
An Introduction to untyped λ-calculus

Will Troiani

August 2019

1 Introduction

Across the different definitions of an algorithm the execution of a computation is in
some way a process of allowed transformations to an expression which either continues
indefinitely or terminates after a finite number of steps. For example,

1 + 2 + 3 (1)

is not computed yet, as it may be transformed to

3 + 3

which can then be transformed to 6. Of course, there is another route of computation
which could have been taken, performing the second addition of (1) first obtains 1 + 5,
which then yields 6. The property that there exists the term 6 which both computation
paths 1 + 2 + 3→ 3 + 3 and 1 + 2 + 3→ 1 + 5 can be computed to is the property of
confluence of natural number addition.

The goal of this note is to introduce a system of computation, the untyped λ-calculus,
and prove the Church-Rosser theorem which states that the untyped λ-calculus is
confluent.

2 The Untyped λ-Calculus

The untyped λ-calculus sits among a collection of type theories which have been used
as a foundation for mathematics [7], a foundation for logic [1], (although it was later
found to be inconsistent [2]), and a foundation of certain programming languages such
as AGDA, Lisp, Haskell, Coq, COC, etc. The untyped λ-calculus is the simplest of
these theories, and although is rarely used in its original form, is a good entry point to
many of the important ideas concerning the more modern type theories.

The main reference for this section is [4, §3.3].

1

Definition 1. Let V be a (countably) infinite set of variables, and let L be the
language consisting of V along with the special symbols

λ . ()

Let L ∗ be the set of words of L , more precisely, an element w ∈ L ∗ is a finite sequence
(w1, ..., wn) where each wi is in L , for convenience, such an element will be written as
w1...wn. Now let Λp denote the smallest subset of L ∗ such that

� if x ∈ V then x ∈ Λp,

� if M,N ∈ Λp then (MN) ∈ Λp,

� if x ∈ V and M ∈ Λp then (λx.M) ∈ Λp

Λp is the set of preterms. A preterm M such that M ∈ V is a variable, if M =
(M1M2) for some preterms M1,M2, then M is an application, and if M = (λx,M ′)
for some x ∈ V and M ′ ∈ Λp then M is an abstraction.

In practice, it becomes unwieldy to use this notation for the preterms exactly, and
so the following notation is adopted:

Definition 2. � For pretermsM1,M2,M3, the pretermM1M2M3 means ((M1M2)M3)),

� For variables x, y and a preterm M , the preterm λxy.M means (λx.(λy.M)).

The variables x which appear in the subpreterm M of a preterm λx.M are viewed
as “markers for substitution”, (see Remark 3). For this reason, a distinction is made
between the variable x and the variable y in, for example, the preterm λx.xy:

Definition 3. Given a preterm M , let FV(M) be the following set of variables, defined
recursively

� if M = x where x is a variable then FV(M) = {x},

� if M = M1M2 then FV(M) = FV(M1) ∪ FV(M2),

� if M = λx.M ′ then FV(M) = FV(M ′) \ {x}.

A variable x ∈ FV(M) is a free variable of M , a variable x which appears in M but
is not a free variable is a bound variable.

As mentioned, bound variables will be viewed as “markers for substitution”, so we
define the following equivalence relation on Λp which relates a preterm M to M ′ if M
can be obtained by replacing every bound occurrence of a variable x in M ′ with another
variable y:

2

Definition 4. For any term M , let M [x := y] be the preterm given by replacing every
bound occurrence of x in M with y. Define the following equivalence relation on Λp:
M ∼α M ′ if there exists x, y ∈ V such that M [x := y] = M ′, where no free variable
of M becomes bound in M [x := y]. In such a case, we say that M is α-equivalent to
M ′.

Remark 1. The reason why we need to let x and y be such that no free variable of M
becomes bound in M [x := y] is so that a preterm such as λx.y does not get identified
with the preterm λy.y.

We are now in a position to define the underlying language of λ-calculus:

Definition 5. Let Λ = Λp/∼α be the set of λ-terms. The set of free variables of a
λ-term [M] is FV(M), which can be shown to be well defined. For convenience, M will
be written instead of [M].

Now the dynamics of the computation of λ-terms will be defined.

Definition 6. Single step β-reduction →β is the smallest relation on Λ satisfying:

� the reduction axiom:

– for all variables x and λ-terms M,M ′, (λx.M)M ′ →β M [x := M ′], where
M [x := M ′] is the term given by replacing every free occurrence of x in M
with M ′,

� the following compatibility axioms:

– if M →β M
′ then (MN)→β (M ′N) and (NM)→β (NM ′),

– if M →β M
′ then for any variable x, λx.M →β λxM

′.

A subterm of the form (λx.M)M ′ is a β-redex, and (λx.M)M ′ single step β-reduces
to M [x := M ′].

Remark 2. Strictly, single step β reduction should be defined on preterms and then
shown that a well defined relation is induced on terms, but this level of detail has been
omitted for the sake of clarity.

Remark 3. The reducition axiom shows precisely in what sense a bound variable is a
“marker for substitution”. For example, (λx.x)M →β M and (λy.y)M →β M , which
is why λx.x is identified with λy.y.

It is through single step β-reduction that computation may be performed. In fact,
λ-calculus is capable of performing natural number addition:

Example 1. Define the following λ-terms:

� ONE := λfx.fx,

3

� TWO := λfx.ffx,

� THREE := λfx.fffx,

� PLUS := λmnfx.mf(nfx)

then

PLUS ONE TWO = (λmnfx.mf(nfx))(λfx.fx)(λfx.ffx)

→β (λnfx.(λfx.fx)f(nfx))(λfx.ffx)

→β (λnfx.(λx.fx)(nfx))(λfx.ffx)

→β (λnfx.fnfx)(λfx.ffx)

→β (λfx.f(λfx.ffx)fx)

→β (λfx.f(λx.ffx)x)

→β (λfx.fffx) = THREE

where each step is obtained by substituting the right most underlined λ-term inplace
of the left most underlined variable.

Historically, is this how Church first defined computable functions.

3 The Church-Rosser Theorem

Example 1 shows one possible sequence of β-reductions which reduces PLUS ONE TWO
to THREE, however, different valid sequences exist. Moreover, no matter what path
is taken, one can always find a path to THREE. The following theorem, which is the
main point of this note, states that such a term always exists:

Definition 7. Multi step β-reduction � (or simply β-reduction) is the smallest
relation on Λ satisfying

� the reduction axiom:

– if M →β M
′ then M �M ′,

� reflexivity:

– if M = M ′ then M �M ′,

� transitivity:

– if M1 �M2 and M2 �M3 then M1 �M3

If M �M ′, then M multistep β-reduces to M ′.

4

Theorem 1 (The Church Rosser Theorem). If M1 � M2 and M1 � M3 then there
exists a term M4 such that the diagram

M1 M2

M3 M4

commutes. That is, multi step β reduction is confluent.

Proof. The proof will proceed by introducing a new relation⇒ on Λ which satisfies the
following:

� if M →β M
′ then M ⇒M ′,

� if M ⇒M ′ then M �M ′,

� if M1 ⇒ M2 and M1 ⇒ M3 then there exists M4 ∈ Λ which makes the following
diagram commute

M1 M2

M3 M4

This is sufficient as if M1 = M11, ...,M1m and M1 = M11, ...,Mn1 are sequences of
λ-terms such that

M11 →β M
12 →β . . .→β M

1m

and
M11 →β M

21 →β . . .→β M
n1

then the diagram

M1 = M11 M12 . . . M1m = M2

M21

...

M3 = Mn1

5

can be completed to the following commuting diagram

M1 = M11 M12 . . . M1m = M2

M21 M22 . . . M2m

...
...

. . .
...

M3 = Mn1 Mn2 . . . Mnm

from which it follows that Mnm satisfies the required properties of M4.

Towards this end, define the following relation on Λ:

Definition 8. Parallel β reduction ⇒ is the smallest relation on Λ satisfying

� the reduction axiom:

– if M ⇒M ′ and N ⇒ N ′ then (λx.M)N ⇒M ′[x := N ′],

� reflexivity:

– if M = M ′ then M ⇒M ′,

� the following compatibility axioms:

– if M ⇒M ′ and N ⇒ N ′ then (MN)⇒ (M ′N ′),

– if M ⇒M ′ then λx.M ⇒ λx.M ′.

Remark 4. β-reduction might introduce new β-redexes which are not “visible” in the
original term. For example

(λx.xxx)(λx.x) � (λx.x)(λx.x)(λx.x)

By transitivity, (λx.xxx)(λx.x) � λx.x. However, parallel β-reduction is not transitive,
so (λx.xxx)(λx.x) 6⇒ λx.x. So M ⇒ N only if N is obtained from M by reducing a
collection of the β redexes in M and not ones which are introduced by this reduction
process.

Clearly, if M →β M
′ then M ⇒ M ′ and if M ⇒ M ′ then M � M ′. It remains to

show that parallel β reduction is confluent.

First, we claim that if M1 ⇒ M2 and N1 ⇒ N2 then M1[x := N1] ⇒ M2[x := N2]. To

6

prove this claim, we proceed by inducting on the “minimum number of usages of the
axioms of parallel β reduction required to prove that M1 ⇒M2”. More precisely, let

S0 := {(M,M) |M ∈ Λ}

and for i > 0, let Si be the smallest set such that

� Si−1 ⊆ Si,

� if (M1,M2), (N1, N2) ∈ Si−1 then ((M1N1), (M2N2)) ∈ Si,

� if (M,N) ∈ Si−1 then (λx.M, λx.N) ∈ Si,

� if (M1,M2), (N1, N2) ∈ Si−1 then ((λx.M1)N1, N2[x := M2]) ∈ Si

Clearly, M ⇒ N if and only if (M,N) ∈ S := ∪∞i=0Si. Define the following function:

ϕ : S → N
(M,N) 7→ min{i ∈ N | (M,N) ∈ Si}

we proceed by (strong) induction on ϕ(M1,M2). If ϕ(M1,M2) = 0 then M1 = M2

from which it follows that M1[x := N1] ⇒ M2[x := N2]. Say the result holds true for
ϕ(M1,M2) < k. Then there are three cases, corresponding to M1 being a variable, an
application, or an abstraction (see Definition 1). If M1 is a variable, then ϕ(M1,M2) = 0
and we have reduced to the base case. If M1 = λy.M ′

1 then M1 ⇒ M2 implies that
M2 = λx.M ′

2. By the inductive hypothesis M ′
1[x := N1]⇒M ′

2[x := N2] which implies

λy.(M ′
1[x := N1])⇒ λy.(M ′

2[x := N2])

so, (λy.M ′
1)[x := N1]⇒ (λy.M ′

2)[x := N2]

so, M1[x := N1]⇒M2[x := N2]

Lastly, say M1 = (M1
1M

2
1). Then either M1

1 is an abstraction or it is not. If it is not
then the proof is similar to the case where M1 is an abstraction. Say M1

1 = (λx.M1′
1).

Now, either M2 = (λx.M1′
2)M2

2 , in which case the proof is similar to the case when M1

is an abstraction, or M2 = M1′
2 [x := M2

2]. In this case, by the inductive hypothesis we
have

M1′

1 [x = N1]⇒M1′

2 [x = N2]

and
M2

1 [x = N1]⇒M2
2 [x = N2]

from which it follows that

(λx.M1′

1 [x := N1])(M2
1 [x := N1])⇒ (λx.M1′

2 [x := N2])(M2
2 [x := N2])

which implies

M1[x := N1] =
(
(λx.M1′

1)M2
1

)
[x := N1]⇒

(
(λx.M1′

2)M2
2

)
[x := N2] = M2[x := N2]

7

which establishes the claim.

To finish the proof, say M1 ⇒ M2 and M1 ⇒ M3, we will show that there exists
an appropriate term M4 by induction on l(M1), the length of M1. This is broken up
into cases in a similar way to the proof of the claim above, the only non-trivial case is
when

M1 = (λx.M1′

1)M2
1 , M2 = M1′

2 [x := M2
2], M3 = M1′

3 [x := M2
3]

By the inductive hypothesis, there exists M1′
4 and M2

4 such that the diagrams

M1′
1 M1′

2

M1′
3 M1′

4

M2
1 M2

2

M2
3 M2

4

both commute. Now, by the claim proved above,

M1′

2 [x := M2
2]⇒M1′

4 [x := M2
4] M1′

3 [x := M2
3]⇒M1′

4 [x := M2
4]

and so,
(λx.M1′

2)M2
2 ⇒ (λx.M1′

4)M2
4 (λx.M1′

3)M2
3 ⇒ (λx.M1′

4)M2
4

ie, the diagram

M1 M2

M3 M4

commutes, as required.

References

[1] A. Church, An Unsolvable Problem of Elementary Number Theory, American
Journal of Mathematics, Vol. 58, No. 2. (Apr., 1936), pp. 345-363.

[2] A. Church, A Set of Postulates for the Foundation of Logic Annals of Mathematics
Second Series, Vol. 33, No. 2 (Apr., 1932), pp. 346-366

[3] A. Church, A Set of Postulates for the Foundation of Logic (Second Paper), Annals
of Mathematics Vol. 34, No. 4 (Oct., 1933), pp. 839-864

[4] M. Sørensen, P. Urzyczyn, Lectures on the Curry-Howard Isomorphism, Studies in
Logic and the Foundations of Mathematics, 4th July 2006.

8

[5] A. Turing, [Delivered to the Society November 1936], “On Computable Numbers,
with an Application to the Entscheidungsproblem” (PDF), Proceedings of the
London Mathematical Society, 2, 42, pp. 230–65, doi:10.1112/plms/s2-42.1.230
and Turing, A.M. (1938). “On Computable Numbers, with an Application to the
Entscheidungsproblem: A correction”. Proceedings of the London Mathematical
Society. 2. 43 (published 1937). pp. 544–6, 1937

[6] K. Gödel “On Undecidable Propositions of Formal Mathematical Systems”. In
Davis, Martin (ed.). The Undecidable. Kleene and Rosser (lecture note-takers);
Institute for Advanced Study (lecture sponsor). New York: Raven Press, 1934.

[7] J. Lambek, P.J. Scott, Introduction to Higher Order Categorical Logic, Cambridge
University Press, New York, 1986.

9

	Introduction
	The Untyped -Calculus
	The Church-Rosser Theorem

