8 |ψ〉 with resulting state |ψ′′′′〉
〈ψ′|Z8Z9 |ψ′′′′〉 with resulting state |ψ〉

let (r1, r2, r3, r4, r5, r6, r7, r8) ∈ Z8
2 be the results from these measurements.

Notice that there are only three possibilities, all entries are 1, exactly
one entry is −1 in which case it is either r1 or r8 (with the rest equal
to 1) or exactly two values are −1 and the rest are 1 in which case the
two −1 entries are neighbours.
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2. Then perform the following measurements:

〈ψ|X1X2X3X4X5X6 |ψ〉 with resulting state |ψ′〉
〈ψ′|X4X5X6X7X8X9 |ψ′〉 with resulting state |ψ〉

let (s1, s2) ∈ Z2
2 be the result of these measurements.

Now retrieve |ϕ〉 based on the values:

(r1, r2, r3, r4, r5, r6, r7, r8) (s1, s2) Return
(1, 1, 1, 1, 1, 1, 1, 1) (1, 1) |ψ〉

(−1, 1, 1, 1, 1, 1, 1, 1, 1) (1, 1) X1 |ψ〉
(−1,−1, 1, 1, 1, 1, 1, 1, 1) (1, 1) X2 |ψ〉

...
...

...
(1, 1, 1, 1, 1, 1, 1,−1,−1) (1, 1) X8 |ψ〉
(1, 1, 1, 1, 1, 1, 1, 1,−1) (1, 1) X9 |ψ〉

(1, 1, 1, 1, 1, 1, 1, 1) (−1, 1) |ψ〉
(−1, 1, 1, 1, 1, 1, 1, 1, 1) (−1, 1) Z1Z2Z3X1 |ψ〉

(−1,−1, 1, 1, 1, 1, 1, 1, 1) (−1, 1) Z1Z2Z3X2 |ψ〉
...

...
...

(1, 1, 1, 1, 1, 1, 1,−1,−1) (−1,−1) Z4Z5Z6X8 |ψ〉
(1, 1, 1, 1, 1, 1, 1, 1,−1) (−1,−1) Z4Z5Z6X9 |ψ〉
(−1, 1, 1, 1, 1, 1, 1, 1, 1) (−1,−1) Z4Z5Z6X1 |ψ〉

(−1,−1, 1, 1, 1, 1, 1, 1, 1) (−1,−1) Z4Z5Z6X2 |ψ〉
...

...
...

(1, 1, 1, 1, 1, 1, 1,−1,−1) (−1,−1) Z4Z5Z6X8 |ψ〉
(1, 1, 1, 1, 1, 1, 1, 1,−1) (−1,−1) Z4Z5Z6X9 |ψ〉

(1, 1, 1, 1, 1, 1, 1,−1,−1) (−1,−1) Z4Z5Z6X8 |ψ〉
(1, 1, 1, 1, 1, 1, 1, 1,−1) (−1,−1) Z4Z5Z6X9 |ψ〉
(−1, 1, 1, 1, 1, 1, 1, 1, 1) (−1, 1) Z7Z8Z9X1 |ψ〉

(−1,−1, 1, 1, 1, 1, 1, 1, 1) (−1, 1) Z7Z8Z9X2 |ψ〉
...

...
...

(1, 1, 1, 1, 1, 1, 1,−1,−1) (−1, 1) Z7Z8Z9X8 |ψ〉
(1, 1, 1, 1, 1, 1, 1, 1,−1) (−1, 1) Z7Z8Z9X9 |ψ〉

Proof. That the Shor algorithm corrects bit flip errors is obvious.
Now assume a single phase flip error has occurred, and no bit flip error

has occurred. The core observation is the commutativity of the following
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diagrams for any |v〉 ∈ {|0〉 , |1〉} (where we think of any “ket” vector |v〉 as
a map k −→ |v〉). We have written BF for BitFlip:

k H H k

H⊗3 H⊗3

|vvv〉

|v〉 X

BF

〈v|

BF

X⊗XZ⊗X

〈vvv|
(83)

A similar Diagram but with X ⊗XZ ⊗X replaced by XZ ⊗X ⊗X or by
X ⊗X ⊗XZ also commutes. Thus, if |ψ〉 = Zi |ϕ〉, defining

s(i) =


1, i = 1, 2, 3

2, i = 4, 5, 6

3, i = 7, 8, 9

(84)

we have

〈m|BF⊗3† Z†iX1X2X3X4X5X6Zi BF⊗3 |m〉 = 〈m|Z†s(i)X1X2Zs(i) |m〉 (85)

and so we can treat each “block” of three states as a single state, so we know
how to interpret the measurements (s1, s2). The last observation to make is
commutativity of the following Diagram for all i = 1, 2, 3

H⊗3 H⊗3

H⊗9 H⊗9

Zi

BF BF

Z3i−2Z3i−1Z3i

(86)

Now say a combination of a bit flip and a phase flip error occurred. That is,
say |ψ〉 = ZiXj |ϕ〉. The error correction will first correct the bit flip which
reduces to the previous case. In other words, X2

j |ϕ〉 = |ϕ〉 is in the image of
BitFlip.

4 General error correction

This section is the climax of this document, and Theorem 4.0.9 is the climax
of this section. It presents the general error correction conditions as advertised
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in the Introduction. That is, Theorem 4.0.9 present necessary and sufficient
conditions for a set of operators to be correctable, in the sense made precise
by Definition 4.0.4.

To prove Theorem 4.0.9 we go back to definition of a density operator and
of quantum operators and make the observation that we did not describe a
canonical presentation of either. That is, a density operator is an operator
which admits a certain form, and likewise for quantum operators. Choices
of presentations of particular density and quantum operators are not unique.
Our first goal is to establish how two distinct presentations relate to each
other. See [1, Page 103] for an example of two different diagonalisations of the
same density operator. The following Proposition describes the relationship
between these different diagonalisations.

Proposition 4.0.1. Let ρ =
∑n

i=1 pi |ψi〉 〈ψi|, where |ψ1〉 , . . . , |ψn〉 is some
explicit choice of vectors, be a positive (and hence diagonalisable) operator
on a Hilbert space H. Let |1〉 , ..., |m〉 be an orthonormal set of vectors so that
ρ written as a matrix with respect to |1〉 , ..., |m〉 is diagonal. Let λ1, ..., λm
denote the eigenvalues corresponding to the eigenvectors |1〉 , ..., |m〉. Let r
denote max{n,m}. Then there exists a unitary matrix A = (aij)1≤i,j≤r so
that for all i = 1, ..., n

pi |ψi〉 〈ψi| =
m∑
j=1

aijλj |j〉 〈j| (87)

Proof. If n < m then can define |ψn+1〉 = . . . = |ψm〉 = 0 and pn+1 = . . . =
pm = 0 so that it is sufficient to consider the case when n ≥ m.

Since |1〉 , ..., |m〉 form an orthonormal basis for H we can write for each
i = 1, ..., n the following, where ai1, ..., αim ∈ C

√
pi |ψi〉 =

n∑
j=m

aij
√
λj |j〉 (88)
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Hence we have the following calculation.

ρ =
n∑

i=1

pi |ψ〉 〈ψ| (89)

=
n∑

i=1

√
pi |ψi〉

√
pi 〈ψi| (90)

=
n∑

i=1

m∑
j,j′=1

aijaj′i
√
λjλj′ |j〉 〈j′| (91)

=
m∑
j=1

λk |k〉 〈k| (92)

It follows from this that
∑m

j,j′=1 aijaj′i = 0 if j 6= j′ and
∑n

j=1 aijaji = 1.
Thus, if m = n the matrix (aij)1≤i,j≤n is untary. If m > n then we define
aij = 0 for j = n + 1, ...,m and i = 1, ...,m and arrive at a square, unitary
matrix.

Corollary 4.0.2. If ρ =
∑n

i=1 pi |ψi〉 〈ψi| =
∑m

j=1 qj |ϕj〉 〈ϕj| and r denotes
max{n,m} then there is a positive operator then there exists a unitary matrix

A = (aij)1≤i,j≤r (93)

so that for all i = 1, ..., n

pi |ψ〉 〈ψi| =
r∑

j=1

aijqj |ϕj〉 〈ϕj| (94)

Moreover, in Section 2, the choice of operators {E1, . . . , En} for a quantum
operation was also not given a canonical form. Indeed, the operators {E1, . . . , En}
are not uniquely determined by the operator

∑n
i=1E

†
i ρEi. The following

proposition classifies this discrepency.

Proposition 4.0.3. Let {E1, ..., En} and {F1, ..., Fm} be two sets of operators
on a Hilbert space H so that for all positive operators ρ on H we have

n∑
i=1

EiρE
†
i =

m∑
i=1

FiρF
†
i (95)
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If r denote max{n,m}, then there exists a unitary matrix (aij)1≤i,j≤r so that
for each i = 1, ..., n we have

Ei =
m∑
j=1

aijFj (96)

The converse also holds.

Proof. Say the dimension of H is k and |1〉 , ..., |k〉 is an orthonormal basis.
The proof will proceed by introducing a new Hilbert space, Q, which is freely
generated by |1〉 , ..., |k〉 and then we define a positive operator σ on H⊗Q.
We then appeal to Corollary 4.0.2.

Let |α〉 denote the vector
∑k

i=1 |i〉 ⊗ |i〉 ∈ H ⊗ Q. For each i = 1, ..., k
define the following vectors in H⊗Q.

|ei〉 :=
k∑

j=1

Ei |j〉 ⊗ |j〉 (97)

|fi〉 :=
k∑

j=1

Fi |j〉 ⊗ |j〉 (98)

Define the following operators on H⊗ |Q〉.

n∑
i=1

|ei〉 〈ei| (99)

m∑
i=1

|fi〉 〈fi| (100)

The operators (99), (100) are equal, which we now justify. Notice first that
for any j = 1, ..., k the operator |j〉 〈j| is positive, as for any |ψ〉 ∈ H we have

〈ψ|j〉 〈j|ψ〉 = | 〈ψ|ψ〉 |2 ≥ 0 (101)
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This along with (95) justifies (104) in the following calculation.

n∑
i=1

|ei〉 〈ei| =
n∑

i=1

k∑
j,j′=1

Ei |j〉 〈j′|E†i ⊗ |j〉 〈j′| (102)

=
k∑

j,j′=1

( n∑
i=1

Ei |j〉 〈j′|E†i
)
⊗ |j〉 〈j′| (103)

=
k∑

j,j′=1

( m∑
i=1

Fi |j〉 〈j′|F †i
)
⊗ |j〉 〈j′| (104)

=
m∑
i=1

|fi〉 〈fi| (105)

Thus, by Corollary 4.0.2, if r denotes max{n,m}, there exists a unitary
matrix (aij)1≤i,j≤r so that for each i = 1, ..., n we have the following, where
if m > n we set |fn+1〉 = . . . = |fm〉 = 0 and if n > m we set ai(n+1) = . . . =
aim = 0.

|ei〉 =
r∑

j=1

aij |fj〉 (106)

It now remains to show that Ei =
∑r

j=1 aijFj. To do this, we use the
following trick. Let |ψ〉 ∈ H and write |ψ〉 = α1 |1〉 + . . . + αk |k〉. We
let consider the linear functional

∑k
l=1 αl 〈l|. We consider also the linear

function idH⊗〈j| : H⊗Q −→ H. This has the following property.(
idH⊗

( k∑
l=1

αl 〈l|
))
|ei〉 =

k∑
j=1

Ei |j〉 ⊗
k∑

l=1

αl 〈l|j〉 (107)

=
k∑

j=1

αjEi |j〉 (108)

= Ei |ψ〉 (109)

Combining this calculation with (106) we obtain (96).
Now we prove the converse, this is a simple calculation.

n∑
i=1

FiρF
†
i =

n∑
i,j,j′=1

aijajiEiρE
†
i =

n∑
i=1

EiρE
†
i (110)
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Necessary conditions for quantum error correction follow as a corollary
to Proposition 4.0.3.

Definition 4.0.4. Let H be a Hilbert space and (E , {E1, ..., En}) a quantum
operation over H and let C ⊆ H be a codespace (that is, C ⊆ H is a
subspace). The quantum operation E is a correctable set of errors for
C if it satisfies the following condition: let |1〉 , ..., |l〉 denote an orthonormal
basis for C. Let He denote the complex Hilbert space freely generated by
|1〉e , ..., |n〉e. There exists a quantum operation R = {R1, ..., Rm} along with
a set of complex numbers {αjk}1≤j≤n,1≤k≤m so that for each i = 1, ..., n we
have the following, where |1〉a , ..., |m〉a is a basis for the free complex Hilbert
space of dimension m.

n∑
j=1

m∑
k=1

RkEj |i〉 ⊗ |j〉e ⊗ |k〉a = |i〉 ⊗
n∑

k=1

m∑
l=1

αjk |j〉e ⊗ |k〉a (111)

there, ρ : C −→ C is an operator on C.

Remark 4.0.5. By Lemma 4.0.6 below, condition (111) implies that there
exists a family of complex numbers {λjk}1≤j≤n,1≤k≤m so that

RkEj |i〉 =
√
λjk |i〉 (112)

In other words,
RkEj |i〉 〈i|E†jR

†
k = λjk |i〉 〈i| (113)

This is what [1] mean when they write the condition

R(E(ρ)) ∝ ρ (114)

there, ρ is a positive operator.

Lemma 4.0.6. Let (H,Q) be a pair of Hilbert spaces, let |1〉 , ..., |n〉 and
|1̄〉 , ..., |m̄〉 respectively be orthonormal basis vectors for H,Q. Also, for
each j = 1, ...,m let Mj be a bounded linear operator on H. If there exists
α1, ..., αm ∈ C so that for all i = 1, ..., n we have:

m∑
j=1

Mj |i〉 ⊗ |j̄〉 = |i〉 ⊗
( m∑

j=1

αj |j̄〉
)

(115)

then there exists λ1, ..., λm ∈ C so that for all j = 1, ...,m

Mj |i〉 = λj |i〉 (116)
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Proof. For each j = 1, ...,m write

Mj |i〉 = βi,j
1 |1〉+ . . .+ βi,j

n |n〉 (117)

Then we have

m∑
j=1

Mj |i〉 ⊗ |j̄〉 =
m∑
j=1

(βi,j
1 |1〉+ . . .+ βi,j

n |n〉)⊗ |j̄〉

=
m∑
j=1

n∑
i′=1

βi,j
i′ |i

′〉 ⊗ |j̄〉

which by assumption is equal to

|i〉 ⊗
( m∑

j=1

αj |j̄〉
)

=
m∑
j=1

αj |i〉 ⊗ |j̄〉 (118)

It follows that βi,j
i′ = 0 if i′ 6= i. The result follows.

In light of Remark 4.0.5 we may make the following, equivalent definition
of a correctable set of operators (Definition 4.0.4).

Definition 4.0.7. Let (E , {E1, ..., En}) be a quantum operator on a Hilbert
space H and let C ⊆ H be a codespace. The quantum operator is a
correctable set of errors if there exists a trace-preserving quantum operator
(R, {R1, ..., Rm}) and a complex number λ ∈ C so that for any positive
operator ρ : C −→ C the following holds.

R(E(ρ)) = λρ (119)

Remark 4.0.8. In Section 3.1 we considered error correction codes which
had “multiple steps”. For instance, the bitflip error correcting algorithm
(Algorithm 3.1.5) has two diagnoses involved, first that from the measurement
Z1Z2 and then that form the measurement Z2Z3. In Definition 4.0.7 we ask
for more than this, we ask that there exists a single quantum operator R
which in the proof of Theomem 4.0.9 below we will see involves a single
diagnosis.

Thus, we will not extract the exact algorithms considered in Section 3.1
from the general theory of this section. We can however apply the result
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of this section to the cases considered in Section 3.1 to obtain something
different, we do this at the end of this section.

The flow of content for this document should thus be read as follows: in
Section 3.1 we saw that error correction (in some sense) was possible for some
particular examples, and in this section we classify when error correction in
the sense of Definition 4.0.7 is possible.

Theorem 4.0.9. Let H be a qubit and C ⊆ H a codespace, ie, H is (C⊗2)n
for some n and C ⊆ H is a subspace. Let P denote the projection onto C.
Suppose E is a quantum operation (Definition 2.2.4) with operator elements
{E1, ..., En}. Then there exists a trace preserving quantum operation R which
corrects E (Definition 4.0.4) if and only if there exists a Hermitian matrix
A = (αij)1≤i,j≤n satisfying

∀i, j = 1, . . . , n PE†iEjP = αijP (120)

Proof. First we show that these conditions are necessary. If R exists, that
is, if there is a collection of operators {R1, ..., Rm} on H so that for all ρ ∈
Hom(H,H) there exists a family of complex numbers {λjk}1≤j≤n,1≤k≤m so
that

RkEjPρPE
†
jR
†
k = λjkPρP (121)

This is because PρP is an operator on C. In other words, there exists λ ∈ C
so that

R(E(PρP )) = λPρP (122)

Let µ ∈ C be a complex number so that µ2 = λ. The two operators induced
by the sets {RkEjP}1≤j≤n,1≤k≤m and {µP} together satisfy the hypothesis
of Proposition 4.0.3. Consider lexicographic ordering on the set {(j, k) | 1 ≤
j ≤ n, 1 ≤ k ≤ m} induced by the standard order < on the integers. With
respect to this indexing, there exists a unitary matrix (ajk,j′k′)1≤j,j′≤n,1≤k,k′≤m
subject to the following.

RkEjP =
∑
(k′,j′)

akj,k′j′µP (123)

It follows that

PE†iR
†
kRkEjP =

∑
(k′,i′)

∑
(k′′,j′)

ak′i′,kiakj,k′′j′µµP (124)
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Now we set

αij =
m∑
k=1

∑
(k′,i′)

∑
(k′′,j′)

ak′i′,kiakj,k′′j′µµ

and sum (124) over all k to obtain

PE†iEjP = αijP (125)

as required, it is easy to see that (αij)1≤i,j≤n is Hermitian.
Now we prove sufficiency.
First we simplify the error correction conditions by diagonalising the

Hermitian matrix A. Let D be diagonal and U unitary such that D = U †AU .
Denote the entry in row i and column j of U by uij, similary for u†ij. For each
k = 1, ..., n we define operators Fk =

∑n
i=1 uijEi. Notice that by Proposition

4.0.3 we have
n∑

i=1

FiρF
†
i =

n∑
i=1

EiρE
†
i (126)

We then calculate, for k, l ∈ {1, ..., n}:

PF †kFlP =
n∑

i,j=1

u†kiujlPE
†
iEjP (127)

Substituting (120) we have PF †kFlP =
∑n

i,j=1 u
†
kiαijujlP and since D =

U †AU we obtain:
PF †kFlP = dklP (128)

Now we make use of polar decomposition (Theorem A.2.16). There exists

for each k = 1, ...,m a unitary matrix Uk such that FkP = Uk

√
PF †kFkP =

√
dkkUkP . We define Pk := UkPU

†
k , these operators Pk are the syndrome

measurement. We will make use of the following observation.

Pk = FkPU
†
k/
√
dkk (129)

We defineR = {U †1P1, ..., U
†
nPn} with corresponding operatorR(ρ) =

∑n
i=1 U

†
i PiρPiUi.
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We now have the following incredible calculation.

R(E(ρ)) =
n∑

i,j=1

U †PjEiρE
†
iPjUj

=
n∑

i,j=1

U †jPjFiρF
†
i PjUj By (126)

=
n∑

i,j=1

U †jP
†
j FiPρPF

†
i PjUj

=
n∑

i,j=1

U †jUjPF
†
j FiPρPF

†
i FjPU

†
jUj/djj By (129)

=
n∑

i,j=1

djiρdij/djj By (128)

=
n∑

i=1

diiρ

∝ ρ

Definition 4.0.10. The equations (120) are the error correction conditions.

In Section 3.1 we looked at some specific examples of quantum error
correction codes, in particular we looked at the bit flip algorithm (Algorithm
3.1.5). We show here how this particular example fits into the general theory
presented in this Section.

Example 4.0.11. The operator elements in question are {I,X1, X2, X3}.
The appropriate projector P is P := |000〉 〈000| + |111〉 〈111|. We let E1 =
I, E2 = X1, E3 = X2, E4 = X3 and notice that for i, j = 1, ..., 4 we have
PE†iEjP = δijP . So the identity matrix I can be taken as the appropriate
Hermitian operator A.

We now run through the proof of 4.0.9 and see how it works in this
particular setting. We have that A = I is already diagonal so Fk = Ek.

Moreover, we have that
√
PF †kFkP =

√
PP = P and so the polar decomposition
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of FkP is FkP (as Fk = Ek is unitary). We thus have:

P1 = IPI† = P = |000〉 〈000|+ |111〉 〈111|
P2 = X1PX1 = |100〉 〈100|+ |011〉 〈011|
P3 = X2PX2 = |010〉 〈010|+ |101〉 〈101|
P4 = X3PX3 = |001〉 〈001|+ |110〉 〈110|

Thus R = {IP1, X1P2, X2P3, X3P4}:

IP1 = PI† = P = |000〉 〈000|+ |111〉 〈111|
X1P2 = PX1 = |000〉 〈100|+ |111〉 〈011|
X2P3 = PX2 = |000〉 〈010|+ |111〉 〈101|
X3P4 = PX3 = |000〉 〈001|+ |111〉 〈110|

and so

R(ρ) = P1ρP1 +X1P2ρP2X1 +X2P3ρP3X2 +X3P4ρP4X3 (130)

As anticipated by Remark 4.0.8, we see that (130) is distinct from Algorithm
3.1.5.

5 Stabilisers

We provide a means for determining when a vector subspace consisting of
correctable errors is the largest such. That is, we establish a method for
proving that a set of vectors span the codespace of a QECC (Definition
3.0.3).

Throughout, H denotes a qubit C2, that is, the complex Hilbert space
C2.

Recall the Pauli operators of Definition 3.1.1.

X :=

(
0 1
1 0

)
Y :=

(
0 −i
i 0

)
Z :=

(
1 0
0 −1

)
(131)

Recall also our notation that, for example, Z1Z2 on H⊗3 denotes the operator
Z ⊗ Z ⊗ I, see Notation 3.1.3.
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Definition 5.0.1. Let n > 0. The nth-Pauli Group, denoted Gn, is the set
of operators H⊗n −→ H⊗n generated by of all operators ±I, iI,Xj, Yj, Zj for
j = 1, ..., n.

Definition 5.0.2. Given a subgroup S ⊆ Gn of the Pauli group Gn, we
denote by V S the subspace of H⊗n which is invariant under the operators S.
That is, |ψ〉 ∈ V S if and only if

∀W ∈ S,W |ψ〉 = |ψ〉 (132)

Denote by X the following Pauli operators

X := {I,X, Y, Z} (133)

For an arbitrary element g ∈ Gn, let g1, ..., gn ∈X be such that

g = αg1 ⊗ . . .⊗ gn, α ∈ {1,−1, i,−i} (134)

then the sequence g1, ..., gn is the unique such, and we denote a length 2n
sequence x = (x1, ..., x2n) in Z2n

2 by r(g) defined by the following schemata:

� xi = 1 if and only if gi = X,

� xi+n = 1 if and only if gi = Z,

� xi = xi+n = 1 if and only if gi = Y .

Given a set {g1, ..., gk} of elements of the Pauli group, the check matrix
is the k × 2n matrix whose jth row is r(gj). The check matrix is denoted
Check(g1, ..., gk).

Observation 5.0.3. Let (g, h) be a pair of elements ofGn and let g1, ..., gn, h1, ..., hn ∈
X be such that

g = αg1 ⊗ . . .⊗ gn, α ∈ {1,−1, i,−i}
h = βh1 ⊗ . . .⊗ hn, β ∈ {1,−1, i,−i}

we see that g and h commute if and only if the number of times gj and hj
are distinct matrices with neither equal to the identity is even.

Defining

Λ :=

(
0 I
I 0

)
(135)

we have the following Lemma.
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Lemma 5.0.4. Let (g1, g2) ∈ Gn. Then g1, g2 commute if and only if

r(g1)Λr(g2)
T = 0 (136)

Rough sketch. The form of r(g1):

r(g1) =
(
X or Y in g1 | Z or Y in g1

)
(137)

and similarly for r(g2). Thus we have

r(g1)Λr(g2)
T =

(
X or Y in g1 | Z or Y in g1

)(Z or Y in g2
X or Y in g2

)
(138)

This contains the data of the requirements specified by Observation 5.0.3.

The Check matrix is useful for more:

Definition 5.0.5. A set of elements g1, ..., gr ∈ Gn of the Pauli group Gn are
independent if the for any j we have, where we write ĝi for the omission of
gi:

〈g1, ..., gr〉 6= 〈g1, ..., ĝj, ..., gn〉 (139)

(here, the notation 〈g1, ..., gn〉 denotes the group generated by these elements).

Lemma 5.0.6. Let g1, ..., gr ∈ Gn be a set of elements such that −I 6∈
〈g1, ..., gr〉, then the elements g1, ..., gr are independent if and only if r(g1), ..., r(gr)
and linearly independent (over the field Z2).

Proof. See [1, Page 457, Proposition 10.3]

The following Lemma will be used to calculate the dimension of V S:

Lemma 5.0.7. Let g1, ..., gk be independent elements of the Pauli group Gn

and denote by S the group they generate. Assume −I 6∈ S. Then for each i =
1, ..., k there exists g ∈ Gn such that g anti-commutes with gi and commutes
with all gj satisfying i 6= j.

Proof. The set r(g1), ..., r(gk) is linearly independent by Lemma 5.0.6, thus
the check matrix of g1, ..., gk has k linearly independent columns. So, there
exists a vector x ∈ Zk

2 such that

Check(g1, ..., gn)Λx = ei (140)

where ei is the ith standard basis vector of Zk
2. Let g be such that r(g)T = x.

The result follows from Lemma 5.0.6.
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Theorem 5.0.8. Let S = 〈g1, ..., gk〉 ⊆ Gn and say −I 6∈ S. Then dimV S =
2n−k.

Proof. We notice that (1/2)(I + gj) is the projector onto the +1-Eigenspace
of gj. We let x = (x1, ..., xk) ∈ Zk

2 and define the operator

P x
S := 1/2k

k∏
j=1

(I + (−1)xjgj) (141)

By Lemma 5.0.7 we have for each gj there exists gxj
such that gxj

gjg
−1
xj

= −gj.
Let gx = gx1 . . . gxk

, then

gxP
(0,...,0)
S g−1x = 1/2k

k∏
j=1

(gxj
g−1xj

+ gxj
gjg
−1
xj

)

= P x
S

Thus there is an isomorphism

imP x
S
∼= imP

(0,...,0)
S (142)

Since imPS
∼= VS we have dim imP x

S = dimVS. Finally we note that

I =
∑
x∈Zk

2

P x
S (143)

The operator I is a projector onto an n-dimensional space, and
∑

x∈Zk
2
P x
S is

a sum of 2k orthogonal projectors all of the same dimension as VS, thus the
only possibility is dimVS = 2n−k.

Application 5.0.9. In the context of the bitflip error correction, we have:

S = 〈Z1Z2, Z2Z3〉 ⊆ G3 (144)

It is clear that
V S ⊇ Span{|000〉 , |111〉} (145)

Now we want to use Theomre 5.0.8 to prove that in fact (145) holds up to
equality.

Since Z1Z2, Z2Z3 are 2 independent generators for S, it follows from
Theorem 5.0.8 that

dimV S = 23−2 = 2 = dim
(

Span{|000〉 , |111〉}
)

(146)
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A Operator Theory

A.1 Adjoint operators

We will be chiefly concerned with the Hilbert space `2 but we work in a more
general setting for now. A Hilbert space will always mean over C. Associated
to every operator between Hilbert spaces is an operator between their dual
spaces :

In general, if I is any inner product space over C and we have two vectors
x, y ∈ I then we can consider the projection of y onto x which is given by

Projy(x) :=
〈x, y〉
||y||

y

||y||
(147)

Thus, if U ⊆ I is a one dimensional subspace spanned by a unit vector
u ∈ U then the projection of any x ∈ I onto u is given by the simple formula
〈x, u〉u. The following Lemma shows what we can say when the subspace is
of arbitrary dimension but with U closed:

Lemma A.1.1. Let H be a Hilbert space and U ⊆ H a closed subspace. Then

H = U ⊕ U⊥

Proof. We will define a projection

PU : H −→ U

x 7−→ inf{||x− y|| | y ∈ U}

We let d denote inf{||x − y|| | y ∈ U}. By definition of inf there exists a
sequence (xn)∞n=0 of elements in U such that limn→∞ ||x − xn|| = d. Since
U is closed it is complete and the norm is continuous so it suffices to show
that the sequence (xn)∞n=0 is Cauchy. This can be done for example using the
parallelogram identity: for all n,m ≥ 0:

||xn − xm||2 + ||(x− xn) + (x− xm)||2 = 2||x− xn||2 + 2||x− xm||2 (148)

As given ε > 0 there exists N ≥ 0 such that ||x − xn||2 < d2 + ε2/4, for
n ≥ N . Thus

||xn − xm||2 = 2||x− xn||2 + 2||x− xm||2 − 4||x = ||1/2(xn + xm)||2

≤ 4d2 + ε2 − 4||x− 1/2(xn + xm)||2
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which since 1/2(xn + xm) ∈ C we have d ≤ ||x − 1/2(xn + xm)||, proving
(xn)∞n=0 is Cauchy. This also shows linearity.

It remains to show x − PU(x) ∈ U⊥. To do this, we will consider the
family of vectors c(t) = (1− t)PU(x) + ty, (t ∈ R) and analyse the derivative
of ||x− yt||2 at t = 0.

Consider the composition

γ : R −→ R (149)

t 7−→ ||x− c(t)||2 (150)

We can write γ in a more explicit form:

γ(t) = ||x− PU(x) + t(y − PU(x))||2

=
〈
x− PU(x) + t(y − PU(x)), x− PU(x) + t(y − PU(x))

〉
= ||x− PU(x)||2 − 2tRe〈x− PU(x), y − PU(x)〉+ t2||y − PU(x)||

which is clearly differentiable and has derivative −2 Re〈x−PU(x), y−PU(x)〉
at t = 0. Since PU(x) (which equals c(0)) is a minimum of γ(t) we have that
Re〈x−PU(x), y−PU(x)〉 = 0. This holds true for arbitrary y ∈ U and lastly
we have

{y − PU(x) | y ∈ U} = U

thus for all y ∈ U :
Re〈x− PU(x), y〉 = 0 (151)

This shows that x− PU(x) ∈ U⊥.

Given a Hilbert space H there is a map

Φ : H −→ H∗ (152)

b 7−→ 〈 , b〉 (153)

Notice that in order to produce a linear functional, it was important we
put b in the second argument, we must define Φ so that Φ(b) 6= 〈b, 〉. By
anti-linearity of the second argument of the inner product we have that Φ is
anti-linear, and moreover is injective as

Φ(b) = Φ(b′) =⇒ 〈 , b〉 = 〈 , b′〉
=⇒ ∀b′′ ∈ H, 〈b′′, b− b′〉 = 0

=⇒ in particular, 〈b− b′, b− b′〉 = 0

=⇒ b− b′ = 0
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In the special case where H is finite dimensional, we automatically have that
this map is surjective as it is injective, and any anti-linear, injective map
between two finite dimensional spaces of equal dimension is automatically
surjective. More generally, if H has arbitrary dimension, then for any y ∈ H
the map 〈 , y〉 is bounded (see Remark A.1.5) so the image of Φ is contained in
the set of continuous linear functionals, the following establishes the reverse
inequality:

Theorem A.1.2 (Riesz Representation Theorem). Let H be a Hilbert space.
For every continuous linear functional ϕ ∈ H∗ there exists a unique element
hϕ ∈ H such that

ϕ = 〈 , hϕ〉 (154)

Moreover, we have
||ϕ||H∗ = ||hϕ||H (155)

We will use the following Lemma:

Lemma A.1.3. Let H be a Hilbert space and ϕ ∈ H∗ be non-zero and
continuous. Then (kerϕ)⊥ is one dimensional.

Proof. Since ϕ is continuous the set kerϕ is closed and so by Lemma A.1.1
we have H = kerϕ⊕ (kerϕ)⊥, which since ϕ 6= 0 implies there exists v 6= 0 ∈
(kerϕ)⊥, so dim(kerϕ)⊥ > 0. Now, say v1, v2 ∈ (kerϕ)⊥ so that ϕ(v1) 6= 0
and ϕ(v2) 6= 0. These are complex numbers and so there exists λ ∈ C such
that

0 = λϕ(v1)− ϕ(v2) = ϕ(λv1 − v2)

which means λv1 − v2 ∈ kerϕ ∩ (kerϕ)⊥ = {0}.

Proof of Theorem A.1.2. Clearly if kerϕ = H we can take hϕ = 0 so assume
this is not the case. Since ϕ is continuous its kernel kerϕ is a closed subset
of H. Thus, by Lemma A.1.1 the Hilbert space H decomposes: H = kerϕ⊕
(kerϕ)∗. Since kerϕ is a proper subset it then follows that there exists a
non-zero element v 6= 0 ∈ (kerϕ)∗, by normalising we may assume that v is
a unit vector. We will show that ϕ(v)v is the appropriate unique choice for
hϕ.

By Lemma A.1.3 the subspace (kerϕ)⊥ is one dimensional, hence we can
use formula (147) for the projection of arbitrary x onto (kerϕ)⊥. Observe
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the following calculation:

ϕ(x) = ϕ(x− 〈x, v〉v + 〈x, v〉v)

= ϕ(x− 〈x, v〉v) + ϕ(〈x, v〉v)

= 0 + 〈x, v〉ϕ(v)

= 〈x, ϕ(v)v〉

For uniqueness, say h′ϕ was another such element. Then

∀x ∈ H, 〈x, hϕ〉 = 〈x, h′ϕ〉
=⇒ ∀x ∈ H, 〈x, hϕ − h′ϕ〉 = 0

=⇒ ||hϕ − h′ϕ|| = 0

=⇒ hϕ = h′ϕ

For the second claim, we use the Cauchy-Schwartz inequality:

|ϕ(x)| = |〈x, ϕ(v)v〉| ≤ ||x||||ϕ(v)||v|| = ||x|||ϕ(v)|

and so if x has unit norm |ϕ(x)| ≤ |ϕ(v)|, in other words, ||ϕ||H∗ ≤ |ϕ(v)|
however v has unit norm itself, so ||ϕ||H∗ = |ϕ(v)|. The proof is now complete
once it is noted that ||hϕ||H = |ϕ(v)|.

Corollary A.1.4. There existgs an antilinear, isometric injection:

H −→ H∗ (156)

v 7−→ 〈v, 〉 (157)

and hence a bijection when H is finite dimensional.

Remark A.1.5. Let y ∈ H be an element of a Hilbert space H and consider
the function 〈 , y〉. This is bounded, as by Cauchy-Schwartz:

|〈x, y〉| ≤ ||x||||y||

thus |〈 , y〉|/||x|| ≤ ||y|| and in fact this is equality as |〈y/||y||, y〉| = ||y||.

Given an operator u : H1 −→ H2 there is for each y ∈ H2 an associated
linear functional x 7−→ 〈u(x), y〉 which we denote by 〈u( ), y〉. By Theorem
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A.1.2 there is thus an element y∗ ∈ H1 such that 〈u( ), y〉 = 〈 , y∗〉. The
assignment y 7→ y∗ is in fact linear, we show additivity:

〈u( ), y1 + y2〉 = 〈 , (y1 + y2)
∗〉

and

〈u( ), y1 + y2〉 = 〈u( ), y1〉+ 〈u( ), y2〉
= 〈 , y∗1〉+ 〈 , y∗2〉
= 〈 , y∗1 + y∗2〉

which implies (y1 + y2)
∗ = y∗1 + y∗2. We define:

Definition A.1.6. The adjoint operator associated to an operator u :
H1 −→ H2 is the linear map:

u∗ : H2 −→ H1

y 7−→ y∗

Its existence is established by the Riesz Representation Theorem (A.1.2) and
it is uniquely determined by the property:

∀x ∈ H1, y ∈ H2, 〈u(x), y〉 = 〈x, u∗(y)〉 (158)

Remark A.1.7. Let
(
H1, 〈·, ·〉B

)
,
(
H2, 〈·, ·〉

)
C

be Hilbert spaces and let u :
H1 −→ H2 be an operator. The adjoint to u, denoted u∗ is the operator:

◦ u : H∗2 −→ H∗1 (159)

ϕ 7−→ ϕ ◦ u (160)

The following diagram commutes:

H∗2 H∗1

〈 , v〉 〈u( ), v〉 〈 , v∗〉

v u∗(v)

H2 H1

◦u

∼= ∼=

u∗

(161)

which explains the overloading of terminology.
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Notation A.1.8. Given a complex matrixA, the matrix given by conjugating
each element a ∈ A and then transposing the result, ie, the conjugate
transpose is denoted A†. Due to Proposition A.1.9 below, the conjugate
transpose of a matrix is often referred to as the adjoint.

Proposition A.1.9. Let H1,H2 be finite dimensional, and let v1, ..., vn ∈
H1, w1, ..., wm ∈ H2 be orthonormal bases for H1,H2 respectively. If ϕ :
H1 −→ H2 is a linear transformation and A its matrix representation with
respect to these bases, then the matrix representation of the adjoint ϕ∗ is A†,
the conjugate transpose of A.

Proof. ‘ For each j = 1, ...,m write w∗j = α1v1+. . .+αnvn and each i = 1, ..., n
write ϕ(vi) = β1w1 + . . .+ βmwm. We calculate:

〈ϕ(vi), wj〉 = βm〈w1, wj〉+ . . .+ βm〈wm, wj〉 = βj (162)

and
〈vi, w∗j 〉 = ᾱ1〈vi, v1〉+ . . .+ ᾱn〈vi, vn〉 = ᾱi (163)

Since by definition 〈ϕ(vi), wj〉 = 〈vi, w∗j 〉 the proof is complete.

A.2 Hermitian and unitary operators

Throughout, V is a complex vector space.

Definition A.2.1. A square, complex matrix A is Hermitian if it is self-
adjoint, that is A† = A.

A matrix is normal if AA† = A†A
An operator ϕ : V −→ V is Hermitian (normal) if a (and hence all)

matrix representation(s) of V is Hermitian (normal).

Clearly, all Hermitian matrices are normal.

Theorem A.2.2 (Spectral decomposition). Let V be a finite dimensional
complex inner product space and A a matrix representation of an operator
on V . The matrix A is normal if and only if it is diagonalisable with respect
to some orthonormal basis for V .

Proof. We prove that normal matrices are diagonalisable.
We proceed by induction on the size of the matrix. If the matrix is 1× 1

then there is nothing to prove. Now for the inductive step. Let λ be an
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eigenvalue of A, and P the matrix which projects onto the λ-eigenspace. We
let Q denote I −P , the projector onto the complement subspace. We notice
that

A = (P +Q)A(P +Q) = PAP +QAP + PAQ+QAQ (164)

We have that QAP = 0 because A maps the λ-eigenspace onto itself, and
we claim moreover that PAQ = 0. To see this, let v be an eigenvector with
eigenvalue λ, then

AA†v = A†Av = A†λv = λA†v (165)

which means A† maps the λ-eigenspace onto itself. This implies QA†P = 0,
taking the transpose of which we end at PAQ = 0 as claimed.

Thus A = PAP +QAQ. The matrix PAP is diagonalisable with respect
to some orthonormal basis for P . Since P ∩ Q = 0 it remains to show that
QAQ is diagonalisable with respect to some orthonormal basis for Q. The
space Q has strictly smaller size than A and so this follows by induction once
we have shown that QAQ is normal. This is a simple calculation:

QAQQA†Q = QAQA†Q

= QA(P +Q)A†Q

= QAA†Q

= QA†AQ

= QA†(P +Q)AQ

= QA†QAQ

= QA†QQAQ

Definition A.2.3. Let H be a possibly inifinite dimensional Hilbert space,
an operator U : H −→ H is unitary if U †U = UU † = Idn.

Definition A.2.4. A matrix U is unitary if U †U = I.

Lemma A.2.5. A square, unitary matrix U satisfies UU † = I.

Proof. Let uij denote the entry of U in row i and column j. The entry in
row i and column j of U †U is

∑n
k=1 uikukj which by hypothesis is equal to

δij. Hence,
∑n

k=1 ukiukj is equal to
∑n

k=1 uikujk which is the entry in row i
and column j of UU †.
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Corollary A.2.6. If H is a finite dimensional Hilbert space and U : H −→ H
is an operator on H, then U is unitary if and only if for all u, v ∈ H we have
〈Uu, Uv〉 = 〈u, v〉.

Proof. First we observe the following calculation, where u ∈ H is arbitary.

||U †Uu− u|| = 〈U †Uu− u, U †Uu− u〉
= 〈U †Uu, U †Uu〉 − 〈U †Uu, u〉 − 〈u, U †Uu〉+ 〈u, u〉
= 〈UU †Uu, Uu〉 − 〈Uu, Uu〉 − 〈Uu, Uu〉+ 〈u, u〉
= 〈U †Uu, u〉 − 〈u, u〉 − 〈u, u〉+ 〈u, u〉
= 〈Uu, Uu〉 − 〈u, u〉
= 〈u, u〉 − 〈u, u〉
= 0

Hence U †Uu = u for all u ∈ H and so U †U = IdH.
Let u1, ..., un be an orthonormal basis for H and let U denote the matrix

of U written with respect to this basis. Since U is unitary we have that U is
unitary and so U †U = I and by Lemma A.2.5 we have UU † = I. It follows
from this that UU † = IdH and so U is unitary.

The converse is obvious.

In fact, it is sufficient to check even less.

Lemma A.2.7. Let U : H −→ H be an operator on a finite dimensional
Hilbert space. If 〈Uu, Uu〉 = 〈u, u〉 for all u ∈ H, then for all u, v ∈ H we
have 〈Uu, Uv〉 = 〈u, v〉.

Proof. It suffices to prove that if C : H −→ H is an operator on H such that
for all x ∈ H we have 〈Cx, x〉 = 0 then C = 0.

We let x, y ∈ H be arbitrary and consider 〈C(x+ y), x+ y〉. Since this is
0 it follows that 〈Cx, y〉 = −〈Cy, x〉. On the other hand, 〈C(x+ iy), x+ iy〉
is also 0, which implies 〈Cx, y〉 = 〈Cx, y〉. Hence 〈Cx, y〉 = 〈Cy, x〉 = 0.

Corollary A.2.8. If U : H −→ H is an operator and H is finite dimensional,
then U is unitary if and only if ∀u ∈ H, 〈Uu, Uu〉 = 〈u, u〉.

Proof. Immediate from Corollary A.2.6 and Lemma A.2.7.

Notice that the spectral decomposition (A.2.2) states that the matrix A
is such that A = U †DU for a diagonal matrix D and a unitary matrix U .
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Corollary A.2.9. A normal matrix A is Hermitian if and only if its eigenvalues
are real.

Proof. First notice that if a matrix is Hermitian then for any eigenvector v
with eigenvalue λ:

λ|v|2 = 〈λv, v〉 = 〈Av, v〉 = 〈v, Av〉 = λ̄|v|2 (166)

Now we prove the other direction. Let D be diagonal and U a unitary
matrix such that A = U−1DU . Then

A† = U †D†U−1
†

= U−1DU = A (167)

Definition A.2.10. An operator ϕ : V −→ V is positive if:

∀v ∈ V, 〈v, ϕv〉 ≥ 0 (168)

which means, 〈v, ϕv〉 is real and non-negative. If the inequality is strict, then
ϕ is positive definite.

Example A.2.11. Let A be any operator. Then for any v ∈ V :

〈v,A†Av〉 = 〈Av,Av〉 = ||Av||2 ≥ 0 (169)

Thus A†A is positive.

Proposition A.2.12. A positive operator on a finite dimensional vector
space is necessarily Hermitian.

Proof. Let A be a matrix representation of the positive operator. Notice the
following calculation:

0 ≤ 〈v, (A− A†)v〉 = 〈(A† − A)v, v〉
= 〈v, (A† − A)v〉
= 〈v, (A† − A)v〉
= −〈v, (A− A†)v〉 ≥ 0

and so for all v ∈ V we have 〈v, (A− A†)v〉 = 0.
Moreover, we notice that A − A† is normal and hence diagonalisable,

by the Spectral decomposition. It follows from these two observations that
A− A† = 0.
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Definition A.2.13. LetA,B be matrices, then the commutator is [A,B] :=
AB −BA. The anticommutator is {A,B} = AB +BA.

Theorem A.2.14 (Simultaneous Diagonalisation Theorem). Let A,B be
Hermitian operators. Then [A,B] = 0 if and only if A and B are simultaneously
diagonalisable.

Proof. If A and B are simultaneously diagonalisable, then let U be a unitary
matrix and D1, D2 diagonal matrices such that

A = U−1D1U, B = U−1D2U (170)

We then have:

AB = U−1D1UU
−1D2U

= U−1D1D2U

= U−1D2D1U

= U−1D2UU
−1D1U

= BA

Conversely, say [A,B] = 0. We have that A is Hermitian and so admits a
spectral decomposition. Let a1, ..., an be the eigenvalues corresponding to
this decomposition and let Vai denote the ai-eigenspace. We first notice that
B maps Vai into itself: for any v ∈ Vai

ABv = BAv = aiBv (171)

Now, since B is Hermitian, it follows that BVai
: Vai −→ Vai is and so there

exists a spectral decomposition of BVai
for each vector space Vai . Denote by

bai1 , ..., b
ai
kai

an orthonormal basis for Vai . We then have that

{bai1 , ..., b
ai
kai
}ni=1 (172)

is a basis of eigenvectors of both A and B for the whole space V .

There is another decomposition which is often helpful:

Observation A.2.15. Let T : V −→ V be a linear operator on a finite
dimensional vector space V . We could ask if T can be factored T = UT ′

where U is unitary? Say this was possible, then

T †T = T ′†U †UT ′ (173)
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so if T ′ were Hermitian we would have T †T = T ′2 which would imply T ′ =√
T †T , in fact T †T is Hermitian (indeed it is positive) and thus so is

√
T †T

and so our assumption that T ′ be Hermitian is not too much to ask for, and
if U were to exist it must be that T ′ =

√
T †T . Thus we are prompted to

make the following calculation: let v1, ..., vn be a basis for V such that (we
write Pvi for the projection onto vi)

√
T †T =

n∑
i=1

λiPvi (174)

then √
T †Tviλi (175)

and indeed we want U such that λiUvi = Tvi. One might suggest defining
Uvi = Tvi/λi at this point, however there is no reason for this to be unitary.
Instead we define

U =
n∑

j=1

TvjPvj/
√
λj (176)

which indeed is unitary. In fact we read off from this that {Tv1/
√
λ1, ..., T vn/

√
λn}

is an orthonormal basis for V . Notice however that this assumes λi 6= 0 for
all i. This can be fixed by doing this process first for all λi 6= 0, and to
construct an orthonormal set {Tv1/

√
λ1, ..., T vj/

√
λj} and then extending

this to an orthonormal basis for V via the Gram-Schmidt process.
We have proven the first half of:

Theorem A.2.16 (Polar decomposition). Let T : V −→ V be a linear
operator on an n-dimensional vector space V . Then there exists a unitary
operator U and positive operators J,K such that

T = UJ = KU (177)

with J =
√
T †T ,K =

√
TT †.

To obtain K we simply notice

A = JU = UJU †U (178)

so we set K = UJU †, which is a positive operator. Then AA† = KUU †K =
K2.
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If we have such a decomposition T = UJ , then J is diagonalisable, being
positive, thus T = USDS† for unitary S and diagonal D. Setting V = S†

we obtain:

Corollary A.2.17 (Singular value decomposition). Let T : V −→ V be a
linear operator on an n-dimensional vector space, then there exists unitary
operators U, V and a diagonal operator D such that

T = UDV (179)

Remark A.2.18. We make a remark on notation. Given a vector v ∈
H in some Hilbert space H (which we assume to be finite dimensional for
simplicity), the linear functional which we have been notating as 〈v, 〉 can
also be written simply as 〈v|. Symmetrically, the vector v can be identified
with the linear map k −→ H sending 1 7−→ v, we notate this map by |v〉.
Hence, given two vectors v, u ∈ V , the notation 〈v|u〉 denotes the linear map
k −→ k sending 1 7−→ 〈v, u〉. We now describe how some of the concepts
introduced in this Section and the last are written using this notation.

� The linear map given in Corollary A.1.4 can be written as |v〉 7−→ 〈v|.

� Let U : H −→ H be an operator. We have for any v ∈ H that:

〈Uv| = 〈Uv, 〉 = 〈v, U † 〉 = 〈v|U † (180)

Hence, in light of Corollary A.2.6 we have that U is unitary if and only
if for all v ∈ H we have 〈v|U †U |v〉 = 〈v|v〉. This is the condition which
is checked throughout the body of this paper.
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