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1 Graded rings, modules, and algebras

1.1 General Theory

Definition 1.1.1. Let G be a totally ordered group. A G-graded ring is a ring A along with a
G-grading, ie, a group isomorphism

A ∼=
⊕
g∈G

Ag (1)

for some collection of subgroups {Ag ⊆ A}g∈G. Furthermore, A is required to be such that AgAh ⊆ Ag+h
for all g, h ∈ G.

An element a ∈ A such that a ∈ Ag is homogeneous of degree g. An ideal which can be generated
by homogeneous elements is a homogeneous ideal.

Let A be a G-graded ring, a G-graded A-module M is an A-module along with a G-grading, ie
a group isomorphism

M ∼=
⊕
g∈G

Mg (2)

for some collection of subgroups {Mg ⊆ M}g∈G. Furthermore, M is required to be such that AgMh ⊆
Mg+h for all g, h ∈ G.

Fact 1.1.2. An ideal I is homogeneous if and only if

I =
⊕
g∈G

(Ag ∩ I) (3)
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Example 1.1.3. The canonical example is a polynomial ring k[x1, ..., xn] which is Z-graded. The
subgroup of degree m elements is generated by all degree m monomials.

This ring also admits a Zn-grading, where the subgroup of degree (m1, ...,mn) elements is generated
by the polynomial xm1

1 ...xmn
n .

Example 1.1.4. If A ∼=
⊕

g∈GAg is a graded algebra and I ⊆ A is a homogeneous ideal, then A/I is
graded as per:

A/I ∼=
⊕
g∈G

Ag/
⊕
g∈G

(Ag ∩ I) ∼=
⊕
g∈G

Ag/Ag ∩ I (4)

The most important case will be when G = Z, we now focus on this case (although there is no
particular reason have to, other than commutativity sakes).

Definition 1.1.5. Let A be a Z-graded ring and M,N two Z-graded A-modules. A morphism of
Z-graded A-modules of degree i(∈ Z) is an A-module homomorphism ϕ : A −→ B subject to

∀j ∈ Z, f(Aj) ⊆ Bj+i (5)

we denote the A-module of such morphisms by Hom(A,B).
This gives rise to a Z-graded module

Hom(A,B) :=
⊕
i∈Z

Hom(A,B)i (6)

Moreover, the tensor product is naturally a Z-graded module with grading:

A⊗B ∼=
⊕
i∈Z

n+m=i

An ⊗Bm (7)

What if A,B are Z-graded algebras? All the definitions go through as expected except for the tensor
product which has multiplication defined by

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)deg a2 deg b1(a1a2 ⊗ b1b2) (8)

This multiplication law is necessary for the differential cases in order to make Hom(A,B) ⊗ A −→ B
given on pure tensors by f ⊗ a 7−→ f(a) a morphism of chain complexes, a statement we now explain.

Definition 1.1.6. Let A be a ring, a differential, Z-graded A-module is a Z-graded A-module M
along with a differential, ie, a linear map d : A −→ A such that

∀m ∈ Z,∀m ∈M, deg f(m) = degm− 1 (9)

A morphism of differential, Z-graded A-modules M,N is a morphism of Z-graded modules ϕ :
M −→ N such that for all i ∈ Z the following diagram commutes:

Mi Ni

Mi−1 Ni−1

ϕ

dM dN

ϕ

(10)

We often say “graded” in place of Z-graded.
In accordance with Definition 1.1.6, every differential, graded module is naturally a chain complex.

2



Definition 1.1.7. Let (A, dA), (B, dB) be differential, graded k-algebras (for some commutative ring k),
the tensor product is naturally equipped with the following differential:

dA⊗B(a⊗ b) = dA(a)⊗ b+ (−1)deg aa⊗ dB(b) (11)

Similarly, Hom(A,B) is naturally equipped with the following differential:

dH(f) = dB(f)− (−1)deg ff(dA) (12)

Remark 1.1.8. Let ψ : Hom(A,B)⊗A −→ B be the evaluation map, ie, the map given on pure tensors
by ψ(f ⊗ a) = f(a). We claim this is a chain map. We require commutativity of the following diagram:

(Hom(A,B)⊗ A)n Bn

(Hom(A,B)⊗ A)n−1 Bn−1

ψ

dH⊗A dB

ψ

(13)

Unpacking definitions, for all pure tensors f ⊗ a ∈ (Hom(A,B)⊗ A)n we have

dB(ψ)(f ⊗ a) = dB(f(a)) (14)

and

ψdH⊗A(f ⊗ a) = ψ(dHf ⊗ a+ (−1)deg ff ⊗ dA(a))

= dHf(a) + (−1)deg ff(dA(a))

= dB(f(a))− (−1)deg ff(dA(a)) + (−1)deg ff(dA(a))

= dB(f(a))

so indeed we have a morphism of differential, graded algebras.

Remark 1.1.9. Notice that Remark 1.1.8 only explains why we put a minus sign in dH and absolutely
nothing else.

Consider the Z-graded ring S := k[x0, ..., xn]. We can define a ring homomorphism ϕ : S −→ S
given by multiplication by x0, strictly speaking though this fails to be a morphism of Z-graded rings as,
for example, the degree 0 element 1 is mapped to the degree 1 element x0.

There is an obvious fix to this, we simply shift the grading of the first copy of S, to this end we
define:

Definition 1.1.10. Let A be a G-graded ring. We denote by A(g) the graded ring which is identical
as a ring to A, but with the grading shifted by g, more concretely, if for an arbitrary G-graded ring B
we denote by Bg the subgroup generated by the degree g elements, then we have

A(g)h = Ag+h (15)

In the special case where G = Z, the differential denoted dA(n) is given by dA(n)(a) = (−1)ndA(a).

Example 1.1.11. We have a well defined morphism of graded rings

S(−1)
(x0)−→ S (16)
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We conclude this Section with one last chain complex constructor: let M be an R-module and y ∈ R
an arbitrary element of R. Let G be a chain complex, we denote by K(y) (see Definition 2.1.4 for a
justification of this choice of notation) the following chain complex:

0 −→ R
y−→ R −→ 0 (17)

We define:

Definition 1.1.12. The mapping cone of multiplication G
y−→ G is the tensor product:

K(y)⊗ G (18)

The usefulness of the mapping cone comes from the following property:

Proposition 1.1.13. Let G be a chain complex of R-modules and let y ∈ R be an arbitrary element of
R. Then there exists a long exact sequence of homology groups:

. . . −→ Hi−1(G )
y−→ Hi−1(G ) −→ Hi(K(y)⊗ G ) −→ Hi(G )

y−→ Hi(G ) −→ . . . (19)

where the connecting morphisms are multiplication by y.

Proof. Construct the following short exact sequence of chain complexes:

R(−1) 0 0 R 0

K(y) 0 R R 0

R 0 R 0 0

y (20)

We can tensor this entire diagram with G to obtain the following short exact sequence:

G (−1) . . . Gi−2 Gi−1 Gi . . .

K(y)⊗ G . . . Gi−2 ⊕Gi−1 Gi−1 ⊕Gi Gi ⊕Gi+1 . . .

G . . . Gi−1 Gi Gi+1 . . .

(21)

which induces the exact sequence (19).

1.2 Exterior algebra

Throughout, R is a commutative ring with unit and M a left R-module.

Definition 1.2.1. The exterior algebra associated to M is the pair (
∧
M, ι : M −→

∧
M) satisfying

the following universal property: if N is an R-algebra, and f : M −→ N is an R-module homomorphism
such that for all m ∈M, f(m)2 = 0 then there exists a unique R-algebra homomorphism g :

∧
M −→ N

making the following diagram commute:

M
∧
M

N

ι

f
g (22)

Moreover, if N is graded and f(M) ⊆ N1 then g is a morphism of graded modules.
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Remark 1.2.2. Existence of the exterior algebra is given by taking
∧
M to be, where m ranges over

all m ∈M : ∧
M :=

⊗
M/m⊗m (23)

Remark 1.2.3. If M is free and of finite rank, and v1, ..., vn is a basis for M , then a basis for
∧
M as

a vector space is given by

{vi1 ∧ . . . ∧ vid | 1 ≤ d ≤ n, 1 ≤ i1 < . . . < id ≤ n} (24)

which is a set of size 2n.

Proposition 1.2.4. Let ϕ : M −→ N be an R-module homomorphism. Then there exists a unique
morphism ∧ϕ : ∧M −→ ∧N such that the following diagram commutes:

M N

∧M ∧N

ϕ

∧ϕ

(25)

Definition 1.2.5. As per Example 1.1.4 we have that the exterior algebra is Z-graded. We denote the
degree d elements of

∧
M by

∧dM .

There are two canonical operators on the exterior algebra, which we now explain.

Definition 1.2.6. Let x ∈
∧
M be an arbitrary element. We define

x ∧ :
∧

M −→
∧

M

x1 ∧ . . . ∧ xn 7−→ x ∧ x1 ∧ . . . ∧ xn
The second map is a bit harder to explain. We begin with some preliminary observations.

Lemma 1.2.7. Let M be free and of finite rank. Then

d∧
M∗ ∼= (

d∧
M)∗ (26)

Proof. Let λ1, ..., λn be elements of M∗. Define the following functional:

Md −→ R

(m1, ...,md) 7−→ det
(
(λimj)ij

)
This indeed is bilinear and so induces a map M⊗d −→ R and moreover is such that any pure tensor
with repeated elements maps to 0, thus we obtain a map∧

M −→ R (27)

We have thus described a homomorphism M∗d −→ R which indeed is bilinear and maps tuples with
repeated elements to 0, thus we have described a function

ϕ :
d∧
M∗ −→

( d∧
M
)∗

(28)

It remains to show that this is an isomorphism, and for this we use for the first time that M is free of
finite rank. Let vi1 , ..., vid ∈M be a basis. One can show

ϕ(vi1 ∧ . . . ∧ vid) = (vi1 ∧ . . . ∧ vid)∗ (29)

and so ϕ maps onto a basis for
(∧dM

)∗
so in particular ϕ is surjective. Since ϕ is a surjective map

between vector spaces of the same, finite dimension, it must therefore also be injective.
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Remark 1.2.8. Another simple but important observation is that
∧d is a functor.

We can now define the second canonical map.

Definition 1.2.9. Assume that M is free of finite rank. Let η ∈ M∗. There is the following sequence
of compositions ∧dM

∧dM∗∗ (∧dM∗)∗
∧d−1M

∧d−1M∗∗ (∧d−1M∗)∗(η∧ )∗ (30)

The resulting map
∧dM −→

∧d−1M is contraction and is denoted by ηy.
For an element x ∈M we often denote x ∧ by x and x∗y by x∗.

Remark 1.2.10. We can follow the sequence of homomorphism (30) to obtain an explicit formula for
the contraction map. To this end, let v1, ..., vn be a basis for M and observe the following calculation:

vi1 ∧ . . . ∧ vid 7−→ v∗∗i1 ∧ . . . ∧ v
∗∗
id

7−→ (v∗i1 ∧ . . . ∧ v
∗
id

)∗

7−→ (v∗i1 ∧ . . . ∧ v
∗
id

)∗ ◦ (η ∧ )

We then have for any basis vector (v∗j1 ∧ . . . ∧ v
∗
jd−1

)∗ ∈ (
∧d−1M∗)∗ that

(v∗i1 ∧ . . . ∧ v
∗
id

)∗ ◦ (η ∧ )(v∗j1 ∧ . . . ∧ v
∗
jd−1

) (31)

= (v∗i1 ∧ . . . ∧ v
∗
id

)∗(η ∧ v∗j1 ∧ . . . ∧ v
∗
jd−1

) (32)

By writing η = η(v1)v∗1 + . . .+ η(vn)v∗n we have

η ∧ v∗j1 ∧ . . . ∧ v
∗
jd−1

= (η(v1)v∗1 + . . .+ η(vn)v∗n) ∧ v∗j1 ∧ . . . ∧ v
∗
jd−1

=
n∑
k=1

η(vk)v
∗
k ∧ v∗j1 ∧ . . . ∧ v

∗
jd−1

so returning to (32), we have

(v∗i1 ∧ . . . ∧ v
∗
id

)∗(
n∑
k=1

η(vk)v
∗
k ∧ v∗j1 ∧ . . . ∧ v

∗
jd−1

)

which, if there exists l ∈ {1, ..., d} such that (i1, ..., il̂, ..., id) = (j1, ..., jd−1) is equal to (−1)l−1η(vil).
Hence, traversing the other direction of (30) we see that this corresponds to the element

ηy(vi1 ∧ . . . ∧ vid) =
d∑
j=1

(−1)j−1η(vj)vi1 ∧ . . . ∧ v̂ij ∧ . . . ∧ vid (33)

Remark 1.2.11. Notice that from (30) and the fact that η ∧ η ∧ = 0 it follows that contraction is a
differential. Thus there is a chain complex

L(M) := . . . ∧2 M
ηy−→M

η−→ R −→ 0 (34)

In fact, more can be said, we return to this after considering some category theoretic facts about the
exterior algebra.
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1.2.1 Category theoretic properties of the exterior algebra

The exterior algebra admits some properties which are described well using the language of category
theory.

Definition 1.2.12. A super algebra is a graded, commutative algebra A with the following properties:

� for all a, b ∈ A we have ab = (−1)deg adeg bba,

� if a ∈ A is homogeneous of odd degree, then a2 = 0.

Example 1.2.13. The exterior algebra
∧
M of a module M is a super algebra.

Observation 1.2.14. The wedge product ∧( ) is a functor. This follows from Remark 1.2.2 and
Proposition 1.2.4.

Notation 1.2.15. We let modR denote the category of commutative, left R-modules, and sAlgR the
category of R-super algebras.

We denote by ( )1 : sAlgR −→ modR the functor which takes a super algebra to its degree 1
component.

Observation 1.2.16. The functor ∧( ) is left adjoint to ( )1. This follows from Proposition 1.2.4.

We now use these observations to prove that there is a canonical isomorphism ∧(M) ⊗ ∧(N) −→
∧(M ⊕N).

Proposition 1.2.17. For any pair of R-algebras M,N there is an isomorphism

Ψ : ∧(M ⊕N) −→ ∧M ⊗ ∧N
ψ(m,n) = m⊗ 1 + 1⊗m

Proof. By Observation 1.2.16 and that the tensor product acts as a coproduct in the category of AlgR
of commutative R-algebras, we have the following commutative diagram, where the horizontal arrows
are composition and all vertical arrows are natural isomorphisms, note also we simply write H in place
of Hom:

H(∧(M ⊕N),∧M ⊗ ∧N)×H(∧M ⊗ ∧N,∧(M ⊕N)) H(∧(M ⊕N),∧(M ⊕N))

H(M ⊕N, (∧M ⊗ ∧N)1)×H(∧M,∧(M ⊕N))×H(∧N,∧(M ⊕N))

H(M ⊕N,M ⊕N)×H(M,M ⊕N)×H(N,M ⊕N)

H(M ⊕N,M ⊕N)×H(M ⊕N,M ⊕N) H(M ⊕N,M ⊕N)

(35)
Since the image of idM⊕N under

H(M ⊕N,M ⊕N)×H(M ⊕N,M ⊕N) −→ H(M ⊕N,M ⊕N) −→ H(∧(M ⊕N),∧(M ⊕N)) (36)

is id∧(M⊕N) it follows that there are canonical morphisms ψ : ∧(M ⊕ N) −→ ∧M ⊗ ∧N and ψ′ :
∧M ⊗ ∧N −→ ∧(M ⊕N) such that ψ′ψ = id∧(M⊕N). A similar argument shows ψψ′ = id∧M⊗∧N .
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2 Regular and quasi-regular sequences

This Section requires Section 1 as a prerequisite.

2.1 Regular sequences and the Koszul complex

Throughout, all rings are commutative, associative, and unital.

Definition 2.1.1. Let M be a left R-module. A sequence (x1, ..., xn) where each xi ∈ R is regular if

� for all i = 1, ..., n the element fi is a nonzerodivisor of M/(x1, ..., xi−1)M

� the module M/(x1, ..., xn)M is non-zero.

For now we focus on regular sequences of a ring, which of course obeys the same definition as 2.1.1
where the ring is considered as a module over itself.

Example 2.1.2. Let k be a field, the sequence (x, y(1− x), z(1− x)) is regular in k[x, y, z]

Proof. � x is clearly a nonzerodivisor of k[x, y, z].

� Say m ∈ k[x, y, z]/(x) satisfied m(y(1− x)) = 0, then y is a zero divisor in k[x, y, z]/(x) ∼= k[y, z]
which is a contradiction.

� A similar argument shows that z(1− x) is not a zero divisor of k[x, y, z]/(x, y)

� Lastly, 1 6= 0 ∈ k[x, y, z]/(x, y, z).

Remark 2.1.3. It is not necessarily the case that for a regular sequence (f1, ..., fn) in a ring R, fj
is a non zero divisor of R/(f1, ..., fj−2). For instance, the sequence (x, y) is a regular sequence in
k[x, y, w1, w2, ...]/I, where k is a field and I is the ideal generated by all ywi and all wi − xwi+1, even
though y is a zero divisor.

One way of thinking about regular sequences is that they “cut R down” as much as possible at each
stage of modding out. More precisely, if r is a non zero divisor of R then the map R → R given by
multiplication by r is injective. In this sense we “kill just as much, if not more of R” by modding out
by (r) than if we had modded out by (r′), where r′ ∈ R is a zero divisor.

Definition 2.1.4. Let M be a left R-module and x ∈ M an element. The Koszul complex K(x) is
the following chain complex

0 −→ R −→M −→ ∧2M −→ ∧3M −→ . . . −→ ∧nM dnx−→ ∧n+1M −→ . . . (37)

where dnx : ∧nM −→ ∧n+1M is defined by the rule m 7−→ x ∧m.
In the special case where M = Rm and x = (x1, ..., xm) we write K(x1, ..., xn) for K(x).

Example 2.1.5. Let M = R2 and let x, y ∈ R. Then K(x, y) is the following chain complex:

0 −→ R −→ R2 −→ ∧2R2 −→ ∧3R2 −→ 0 −→ . . . (38)
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which is such that the following diagram commutes, with vertical arrows isomorphisms

0 R R2 ∧2R2 ∧3R2 . . .

0 R R2 R 0 . . .

d1
(x,y)

d2
(x,y)

d3
(x,y)

x
y

 (
y −x

)
(39)

so we obtain a simple special case.
Further, in the setting where M = R and x ∈ R, the Koszul complex K(x) is simply multiplication

by x:
0 −→ R

x−→ R (40)

We can use the simple description given in Example 2.1.5 to solve an exercise:

Exercise 2.1.6. Show that if

M :=

(
a b
c d

)
(41)

is a matrix of elements in R such that M has determinant given by a unit in R, then K(x, y) ∼=
K(ax+ by, cx+ dy).

Proof. We construct the following diagram:

0 R R⊕R R 0

0 R R⊕R R 0

idR M detM (42)

which is invertible by the assumptions on M .

We will now relate the homology of the Koszul complex to lengths of maximal regular sequences. In
the following we make use of the notation:

Notation 2.1.7. For ideals I, J , denote:

(I : J) := {f ∈ R | fJ ⊆ I} (43)

Observation 2.1.8. The Koszul complex K(x, y) admits K(x) as a subcomplex, which then pushes
forward to a cokernel, yielding the following commutative diagram where the vertical sequences are
exact:

0 R R 0

0 R R⊕R R

0 R R

x

idR
x
y

 (
y −x

)π2

−x

ι1 idR

(44)

and so we obtain a long exact sequence of homology:

0 −→ H0(K(x))
δ−→ H0(K(x)) −→ H1(K(x, y)) −→ H1(K(x)) −→ 0 (45)
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where the connecting morphism δ is multiplication by y (as can easily be checked).
Notice that if H1(K(x, y)) = 0 then

H0(K(x))/yH0(K(x)) ∼= 0 (46)

Under the further assumption that R is a Noetherian local and y is an element of the maximal ideal,
we obtain from Nakayama’s Lemma that H0(K(x)) ∼= 0.

So what is the consequence of this? Since H0(K(x)) ∼= 0, we have that x is a nonzerodivisor, as
follows straight from the definition. Now we investigate H1(K(x, y)) ∼= 0. Since x is a nonzerodivisor,
if we have a, b ∈ R such that −ax+ by = 0, then a is uniquely determined by b, we let ka denote this b.
In fact, we obtain an isomorphism

γ : (x : y) −→ ker(x y)

a 7−→ (a,−ka)

Moreover, the image of R −→ R⊕R is isomorphic to (x), so we have

H1(K(x, y)) ∼= (x : y)/(x) (47)

So H1K(x, y) ∼= 0 implies (x : y) = (x). In other words, if f ∈ R is such that fy ∈ (x) then f ∈ (x).
That is to say that y is a nonzerodivisor of R/(x).

Thus we have proved (the first part of):

Proposition 2.1.9. If R is a Noetherian local ring, and x, y are elements of the maximal ideal, then
H1(K(x, y)) ∼= 0 if and only if x, y is a regular sequence of R.

Do regular sequences remain regular if the elements are permuted? In general, no, as Example 2.1.10
shows, but Observation 2.1.8 can be used to provide a setting where permuting elements of a regular
sequence does result in a regular sequence (see Proposition 2.1.11).

Example 2.1.10. Consider the ring R := k[x, y, z]/(xz) along with the sequence (x − 1, xy). This
sequence is regular as x− 1 is not a zerodivisor of R and R/(x− 1) ∼= k[y] 6∼= 0 inside which y is not a
zerodivisor. However, the sequence (xy, x− 1) is not regular as xy is a zero divisor in R.

Proposition 2.1.11. Let R be a Noetherian local ring with maximal ideal m and let (x1, ..., xn) be a
regular sequence with each xi an element of m. Then any for any permutation ρ : {1, ..., n} −→ {1, ..., n}
the sequence (xρ(1), ..., xρ(n)) is regular.

Proof. First we prove the case when n = 2. We have already seen that the sequence (x1, x2) is regular if
and only if H1(K(x1, x2)) ∼= 0 (in the context given by the hypotheses). We then observe the following
isomorphism K(x1, x2) ∼= K(x2, x1), where s : R⊕R −→ R⊕R is the swap map s(r1, r2) = (r2, r1).

0 R R⊕R R 0

0 R R⊕R R 0

idR s − idR (48)

Now we abstract to the general setting. Let (x1, ..., xn) be regular, it suffices to show that (x1, ..., xi+1, xi, ..., xn)
is regular. In turn, it suffices to show that xi+1, xi is regular in R/(x1, ..., xi−2) which then follows from
the first part of this proof.

The Koszul complex can sometimes provide information about when a sequence is regular or not.
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Theorem 2.1.12. Let M be a finitely generated module over a local ring (R,m). Suppose x1, ..., xn ∈ m.
If for some k we have:

Hk(M ⊗K(x1, ..., xn)) ∼= 0 (49)

then
∀j ≤ k, Hj(M ⊗K(x1, ..., xn)) ∼= 0 (50)

Moreover, if Hn−1(M ⊗K(x1, ..., xn)) ∼= 0 then (x1, ..., xn) is regular.

We will need the following Lemma to prove Theorem 2.1.12.

Lemma 2.1.13. Let N ∼= N ′ ⊕N ′′ be a module and x = (x′, x′′) an element of N . We have

K(x) ∼= K(x′)⊗K(x′′) (51)

Proof. We have from Proposition 1.2.17 that there exists an isomorphism of graded algebras ∧N ∼=
∧N ′⊗∧N ′′, hence it suffices to check commutativity of the following diagram, in what follows we write
Ψn for the homomorphism Ψ restricted to ∧nN .

. . . ∧nN ∧n+1N . . .

. . . (∧N ′ ⊗ ∧N ′′)n (∧N ′ ⊗ ∧N ′′)n+1 . . .

Ψn Ψn+1 (52)

To check commutativity of this, we consider an arbitrary element y ∈ ∧N which maps under Ψ to a
pure tensor y1 ⊗ y2, indeed it suffices to consider such elements. We calculate:

x ∧ y 7−→ (x1 ⊗ 1 + 1⊗ x2) ∧ (y1 ⊗ y2)

= x1 ∧ y1 ⊗ y2 + (−1)y1y1 ⊗ x2 ∧ y2

On the other hand, we have

(dx1 ⊗ dx2)(y1 ⊗ y2) = dx1(y1)⊗ y2 + (−1)y2y1 ⊗ dx2(y2)

= x1 ∧ y1 ⊗ y2 + (−1)y1y1 ⊗ x2 ∧ y2

The result follows.

Remark 2.1.14. We touch on a subtle point. Notice that Definition 2.1.4 defined the Koszul complex
in a general setting where the differential is given by multiplication by an element of the module M
(as apposed to multiplication by an element of the ring R). We wish to relate the Koszul complex
K(x1, ..., xn) to regularity of the sequence (x1, ..., xn) however in Definition 2.1.1 we required that
x1, ..., xn be elements of R. Hence, in order to relate the Koszul complex to regularity of a sequence,
we will chiefly be concerned with the special case of the Koszul complex where multiplication is by an
element in the ring R. In this case, for x ∈ R we have M ⊗K(x) ∼= K(x · 1R) which follows from the
isomorphism R⊗M ∼= M .

Remark 2.1.15. Recall that we established in a general setting the existence of a long exact sequence
given a chain complex G over a ring R along with an element y ∈ R (Proposition 1.1.13). If M is a
module, x1, x2 ∈ R, we let G be M ⊗K(x1) and y = x2, we first note that:

K(x2)⊗ (M ⊗K(x1)) = M ⊗K(x1, x2)

and hence we obtain the following long exact sequence.

0 −→ H0(M ⊗K(x1))
x2−→ H0(M ⊗K(x1)) −→ H1(M ⊗K(x1, x2)) −→ 0 (53)
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In fact, more can be said. Recall the following identity which holds for all 1 ≤ m ≤ n.(
n− 1

m

)
+

(
n− 1

m− 1

)
=

(
n

m

)
(54)

Hence there exists an isomorphism:

∧m Rn−1 ⊕ ∧m−1Rn−1 ∼= ∧mRn (55)

which in turn implies the existence of an isomorphism:

Ψm : (M ⊗ ∧mRn−1)⊕ (M ⊗ ∧m−1Rn−1) ∼= M ⊗ ∧mRn (56)

This can be used to show that K(xn)⊗ (M ⊗K(x1, ..., xn−1)) ∼= M ⊗K(x1, ..., xn), simply observe the
following isomorphism of chain complexes, where the top row is M ⊗K(x1, ..., xn) and the bottom row
is K(xn)⊗ (M ⊗ ∧m−1Rn−1).

0 M M ⊗Rn M ⊗ ∧2Rn . . . M ⊗ ∧nRn 0

0 M M ⊗ (R⊕Rn−1) M ⊗ (Rn−1 ⊕ ∧2Rn−1) . . . M ⊗ (∧nRn−1 ⊕ ∧n−1Rn−1) 0

ψ1 ψ2 ψn

(57)
Again, using Proposition 1.1.13 we obtain a long exact sequence.

. . . −→ H i(M ⊗K(x1, ..., xn−1))
xn−→ H i(M ⊗K(x1, ..., xn−1)) −→ H i+1(M ⊗K(x1, ..., xn))

−→ H i+1(M ⊗K(x1, ..., xn−1))
xn−→ . . .

We are nearly in a position to prove Theorem 2.1.12, however we need one more result. Proposition
2.1.16 writes H i(M ⊗K(x1, ..., xn)) out in an explicit form. We adopt the following notation, where I
is an ideal of R and M,N are R-modules:

(N : IM) := {m ∈M | Jm ⊆ N} (58)

Notice that (N : IM) is itself an R-module.

Proposition 2.1.16. Let M be finitely generated and (x1, ..., xn) is a regular sequence. Then:

H i(M ⊗K(x1, ..., xn)) ∼=
(
(x1, ..., xi)M : (x1, ..., xn)

)
/(x1, ..., xi)M (59)

Proof. We proceed by induction on n. The base case, when n = 2, is proved in an exactly similar way
to what was done in Observation 2.1.8. Now we assume that n > 3 and the result holds for n − 1.
Consider the following.

H i(M ⊗K(x1, ..., xn−1)) ∼=
(
(x1, ..., xi)M : (x1, ..., xn−1)

)
/(x1, ..., xi)M

∼= 0

where the first ∼= follows from the inductive hypothesis and the second ∼= follows from the fact that
(x1, ..., xn) is a regular sequence. Using the long exact sequence of Remark 2.1.15 we infer that the
kernel of the endomorphism on the following module given by multiplication by xn.

H i(M ⊗K(x1, ..., xn−1)) (60)

12



is isomorphic to H i(M ⊗ K(x1, ..., xn)). We now use the inductive hypothesis to infer that H i(M ⊗
K(x1, ..., xn)) is isomorphic to the kernel of the endomorphism on the following module given by
multiplication by xn. (

(x1, ..., xi)M : (x1, ..., xn−1)
)
/(x1, ..., xi)M (61)

The proof is then complete once it is shown that the kernel of this map is isomorphic to the module
given in Equation 59. Indeed, an isomorphism is given by the rule m 7−→ m, one checks that the defining
conditions of both modules are equivalent.

Proof of Theorem 2.1.12. We proceed by induction on n. The base case, that K(M ⊗ K(x1, x2)) ∼= 0
implies that (x1, x2) is a regular sequence follows exactly similarly to what was shown in Observation
2.1.8. Now we proceed with the inductive step, assume that n > 2 and assume the result holds true for all
2 ≤ i < n. We first consider the endomorphism on Hn−1(M ⊗K(x1, ..., xn−1)) given by multiplication
by xn. Since H i(M ⊗ K(x1, ..., xn)) ∼= 0, it follows from the long exact sequence of Remark 2.1.15
that the endomorphism xn is surjective. Hence, by Nakayama’s Lemma, we have that Hn−1(M ⊗
K(x1, ..., xn−1)) ∼= 0. By the inductive hypothesis, this implies that (x1, ..., xn−1) is a regular sequence,
and it remains to show that xn is not a zero divisor of M/(x1, ..., xn−1)M .

To do this, we invoke Proposition 2.1.16. Indeed,(x1, ..., xn) is regular and so:(
(x1, ..., xn−1)M : (x1, ..., xn)

)
/(x1, ..., xi)M ∼= 0 (62)

completing the proof.

The following two results are bonus, and are not relevant to the core point of this Section. Indeed,
these results are used in [?, §17.3] as part of an investigation into what happens when R is not local.

Proposition 2.1.17. Let x1, ..., xn ∈ R be elements of R and I the ideal they generate. Assume
y1, ..., yr ∈ I are elements of I, then there is an isomorphism

K(x1, ..., xn, y1, ..., yr) ∼= K(x1, ..., xn)⊗ ∧Rr (63)

Proof. First, write yi =
∑n

j=1 aijxj for each yi and let A denote the matrix (aij). Then there is an
automorphism of Rn ⊕Rr given by the matrix

F :=

(
I 0
−A I

)
(64)

indeed an inverse is given by (
I A
0 I

)
(65)

Notice that F is such that F (x1, ..., xn, y1, ..., yr) = (x1, ..., xn, 0, ..., 0). We state without proof that the
Koszul complex is functorial, and so we thus have

K(x1, ..., xn, y1, ..., yr) ∼= K(x1, ..., xn, 0, ..., 0) (66)

Moreover, using Lemma 2.1.13 we haveK(x1, ..., xn, 0, ..., 0) ∼= K(x1, ..., xn)⊗K(0, ..., 0) ∼= K(x1, ..., xn)⊗
∧Rr. .

Corollary 2.1.18. Let M be any R-module, and x1, ..., xn, y1, ..., yr as in Proposition 2.1.17. Then

H∗(M ⊗K(x1, ..., xn, y1, ..., yr)) ∼= H∗(M ⊗K(x1, ..., xn))⊗ ∧Rr (67)
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and so for each i,

H i(M ⊗K(x1, ..., xn, y1, ..., yr)) ∼=
∑
i=j+k

Hk(M ⊗K(x1, ..., xn))⊗ ∧jRr (68)

Thus
H i(M ⊗K(x1, ..., xn, y1, ..., yr)) = 0 (69)

if and only if
Hk(M ⊗K(x1, ..., xn)) ∼= 0 for all k such that i− r ≤ k ≤ i (70)

Proof. The first statement follows from flatness of ∧jRr (indeed, it is free), the rest are obvious.

2.2 Regular sequences are quasi-regular

Now, let (f1, ..., fn) be regular in some ring R and denote by J the ideal generated by these elements.
For any m ≥ 0 the scalar multiplication by R on Jm/Jm+1 descends to one of R/J , thus rendering
Jm/Jm+1 an R/J-module. Moreover, these scalars can be extended to (R/J)[x1, ..., xn] by defining
xi · [r]J = [fir]J = [0]J . There is then an (R/J)[x1, ..., xn]-module homomorphism

(R/J)[x1, ..., xn]→
⊕
m≥0

Jm/Jm+1 (71)

defined by the rule
xi11 ...x

in
n 7→ f i11 ...f

in
n mod J i1+...+in+1

which is surjective.

Definition 2.2.1. Such a sequence is quasi-regular if the above map is an isomorphism.

Indeed this is to be thought of as a weakening of the notion of regular sequences, as justified by the
following Lemma:

Lemma 2.2.2. If a sequence (f1, ..., fn) of R is regular, it is quasi-regular.

Proof. Throughout, the notation |I| where I is a sequence of natural numbers will mean
∑

i∈I i.

We proceed by induction on n. When n = 0 notice that the composite

(R/J)
(71)−→

⊕
m≥0

Jm/Jm+1 ∼= R/J

is the identity map, so the result clearly holds for the base case.

Now say n ≥ 1. Let
∑
|I|=m[αI ]J [f I ]Jm+1 = [0]Jm , in other words, say

∑
|I|=m αIf

I as an element

of R is in Jm+1. Let
∑
|I|=m αIf

I =
∑
|I′|=m+1 βI′f

I′ . By substituting each βI′ by β̂I := βI′fi1 , we have∑
|I|=m αIf

I =
∑
|I|=m β̂If

I , where each β̂I ∈ J . That is to say,
∑
|I|=m α̂If

I = 0 where α̂I = αI − β̂I .
Thus we may assume that in fact

∑
|I|=m αIf

I = 0. It remains to show that each αI ∈ J .

Next we rewrite
∑
|I|=m αIf

I as a sum where each occurrence of fn in f I has been factored out. We

let m′ denote the largest integer such that a summand of
∑
|I|=m αIf

I contains m′ factors of fn in the

product f I : ∑
|I|=m

αIf
I =

m′∑
j=0

( ∑
|I′|=m−j

αI,jf
I′,j
)
f jn = 0
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the relabelling of αI by αI,j is for clarity later on. We now prove that in such a setting, we have that
αI ∈ J by induction on m′.

Denote the ideal (f1, ..., fn−1) by J ′. If m′ = 0 then
∑
|I′|=m αIf

I′ = 0 where f I
′ ∈ (f1, ..., fn−1)m

and so each αI ∈ J by the hypothesis of induction on n.

Now say m′ ≥ 1. Then (and this is the step which takes advantage of reducing the proof to the
case when

∑
|I|=m αIf

I = 0):

( ∑
|I′|=m−m′

αI,m′f
I′,j
)
fm
′

n = −
(m′−1∑

j=0

( ∑
|I′|=m−j

αI,jf
I′,j
)
f jn

)
∈ (J ′)m−m

′+1

That is to say,
(∑

|I′|=m−m′ [αI,m′ ]J [f I
′
](J ′)m−m′+1

)
[fm

′
n ](J ′)m−m′+1 = [0](J ′)m−m′+1 . It follows by the hypothesis

of induction on n that fm
′

n αI ∈ J ′. Now we make use of the hypothesis that (f1, ..., fn) is regular, and
indeed this is the key moment in the proof. Since fm

′
n is not a zero divisor of R/J ′, we deduce that

αI,m′ ∈ J ′ ⊆ J . It now remains to show that the remaining αI,j ∈ J .

For this, we write:

m′∑
j=0

( ∑
|I′|=m−j

αI,jf
I′,j
)
f jn =

∑
|I′|=m−j

(
αI,m′−1f

I′,j + fnαI,m′f
I′,j
)
fm
′−1

n +
m′−2∑
j=0

( ∑
|I′|=m−j

αI,jf
I′,j
)
f jn = 0

so by the hypothesis of induction on m′ we have that αI,m′−1+fnαI,m′ ∈ J and αI,j ∈ J for all j ≤ m′−2.
The final observation to make is that since fnαI,m′ ∈ J it follows that αI,m′−1 ∈ J .

3 Clifford algebras

3.1 Bilinear/Quadratic forms

Throughout V is a finite dimensional k-vector space.
This Section considers vector spaces equipped with either a bilinear form or a quadratic form (which

due to 3.1.3 amounts, in the case where k is of characteristic not equal to 2, to the same thing).

Definition 3.1.1. A bilinear map B : V × V −→ k is sometimes called a bilinear form. If v1, ..., vn
is a basis for V then for any u = u1v1 + . . . unvn, w = w1v1 + . . . wnvn ∈ V the value B(u,w) can be
calculated by [

w1 . . . wn
] B(v1, v1) . . . B(v1, vn)

...
. . .

...
B(vn, v1) . . . B(vn, vn)


u1

...
un

 (72)

and so given a choice of basis for V there exists an isomorphism between the vector space of bilinear
forms and the vector space of n × n matrices with entries in k. If B is a basis for V , the matrix
corresponding to B is denoted [B]B.

A bilinear form B : V × V −→ k is symmetric if for all v, u ∈ V we have B(v, u) = B(u, v).

Definition 3.1.2. A quadratic form is a function Q : V −→ k satisfying the following properties:

� for all a ∈ k and v ∈ V , we have Q(av) = a2Q(v),
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� the function B : V × V −→ k given by B(v, u) = Q(v + u)−Q(v)−Q(u) is bilinear.

Proposition 3.1.3. Let B : V × V −→ k be a symmetric bilinear form and k a field of characteristic
not equal to 2. Then the function QB : V −→ k given by QB(v) = B(v, v) is a quadratic form.

Also, given a quadratic form Q : V −→ k, the function BQ : V × V −→ k given by BQ(v, u) =
1
2

(
Q(v + u)−Q(v)−Q(u)

)
is a bilinear form.

Proof. Easy.

Definition 3.1.4. In the notation of Proposition 3.1.3, BQ is the bilinear form associated to Q and
QB is the quadratic form associated to B. Notice that BQ is symmetric.

We say that a bilinear form B is diagonalisable if there exists a basis B for V rendering [B]B
diagonal, similarly, we say that Q is diagonalisable.

Proposition 3.1.5. A finite dimensional bilinear form B : V × V −→ k is diagonalisable if and only if
it is symmetric.

Proof. The bilinear form B is symmetric if and only if there exists a basis with respect to which the
matrix representation of B is symmetric (which would imply the matrix representation with respect to
any basis is symmetric). So since B is diagonalisable we have that B is symmetric.

Now we prove the converse. If B maps everything to zero then the result is obvious so assume this is
not the case. We first prove that there exists a vector v such that QB(v) = B(v, v) 6= 0. Let u1, u2 ∈ V
be such that B(u1, u2) 6= 0. If B(u1, u1) 6= 0 or B(u2, u2) 6= 0 then we could take v to be one of u1, u2,
so assume B(u1, u1) = B(u2, u2) = 0. We have

Q(u1 + u2) = B(u1 + u2, u1 + u2) = B(u1, u2) +B(u2, u1) = 2B(u1, u2) 6= 0 (73)

where we have used both the assumptions that B is symmetric and that the characteristic of k is not 2.
We can thus take v to be u1 + u2.

We proceed by induction on the dimension of V , with the base case dimV = 1 being trivial.
Say dimV = n > 1. Consider the map ϕv : V −→ k given by ϕv(u) = B(u, v). Since B(v, v) 6= 0

we have that imϕv = k and so kerϕv = dimk V − 1. Since we are working with finite dimensional
vector spaces that there exists implies a decomposition V = kerϕv ⊕ imϕv. We have by the inductive
hypothesis that B �kerϕv×kerϕv is diagonalisable. Fix a basis B := {v1, ..., vn−1} of kerϕv×kerϕv so that
the top left n− 1× n− 1 minor of the matrix representation of B with respect to this basis is diagonal.
We extend B to a basis B′ for V by taking B := B

⋃
{vn} with v and notice that B(vi, v) = B(v, vi) = 0

for all i = 1, ..., n− 1 (using the decomposition V = kerϕv ⊕ imϕv from earlier). We thus have a basis
{v1, ..., vn−1, v} with respect to which the matrix representation of V is diagonal.

Remark 3.1.6. In the proof of Propsition 3.1.5 we used the fact that a linear transformation ϕ : V −→
W between two finite dimensional k-vector spaces induces a decomposition

V ∼= kerϕ⊕ imϕ (74)

for some subspace W . To see this, we use the splitting lemma. There is always a short exact sequence

0 kerϕ V imϕ 0
ϕ

(75)

Now pick a basis B for imϕ and using choice, make a choice of lifts C := {vb | ϕ(vb) = b}b∈B. There
is thus a linear transformation ψ : imϕ −→ V which is given on basis vectors by ψ(b) = vb. Clearly,
ϕψ = idimϕ, and so the splitting lemma may be applied.
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Proposition 3.1.7. Say V is finite dimensional of dimension n. By Proposition 3.1.5 the quadratic
form Q is diagonalisable, in fact, more can be said:

� if k = R then there exists a basis for V and 0 ≤ r ≤ n such that Q with respect to this basis has
diagonal entries

λ1 = . . . = λr = 1, λr+1 = . . . = λn = −1 (76)

� if k = C then there exists a basis for V such that Q with respect to this basis has diagonal entries

λ1 = . . . = λn = 1 (77)

Proof. Let v1, . . . , vn be a basis with respect to which Q is diagonal with diagonal entries λ1, . . . , λn. We
proceed by induction on n. Say n = 1 and let e be the chosen basis vector of V ,and say k = R, we have

BQ(v1, v2) = v2e · λ1 · v1e =

{
v2

√
λ1e · 1 · v1

√
λ1e, λ1 ≥ 0,

v2

√
−λ1e · −1 · v1

√
−λ1e, λ1 < 0

(78)

so we can replace the basis e by either
√
λ1e or

√
−λ1e and we are done. In the case when k = C, there

always exists a square root of λ1.
The logic of the inductive step is exactly similar.

Proposition 3.1.8. Say V is a real vector space of dimension n. By Proposition 3.1.7 there exists a
basis of V for which [B]B is diagonal with all entries equal to either 1 or −1. The triple (n+, n−, n0)
consisting of the number n+ of positive entries, the number n− of negative entries, and the number n0

of entries equal to zero in a [B]B is independent of the choice of diagonalising basis B.

Proof. Write

[B]B =

Ip −Iq
0r

 (79)

Denote by W ⊆ V the largest subspace such that B �W×W is positive definite, ie, B(w,w) > 0 for all
w ∈ W . Letting w = w1v1 + . . . wnvn and calculating B(w,w) using [B]B we have

wT [B]Bw = w2
1 + . . . w2

p − w2
p+1 − . . .− w2

p+q (80)

and so wt[B]Bw > 0 if and only if wp+1 = . . . = wp+q = 0. We thus have

W ⊆ Span(v1, ..., vp)

Letting W ′ denote this span, we clearly also have W ′ ⊆ W , implying p = dimW . Thus p has been
related to a value which is basis independent and so p is an invariant. The remaining invariances follow
from the rank-nullity Theorem.

Definition 3.1.9. In the notation of Proposition 3.1.8, the triple (n+, n−, n0) is the signature of B.
If n0 = 0 then the bilinear form is nondegenerate.

Remark 3.1.10. The number of entries equal to 1 in a matrix representation of a symmetric bilinear
form on a finite dimensional complex vector space is also an invariant, this follows directly from the
rank-nullity Theorem.
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3.2 Clifford algebras

Throughout, we denote by (V,Q) a quadratic form, consisting of a finite dimensional k-vector space V
and a quadratic form Q : V −→ k on V . The field k is assumed to have characteristic not equal to 2.

Definition 3.2.1. A pair (CQ, j) consisting of a k-algebra CQ and a linear transformation j : V −→ CQ
such that

∀v ∈ V, j(v)2 = Q(v) · 1 (81)

is a clifford algebra for (V,Q) if it is universal amongst such maps. That is, for every pair (D, k)
consisting of a k-algebra D and a linear transformation k : V −→ D satisfying

∀v ∈ V, k(v)2 = Q(v) · 1 (82)

there exists a unique k-algebra homomorphism m : CQ −→ D such that the following diagram commutes

V CQ

D

j

k
m (83)

Proposition 3.2.2. A Clifford algebra for (V,Q) always exists and is essentially unique (unique up to
unique isomorphism) amongst those algebras satisfying the unversal property given in Definition 3.2.1.

Proof (sketch). We construct the tensor algebra

T (V ) :=
⊕
i≥0

V ⊗i (84)

(where V ⊗0 := k) quotiented by the ideal I generated by the set {v ⊗ v − Q(v) · 1}v∈V . The map
j : V −→ CQ is the inclusion V −→ T (V ) composed with the projection T (V ) −→ T (V )/I.

Notice that j given in the proof of Proposition 3.2.2 is injective.

Example 3.2.3. Say Q : V −→ k maps everything to zero. Then the associated Clifford Algebra (CQ, l)
is such that CQ ∼=

∧
V .

To see this, define ϕ : V −→
∧
V by v 7→ v. This is such that ϕ(v)2 = 0 and so by the universal

property of (CV , l) there exists a k-algebra homomorphism ϕ : CQ −→
∧
V . This is clear as the

definitions of CQ and
∧
V are the same.

Example 3.2.3 shows that when Q is the 0 quadratic form then the associated Clifford algebra is
isomorphic to the exterior algebra, in fact, if Q is not the zero quadratic form then the associated Clifford
algebra is not isomorphic to the exterior algebra as an algebra but whatever Q is, CQ is always linearly
isomorphic (isomorphic as a vector space) to the exterior algebra, as the next Proposition states:

Proposition 3.2.4. The underlying vector spaces of CQ and
∧
V are isomorphic.

Proposition 3.2.4 will follow from a series of observations which cover a broader scope of theory,
which we now present.

Consider the linear map k : V −→ CQ given by k(v) = −j(v) which clearly satisfies k(v)2 = Q(v) · 1.
There is thus an induced morphism β : CQ −→ CQ rendering the following diagram commutative:

V CQ

CQ

j

k
β (85)

We have that β2 = idCQ
.
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Definition 3.2.5. The involution β is the involution associated with the Clifford Algebra (CQ, j).

Recall that for an arbitrary involution f : V −→ V (where V is a vector space over a field of
characteristic not equal to 2) we have

∀v ∈ V, v = 1/2(f(v) + v) + v − 1/2(f(v) + v) = 1/2(f(v) + v) + 1/2(v − f(v)) (86)

where we notice

f(1/2(f(v) + v)) = 1/2(f(v) + v), and f(1/2(v − f(v))) = 1/2(f(v)− v) (87)

and so
V = E1 + E−1 (88)

where Ei is the ith Eigenspace of f .
Applying this observation to the situation of Clifford algebras, we have:

C0
Q := {v ∈ C0

Q | β(v) = v}, C1
Q := {v ∈ C1

Q | β(v) = −v} (89)

and
CQ = C0

Q ⊕ C1
Q (90)

Thus the Clifford algebra (CQ, j) associated to a quadratic form Q : V −→ k is naturally a Z2-graded
algebra.

Proposition 3.2.6. For quadratic forms Q1 : V1 −→ k,Q2 : V2 −→ k we have

CQ1⊕Q2
∼= CQ1 ⊗ CQ2 (91)

Proof. Consider the linear transformation

T : V1 ⊕ V2 −→ CQ1 ⊗ CQ2

(v1, v2) 7−→ v1 ⊗ 1 + 1⊗ v2

We have:

T (v1, v2)2 = (v1 ⊗ 1 + 1⊗ v2)2

= (v1 ⊗ 1 + 1⊗ v2)(v1 ⊗ 1 + 1⊗ v2)

= v2
1 ⊗ 1 + v1 ⊗ v2 − v1 ⊗ v2 + 1⊗ v2

2

= QV1(v1)⊗ 1 + 1⊗QV2(v2)

= (QV1(v1) +QV2(v2))(1⊗ 1)

= QV1⊕V2(v1, v2)(1⊗ 1)

So by the universal property of the Clifford algebra (CQ, j) there exists a k-algebra homomorphism

T̂ : CQ1⊕Q2 −→ CQ1 ⊗ CQ2 . First we prove surjectivity, it is sufficient to prove that every pure tensor

x⊗ y ∈ CQ1 ⊗ CQ2 is mapped onto by some element by T̂ . Write x⊗ y = v1 . . . vn ⊗ u1 . . . um for some
u1, ..., un ∈ CQ1 , v1, ..., vm ∈ CQ2 . Since

v1 . . . vn ⊗ u1 . . . um = (v1 ⊗ 1) . . . (vn ⊗ 1)(1⊗ u1) . . . (1⊗ um) (92)

it suffices to show that for all pairs (v, u) ∈ V1 × V2 that v ⊗ u ∈ CQ1 ⊗ CQ2 is mapped onto by some

element by T̂ . Indeed:

T
(
(v, 0)(0, u)

)
= (v ⊗ 1 + 1⊗ 0)(0⊗ 1 + 1⊗ u)

= v ⊗ u

Surjectivity follows.
Injectivity?
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Definition 3.2.7. A bilinear form or a quadratic form is finite dimensional if V is.

For the next result, recall that a finite dimensional bilinear form is diagonalisable if and only if it is
symmetric (Proposition 3.1.5):

We are now in a position to describe a basis for CQ given one for V :

Proposition 3.2.8. Let v1, ..., vn be a basis for V . The set:

B := {vi1 ...vim | m ≤ n, vj ∈ V, 0 ≤ i1 < . . . < im ≤ n} (93)

forms a basis for CQ. In particular,
dimk CQ = 2dimk V (94)

Proof. This set clearly linearly generates CQ and so it suffices to show that (94) holds.
By Proposition 3.1.5 we have that Q = Q1 ⊕ . . . ⊕ Qn and by Proposition 3.2.6 it follows that

CQ1⊕...⊕Qn
∼= CQ1 ⊗ . . .⊗CQn . Thus it suffices to prove the case when dimk V = 1. This can be directly

analysed; we know
CQ ∼= C0

Q ⊕ C1
Q (95)

and C0
Q = k, C1

Q = k · e, where e 6= 0. Thus the dimension of CQ in this case is 2.

Proposition 3.2.9. Say V is finite dimensional and v1, ..., vn is a basis such that B(vi, vj) = 0 for all
i 6= j. Then the Clifford algebra CQ is multiplicatively generated by v1, ..., vn which satisfy the relations

v2
i = Q(vi), vivj + vjvi = 0, i 6= j (96)

Proof. The only non-obvious part follows from the calculation

(vi + vj)
2 = Q(vi + vj)

= B(vi + vj, vi + vj)

= B(vi, vi) + 2B(vi, vj) +B(vj, vj)

= Q(vi) +Q(vj)

= v2
i + v2

j

which implies
vivj + vjvi = 0, i 6= j (97)

Thus we may think of a Clifford algebra with respect to a finite quadratic form as the free algebra
on dimk V elements subject to the relations (96).

3.3 Clifford algebras of real or complex bilinear forms

In this Section we sometimes will think of the Clifford algebra as associated to a symmetric bilinear form,
rather than a quadratic form. There is no difficult difference, but we note that the correct universal
property of (CB, j) is:

∀v1, v2 ∈ V, j(v1)j(v2) + j(v2)j(v1) = 2B(v1, v2) · 1 (98)

We also introduce new notation; the Clifford algebra associated to a bilinear form B : V × V −→ k is
denoted C(V,B).

We can restate Remark 3.1.10 in terms of Clifford algebras:
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Corollary 3.3.1. Let k ∈ {R,C}. All Clifford algebras of quadratic forms over finite dimensional,
k-vector spaces which admit the same signature are isomorphic.

Notation 3.3.2. We denote:

� the Clifford algebra associated to the quadratic form (Rn,−x2
1 − . . .− x2

n) by Cn,

� the Clifford algebra associated to the quadratic form (Rn, x2
1 + . . .+ x2

n) by C ′n,

� the Clifford algebra associated to the quadratic form (Cn, z2
1 + . . .+ z2

n) by CC
n .

Remark 3.3.3. To explain the notation a bit, the equations defining the quadratic forms assume present
the value of a vector once it has been written with respect to the standard basis.

Throughout this Section, V is assumed to be a vector space over k with k ∈ {R,C}, and B :
V × V −→ k is a bilinear form. Given a real algebra A, the complexification is the C-algebra A ⊗R C
with multiplication given by (

(x⊗ z), (y ⊗ w)
)
7−→ (xy ⊗ zw) (99)

Also, given a bilinear form B : V ×V −→ k where V is a real vector space, we define the complexification
of B as BC : V ⊗R C −→ C given by

BC
(
(v1 ⊗ z1), (v2 ⊗ z2)

)
= B(v1, v2)z1z2 (100)

The following Proposition shows that the Clifford algebra of a complexification behaves well:

Proposition 3.3.4. We have
C(V ⊗R C, BC) ∼= C(V,B)⊗R C (101)

Proof. Consider the map ϕ : V ⊗R C −→ C(V,B)⊗R C given by ϕ(v ⊗ z) = v ⊗ z. This is such that

ϕ(v ⊗ z)2 = (v ⊗ z)2 = v2 ⊗ z2 = B(v, v)z2 · 1⊗ 1 = BC
(
(v ⊗ z), (v ⊗ z)

)
· 1 (102)

So ϕ induces a map ϕ̂ : C(V ⊗R C) −→ C(V,B)⊗R C which is an isomorphism with inverse induced by
the bilinear map C(V,B)× C −→ C(V ⊗R C, BC) given by (x, z) 7−→ x⊗ z.

Lemma 3.3.5. We have
CC
n
∼= Cn ⊗R C ∼= C ′n ⊗R C (103)

Proof. Denote by BCn , BC′n the bilinear form associated to Cn, C
′
n respectively. We have that Rn⊗RC ∼=

Cn and so by Corollary 3.3.1 it suffices to show that BCn
C and B

C′n
C are non-degenerate, which is easy to

show.

Example 3.3.6. We have CC
2
∼= C2 ⊗R C, and the latter algebra is generated by e1, e2 satisfying

e2
1 = e2

2 = −1, e1e2 + e2e1 = 0 (104)

On the other hand, the underlying vector space of the complex algebra M2(C) has a basis

I =

[
1 0
0 1

]
, g1 =

[
i 0
0 −i

]
, g2 =

[
0 i
i 0

]
, T =

[
0 −i
i 0

]
(105)

satisfying:
g2

1 = g2
2 = −I, g1g2 + g2g1 = 0, (106)

which implies CC
2
∼= M2(C).
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Two final isomorphisms (Proposition 3.3.7, Lemma 3.3.12) allows for a structure Theorem (Theorem
3.3.13)

Proposition 3.3.7. We have

Cn+2
∼= C ′n ⊗R C2, C ′n+2

∼= Cn ⊗R C
′
2 (107)

Here the tensor product is the usual one for algebras.

Proof. We satisfy ourselves with a proof sketch. The key Definition is the following:

u : R2 −→ C ′n ⊗R C2 (108)

defined on basis vectors e1, e2 ∈ Rn+2 as:

u(e1) = 1⊗ e1, u(e2) = 1⊗ e2, u(ej) = ej−2 ⊗ e1e2, j = 3, ..., n+ 2 (109)

and the key calculation is

u(ej)
2 = (ej−2 ⊗ e1e2)2

= e2
j−2 ⊗ e1e2e1e2

= 1⊗−e2
1e

2
2

= −1

In the penultimate step we have used the fact that e2
j−2 = 1 in C ′n and that e1e2 + e2e1 = 0 in C2.

Remark 3.3.8. Notice that had we mapped u into Cn ⊗R C2 instead of into C ′n ⊗R C2 then u(ej)
2 = 1

which would not induce a map Cn+2 −→ C ′n ⊗R C2.

Remark 3.3.9. In Proposition 3.3.7, one might suggest (incorrectly) defining u : Cn+2 −→ Cn ⊗R C2

by
u(e1) = 1⊗ e1, u(e2) = 1⊗ e2, u(ej) = ej−2 ⊗ 1, j = 3, ..., n+ 2 (110)

but this does not work as then (for example)

u(e1)u(e3) + u(e3)u(e1) = (1⊗ e1)(e1 ⊗ 1) + (e1 ⊗ 1)(1⊗ e1)

= 2e1 ⊗ e1 6= 0

Corollary 3.3.10. We have
CC
n+2
∼= CC

n ⊗C M2(C) (111)

given explicitly by the following (g1, g2 are as in Example 3.3.6)

e1 7−→ 1⊗ e1, e2 7−→ 1⊗ e2, ej 7−→ iej−2 ⊗ g1g2, j = 3, ..., n+ 2 (112)

Proof. This follows from an algebraic manipulation:

CC
n+2
∼= Cn+2 ⊗R C
∼= (C ′n ⊗R C2)⊗R C
∼= (C ′n ⊗R C)⊗C (C2 ⊗R C)

∼= CC
n ⊗C C

C
2

∼= CC
n ⊗C M2(C)
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We note that for j > 2, the element ej is mapped along these isomorphisms in the following way:

ej 7−→ ej ⊗R 1 (113)

7−→ (ej−2 ⊗R e1e2)⊗R 1 (114)

7−→ (ej−2 ⊗R 1)⊗C (e1e2 ⊗R 1) (115)

7−→ iej−2 ⊗C e1e2 (116)

7−→ iej−2 ⊗C g1g2 (117)

Remark 3.3.11. In yet more detail, concentrating on C ′n ⊗C R ∼= CC
n , we asserted this in Lemma 3.3.5

and justified it by saying that all non-degenerate bilinear forms over Cn are equivalent. Unwinding this,
we see that the bilinear form corresponding to C ′n is −I when written with respect to the basis e1, ..., en
of Cn. Writing this with respect to the basis ie1, ..., ien, the matrix representation is I,which explains
where the factor of i in (116) comes from.

Lemma 3.3.12. We have:
CC

1
∼= C1 ⊗R C ∼= C⊕ C (118)

Proof. The vector space R is 1-dimensional, so we are in the same situation as the proof of Proposition
3.2.8, we use similar logic. We have that C1

∼= C0
1 ⊕ C1

1 where C0
1
∼= R and C1

1
∼= R · e where e is some

formal variable. This is subject to the single relation e2 = −1 and so C1
∼= C. The result follows.

Theorem 3.3.13. There is the following decomposition:

� If n = 2k is even,

CC
n
∼= M2(C)⊗ . . .⊗M2(C) ∼= End(C2 ⊗ . . .⊗ C2) ∼= End((C2)⊗k) (119)

given explicitly by the following, we make use of the function

α(j) =

{
1, j odd,

2, jeven

ej 7−→ I ⊗ . . .⊗ I ⊗ gα(j) ⊗ T ⊗ . . .⊗ T (120)

� if n = 2k + 1 is odd,
CC
n
∼= End(C2k)⊕ End(C2k) (121)

Consider a complex vector space F along with its dual F ∗. We look at the special case of the above
theory when V = F ⊕ F ∗. We begin by defining the following bilinear form on V .

B : V × V −→ C(
(x, ν), (y, µ)

)
7−→ 1

2

(
ν(y) + µ(x)

)
The Clifford algebra Cn(V,B) with respect to this bilinear form is the associative Z2-graded commutative
C-algebra generated by elements γ1, . . . , γn, γ

†, . . . , γ†n subject to the following conditions, where [a, b] =
ab− (−1)|a||b|ba and |γi| = 1,∀i.

[γi, γj] = 0 [γ†i , γ
†
j ] = 0 [γi, γ

†
j ] = δij (122)

Let Fn denote the free complex vector space Cθ1⊕ . . .⊕Cθn (where θ1, . . . , θn are formal variables) and
let Sn denote the exterior algebra of Fn.

Sn :=
∧

Fn =
∧

(Cθ1 ⊕ . . .⊕ Cθn) (123)
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Lemma 3.3.14. There is an isomorphism of C-algebras

Cn(V,B) −→ EndC(Sn)

† 7−→

Definition 3.3.15. Let Qi : Vi −→ k be quadratic forms for i = 1, 2. Let f : V1 −→ V2 be a linear
map, by composing with the inclusion l : V2 −→ CQ2 there is an induced map ϕ : V1 −→ CQ2 such that
for all v ∈ V1 we have

ϕ(v)2 = f(v)2 = Q2(f(v)) · 1 (124)

and so if Q2(f(v)) = Q1(v) for all v ∈ V we have by the universal property of CQ1 that there exists a
unique morphism CQ1 −→ CQ2 which we denote by C(f).

Lemma 3.3.16. The map C(f) is an isomorphism if f is.

Proof. Easy.
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