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1 Transporting proofs

It is common practice to observe that certain properties were not used inside
some proof and to then conclude that the proof still holds in a more general
setting. For instance, we can prove that any ring R has unique additive
identity using the following argument: say there were two additive identities
0, 0′, then we have

0 = 0 + 0′ = 0′ + 0 = 0′ (1)

and thus 0 = 0′. Now we observe that we never made use of the multiplicative
structure of R in the proof, and so indeed this proof holds in the more general
setting where R is any abelian group.

We can do this more precisely using first order logic. Consider the first
order theory of rings.

Definition 1.0.1. We define R, the first order theory of rings, beginning
with the first order language of rings. R consists of a single sort A. We
introduce 5 function symbols.

� 0, 1 : A,

� − : A −→ A,

� +, · : A× A −→ A.

The first order language of fields has no relation symbols.
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The axioms are given as follows.

∀x∀y∀z(x+ y) + z = x+ (y + z) (2)

∀x∀yx+ y = y + x (3)

∀xx+ 0 = x (4)

∀x∃yx+ y = 0 (5)

∀x∀y∀z(x · y) · z = x · (y · z) (6)

∀xx · 1 = 1 · x = x (7)

∀x∀y∀zx · (y + z) = x · y + x · z (8)

∀xx+ (−x) = 0 (9)

This set of formulas forms the axioms of R.

We observe the following proof π which shows that the additive inverse
is unique.

∀x∃yx+ y = 0
∀E∃ya+ y = 0

[a+ b = 0]1
∀zz + 0 = z ∀Ec+ 0 = c

= E
a+ (b+ c) = a

Associativity
(a+ b) + c = a

[a+ b = b]2 [a+ b = 0]1
= E

(a+ b) + c = 0
= Ea = 0

∃E1
a = 0 ⇒ I2a+ b = b⇒ a = 0 ∀I∀xx+ b = b⇒ x = 0 ∀I∀y∀xx+ y = y ⇒ x = 0

The first order theory of abelian groups A has only one sort, only three
function symbols

� 0 : A

� − : A −→ A

� + : A× A −→ A

and consists of the first four axioms listed in Definition 1.0.1. We notice
that the proof π only makes use of axioms which appear in the first order
theory of abelian groups. That is, π is also a proof pertaining to that first
order theory. It then follows from the Soundness Theorem [1] that all abelian
groups have a unique additive inverse.

We have demonstrated a proof technique using model theory in a trivial
example. The reason why this example is trivial is because there was no need
to ever consider rings in the first place. The goal of this note is to use this
technique in a non-trivial way. We will prove the Ax-Grothendieck Theorem.
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2 Ax-Grothendieck Theorem

The Ax-Grothendieck Theorem is was independently discovered by James
Ax and Alexandre Grothendieck, respectively [2], [3]. These notes follow the
Swanson’s blog post https://mathmondays.com/ax-grothendieck [4].

Theorem 2.0.1 (Ax-Grothendieck Theorem). Let f : Cn −→ Cn be a
polynomial. If f is injective, then it is surjective.

We will proceed by first defining the first order theory of fields.

Definition 2.0.2. We define F , the first order theory of fields, beginning
with the first order language of fields. F consists of a single sort A. We
introduce 5 function symbols.

� 0, 1 : A,

� − : A −→ A,

� +, · : A× A −→ A.

The first order language of fields has no relation symbols.
The axioms are given as follows.

∀x∀y∀z(x+ y) + z = x+ (y + z) (10)

∀x∀yx+ y = y + x (11)

∀xx+ 0 = x (12)

∀x∃yx+ y = 0 (13)

∀x∀y∀z(x · y) · z = x · (y · z) (14)

∀xx · 1 = 1 · x = x (15)

∀x∀y∀zx · (y + z) = x · y + x · z (16)

∀xx+ (−x) = 0 (17)

∀xx 6= 0⇒ ∃y, xy = 1 (18)

This set of formulas forms the axioms of F .

We then extend this to the first order theory of algebriacally closed fields
of characteristic p, where p is either a prime number or 0. We do this by
considering the following first order sentences.
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Definition 2.0.3. For each d ≥ 1 define the following formula.

Pd := ∀a0 . . . ∀ad∃x, ad 6= 0 ∧ a0 + a1x+ . . .+ ad−1x
d−1 + adx

d = 0 (19)

For each prime number p define the following formula.

Sp := 1 + . . .+ 1 = 0 (20)

where there are p instances of 1 in (20).

Definition 2.0.4. Let ACF denote the first order theory of algebrically
closed fields which is over the same language as F and consists of all the
axioms of Definition 2.0.2 along with Pd for each d ≥ 1.

The first order theory of algebraically closed fields of characteristic
p is denoted ACFp and consists of all the axioms of ACF along with Sp.

Lastly, the first order theory of algebraically closed fields of characteristic
0 is denoted ACF0 and consists of all the axioms of ACF along with the
formula ¬Sp for each prime number p.

Theorem 2.0.1 will follow the corresponding statement in the finite characteristic
case.

Lemma 2.0.5. Let f : Fp
n −→ Fp

n
be a polynomial (p a prime number). If

f is injective then it is surjective.

Proof. Let y = (y1, . . . , yn) ∈ Fp
n

be arbitrary. Consider the field extension
K ⊇ Fp generated by y1, . . . , yn as well as the coefficients of f . Since every
element of Fp is algebraic over Fp (by the definition of an algebraic closure)
we have K is an algebraic extension and thus a finite extension of Fp. Since
Fp is finite, this implies K is finite. Lastly, we notice that fields are closed
under polynomial expressions, and so f(Kn) ⊆ Kn, which by injectivity and
finiteness implies f(Kn) = Kn. Hence there exists z ∈ Kn ⊆ Fp

n
such that

f(y) = z.

Corollary 2.0.6. Let k be an algebraically closed field and f : kn −→ kn

a polynomial. If ALGp is complete for all p = 0 or p prime, and if f is
injective, then f is surjective.

Proof. We need to turn the statement of the corollary into a first order
formula, but we cannot do that if we try to work with a polynomial of
arbitrary degree. So instead we will consider the statement “If f is an
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injective, degree d polynomial then it is surjective”. The idea is to take
the following statement

∀a0 . . . ∀ad(∀x∀y, f(x) = f(y)⇒ x = y) (21)

=⇒ ∀y∃x, y = f(x) (22)

and write out f explicitly. This is where we use the fact that f is a polynomial
(of degree d). Our first order statement is:

∀a0 . . . ∀ad(∀x∀y, a0 + a1x+ . . .+ ad−1x
d−1 + adx

d

= a0 + a1y + . . .+ ad−1y
d−1 + ady

d ⇒ x = y)

⇒ ∀y∃x, y = a0 + a1x+ . . .+ ad−1x
d−1 + adx

d

Denote this formula Bd.
Fix a prime p. Since ACFp is complete, we either have

ACFp ` Bd or ACFp ` ¬Bd (23)

Say ACFp ` ¬Bd. Then in any model I of ACFp and any valuation ν
we would have Iν(¬Bd) = 1. This means Iν(Bd) = 0, and unwinding Bd

we eventually obtain a polynomial f which is injective but not surjective,
contradicting Lemma 2.0.5. Thus, ACFp 6` ¬Bd, that is, there is no proof in
ACFp of ¬Bd.

Now, ACF0 is also complete, so either

ACF0 ` Bd or ACF0 ` ¬Bd (24)

Again, assume ACF0 ` ¬Bd. Let π be such a proof of ACF0 ` ¬Bd. Since
π is finite, only finitely many axioms of ACF0 appear amongst its premises.
Thus, there exists some prime q such that ¬Sq does not appear amongst the
premises of π. That is, π is a valid proof in ACF q! This contradicts the first
half of this proof, and so ACF0 6` ¬Bd. That is, ACF0 ` Bd. The result
then follows by soundness.

It now remains to show that ALGp is complete for all p = 0 and p prime.
In [1] we prove the Lowenhiem-Skolem Theorem and the  Loś-Vaught test.

Theorem 2.0.7 (Lowenhiem-Skolem Theorem). Let T be a first order theory
with one sort A which admits a model I so that I(A) is infinite in cardinality.
Then for any cardinal κ there exists a model J of T so that |J (A)| = κ.
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Lemma 2.0.8 ( Loś-Vaught test). Let T be a first order theory over Σ.
Assume T satisfies the following.

� Σ has only 1 sort, A say.

� T has no finite models (that is, for every model I we have I(A) is an
infinite set.

� There exists some infinite cardinal κ for which there is exactly one
model of T of size κ up to isomorphism.

Then T is complete.

All ALGp for p a prime number or 0 are first order theories with only one
sort. That ALGp satisfies the second dotpoint is the following Lemma.

Lemma 2.0.9. If k is an algebraically closed field, then k is infinite.

Proof. Say k was finite. Consider the polynomial

f(x) = 1−
∏
α∈k

(x− α) ∈ k[x] (25)

Then for all α ∈ k we have f(α) = 1 6= 0, and so k is not algebraically
closed.

Now we establish the third dotpoint. We begin by recalling the algebraic
closure of a field.

Lemma 2.0.10. Every field F can be embedded into an algebraically closed
field F .

Proof. Let Λ be the collection of monic, irreducible polynomials with coefficients
in F . For each f ∈ F , let uf,0, ..., uf,d be formal indeterminants, where d is
the degree of f . Let F [{U}] be the polynomial ring over F where U is the
collection of all uf,i. Write

f −
d∏
i=0

(x− uf,i) =
d−1∑
i=0

αf,ix
i ∈ F [{U}][x]

Let I be the ideal generated by αf,i. I is not all of F [{U}] so there exists a
maximal ideal M containing I. Let F1 = F [{U}]/M . Repeat this process to
define fi for all i > 0. Then ∪∞i=1Fi is algebraically closed which F embeds
into, and moreover is an algebraic extension of F .
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Corollary 2.0.11. If F is infinite, then the cardinality of F is equal to the
cardinality of F .

If F is finite, then the cardinality of F is countably infinite.

Proof. Using the notation of the proof of Lemma 2.0.10, we first observe that
the |{U}| = |F |

Lemma 2.0.12. Let p be either a prime number or 0 and let κ ≥ ℵ1
be an uncountable cardinal. There exists an algebraically closed field of
characteristic p whose cardinality is κ. Moreover, this field is unique up
to isomorphism.

Proof. Define F to be

p =

{
Q, p = 0

Fp, p 6= 0
(26)

Let X be any set of cardinality κ (eg, X = R) and consider the polynomial
ring F [{X}]. The ideal I ⊆ F [{X}] generated by X is not all of F [{X}] and
so is contained in some maximal ideal m (using Zorn’s Lemma). The field
F [{X}]/m has cardinality ℵ1, as there are countably many polynomials over
a single indeterminant, and we claim that the algebraic closure F [{X}]/m of
F [{X}]/m also has cardinality κ.

Thus, in the notation of Lemma 2.0.10, Fi has cardinality κ for all i ≥ 0.
Since F [{X}]/m is the countable union of all of these fields, it follows that
the cardinality of F [{X}]/m is κ.

The uniqueness claim follows easily by considering a transcendental basis
of F [{X}]/m and observing that this basis has cardinality κ. The rest follows
from the universal property of the algebraic closure.

Corollary 2.0.13. There is only one model (up to isomorphism) of ALG0
and of ALGp for each cardinal κ ≥ ℵ1.
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