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1 Introduction

Across the different definitions of an algorithm the execution of a computation is in
some way a process of allowed transformations to an expression which either continues
indefinitely or terminates after a finite number of steps. For example,

1+243 (1)
is not computed yet, as it may be transformed to
3+3

which can then be transformed to 6. Of course, there is another route of computation
which could have been taken, performing the second addition of first obtains 1 + 5,
which then yields 6. The property that there exists the term 6 which both computation
paths 1+2+3 >3+ 3and 1+2+ 3 — 145 can be computed to is the property of
confluence of natural number addition.

The goal of this note is to introduce a system of computation, the untyped \-calculus,
and prove the Church-Rosser theorem which states that the untyped A-calculus is
confluent.

2 The Untyped M-Calculus

The untyped A-calculus sits among a collection of type theories which have been used
as a foundation for mathematics [7], a foundation for logic [I], (although it was later
found to be inconsistent [2]), and a foundation of certain programming languages such
as AGDA, Lisp, Haskell, Coq, COC, etc. The untyped A-calculus is the simplest of
these theories, and although is rarely used in its original form, is a good entry point to
many of the important ideas concerning the more modern type theories.

The main reference for this section is [4, §3.3].



Definition 1. Let ¥ be a (countably) infinite set of variables, and let £ be the
language consisting of 7" along with the special symbols

A : ( )

Let .Z* be the set of words of £, more precisely, an element w € Z* is a finite sequence
(w1, ..., w,) where each w; is in &, for convenience, such an element will be written as
wy...w,. Now let A, denote the smallest subset of .Z* such that

o if v € ¥ then x € A,
o if M,N € A, then (MN) € A,,
o if € ¥ and M € A, then (\z.M) € A,

A, is the set of preterms. A preterm M such that M € 7 is a variable, if M =
(M Ms) for some preterms My, My, then M is an application, and if M = (Az, M’)
for some z € ¥ and M’ € A, then M is an abstraction.

In practice, it becomes unwieldy to use this notation for the preterms exactly, and
so the following notation is adopted:

Definition 2. e For preterms My, My, M3, the preterm My My Mz means ((M; M) Ms)),
e For variables z,y and a preterm M, the preterm Azxy.M means (Az.(Ay.M)).

The variables x which appear in the subpreterm M of a preterm Ax.M are viewed
as “markers for substitution”, (see Remark . For this reason, a distinction is made
between the variable x and the variable y in, for example, the preterm Ax.zy:

Definition 3. Given a preterm M, let FV(M) be the following set of variables, defined
recursively

e if M =z where z is a variable then FV(M) = {z},
o if M = M, M, then FV(M) = FV(M,;) UFV(My),
o if M = \z.M’ then FV(M) = EV(M')\ {z}.

A variable x € FV(M) is a free variable of M, a variable z which appears in M but
is not a free variable is a bound variable.

As mentioned, bound variables will be viewed as “markers for substitution”, so we
define the following equivalence relation on A, which relates a preterm M to M’ if M
can be obtained by replacing every bound occurrence of a variable x in M’ with another
variable y:



Definition 4. For any term M, let M [z := y] be the preterm given by replacing every
bound occurrence of x in M with y. Define the following equivalence relation on A,:
M ~, M’ if there exists z,y € ¥ such that M|z := y] = M’', where no free variable
of M becomes bound in M|z := y]. In such a case, we say that M is a-equivalent to
M.

Remark 1. The reason why we need to let z and y be such that no free variable of M
becomes bound in M|z := y] is so that a preterm such as Az.y does not get identified
with the preterm \y.y.

We are now in a position to define the underlying language of A-calculus:

Definition 5. Let A = A»/~, be the set of A-terms. The set of free variables of a
A-term [M] is FV(M), which can be shown to be well defined. For convenience, M will
be written instead of [M].

Now the dynamics of the computation of A-terms will be defined.
Definition 6. Single step -reduction —4 is the smallest relation on A satisfying:
e the reduction axiom:

— for all variables x and A-terms M, M', (Ax.M)M' —5 M[z := M'], where
Mz := M'] is the term given by replacing every free occurrence of x in M
with M,

e the following compatibility axioms:
— it M =5 M’ then (MN) —3 (M'N) and (NM) —5 (NM'),
— if M — 5 M’ then for any variable x, Az.M — 5 Az M'.

A subterm of the form (Ax.M)M’ is a f-redex, and (A\x.M )M’ single step [-reduces
to Mz == M'].

Remark 2. Strictly, single step S reduction should be defined on preterms and then
shown that a well defined relation is induced on terms, but this level of detail has been
omitted for the sake of clarity.

Remark 3. The reducition axiom shows precisely in what sense a bound variable is a
“marker for substitution”. For example, (Az.x)M —3 M and (Ay.y)M —z M, which
is why Ax.x is identified with Ay.y.

It is through single step p-reduction that computation may be performed. In fact,
A-calculus is capable of performing natural number addition:

Example 1. Define the following A-terms:
e ONE := A\fx.fx,



o TWO = \fx.ffx,
o THREE := \fz.fffz,
o PLUS = Mmnfz.mf(nfz)
then

PLUS ONE TWO = (Amnfr.mf(nfx))(Afz.fo) Afx.ffz)
—5 ()\nfq:()\fxix)i(nfx))()\f:cffx)
Anfa.(Ar.fz)(nfe) (M. f f)

Anfe.fnfz)(\z.ffx)

=5 (

=8 (

=g Mo f(Nfo ffr)fr)
—g (M. f(Az.ffz)z)

—5 (Max.fffr)=THREE

where each step is obtained by substituting the right most underlined A-term inplace
of the left most underlined variable.

Historically, is this how Church first defined computable functions.

3 The Church-Rosser Theorem

Example[Ishows one possible sequence of S-reductions which reduces PLUS ONE TWO
to THREE, however, different valid sequences exist. Moreover, no matter what path
is taken, one can always find a path to THREE. The following theorem, which is the
main point of this note, states that such a term always exists:

Definition 7. Multi step f-reduction — (or simply f-reduction) is the smallest
relation on A satisfying

e the reduction axiom:
— it M =5 M’ then M — M’,
e reflexivity:
—if M = M’ then M — M’,
e transitivity:
— if My —» My and My — M5 then M; — M;

If M — M’, then M multistep p-reduces to M’.



Theorem 1 (The Church Rosser Theorem). If M; — My and My — Mjs then there
exists a term My such that the diagram

MlﬂMg

L

M3 —» M,y
commutes. That is, multi step [ reduction is confluent.

Proof. The proof will proceed by introducing a new relation = on A which satisfies the
following:

o if M —5 M’ then M = M,
o if M = M’ then M — M’,

e if My = M, and M; = Mj3 then there exists My € A which makes the following
diagram commute

M1:>M2

bl

M; —— M,

This is sufficient as if My, = MY, ..., MY and M, = MY, ..., M™ are sequences of
A-terms such that
MH —3 M12 —B ... 78 Mlm

and
]\411 —)5 le —)B —)5 ]\4”1

then the diagram

M1:M11:>M12 Mlm:M2
M21
M = M™



can be completed to the following commuting diagram

M1:M11:>M12 Mlm:MQ
M ——ns M?*? M2
My = M™ —= M"? M

from which it follows that M™™ satisfies the required properties of My.
Towards this end, define the following relation on A:
Definition 8. Parallel g reduction = is the smallest relation on A satisfying
e the reduction axiom:
— if M = M'"and N = N’ then (A\e.M)N = M'[z := N'],
e reflexivity:
— if M = M’ then M = M’,
e the following compatibility axioms:
— if M = M'"and N = N’ then (MN) = (M'N’),
— if M = M’ then A\x.M = \z.M’.

Remark 4. S-reduction might introduce new S-redexes which are not “visible” in the
original term. For example

(Ar.zzx)(Az.x) — (Av.x)(Az.x)(Az.x)

By transitivity, (Az.zzz)(Az.x) — Az.z. However, parallel S-reduction is not transitive,
so (A\r.zzzx)(Az.x) & Ar.x. So M = N only if N is obtained from M by reducing a
collection of the 3 redexes in M and not ones which are introduced by this reduction
process.

Clearly, it M —5 M’ then M = M’ and if M = M’ then M — M'. It remains to
show that parallel § reduction is confluent.

First, we claim that if M; = M, and Ny = N, then M;[x := Ni] = Ms[x := Ny]. To



prove this claim, we proceed by inducting on the “minimum number of usages of the
axioms of parallel § reduction required to prove that M; = M,”. More precisely, let

So:={(M,M) | M € A}

and for 7 > 0, let S; be the smallest set such that

e 5i1C S,

o if (M, My), (N1, No) € S;—1 then ((M1Ny), (MaNs)) € S;

o if (M,N) € S;_1 then (A\z.M, \z.N) € S,

o if (My, Ms), (N1, Ny) € S;_1 then ((Ax.M7)Ny, Nolx := My]) € S;
Clearly, M = N if and only if (M, N) € S := U°,S;. Define the following function:

p: S5 —=N
(M,N)— min{i e N| (M,N) € S;}

we proceed by (strong) induction on ¢(My, My). If @(My, My) = 0 then M; = M,
from which it follows that M;[z := Ny| = Ms[z := Ny]. Say the result holds true for
o(My, M) < k. Then there are three cases, corresponding to M; being a variable, an
application, or an abstraction (see Deﬁnition. If M, is a variable, then (M, Ms) =0
and we have reduced to the base case. If My = Ay.Mj then M; = M, implies that
My = Ax.MJ. By the inductive hypothesis M][z := Ni] = Mj[x := N,] which implies
Ay.(M{[z := N1]) = Ay.(My[z := Ns))
so, (A\y.M7)[z := Ni] = (\y. M) [x := Ny
S0, Ml[.fE = Nl] = MQ[,CIZ’ = NQ]
Lastly, say M; = (M} M?). Then either M| is an abstraction or it is not. If it is not
then the proof is similar to the case where M is an abstraction. Say M} = (\z.M]").
Now, either My = (Az. M} )M2, in which case the proof is similar to the case when M,
is an abstraction, or My = MJ [z := M2]. In this case, by the inductive hypothesis we

have
M [z = Ni] = My [x = Noj

and

from which it follows that
Az M [z = Ni])(M2[z == V1)) = O M [z := No])(M2[z == No))
which implies

M|z := Ny] = (()\lell)Mf)[:v =N = (()\xM%/)Mg)[x = Ny| = Ms[z := Ny

7



which establishes the claim.

To finish the proof, say M; = Ms and M; = M;, we will show that there exists
an appropriate term M, by induction on [(Mj), the length of M;. This is broken up
into cases in a similar way to the proof of the claim above, the only non-trivial case is
when

My = \e.MYYM2, My =Mz := M2,  Ms;= Mz := M2

By the inductive hypothesis, there exists M} and M? such that the diagrams

M = My M} —= M}
bl
M3 —= M} M3 =—= M}

both commute. Now, by the claim proved above,
M21/[:U = M3 = Mi/[:z: = M7 Mgll[x = M3 = Mi/[x = M7

and so,
Ao MIYMZ = Q. MOYM? e MP)YM2 = (\x.M})M?

ie, the diagram
Ml — M2

[

My —— M,

commutes, as required. O

References

[1] A. Church, An Unsolvable Problem of Elementary Number Theory, American
Journal of Mathematics, Vol. 58, No. 2. (Apr., 1936), pp. 345-363.

[2] A. Church, A Set of Postulates for the Foundation of Logic Annals of Mathematics
Second Series, Vol. 33, No. 2 (Apr., 1932), pp. 346-366

[3] A. Church, A Set of Postulates for the Foundation of Logic (Second Paper), Annals
of Mathematics Vol. 34, No. 4 (Oct., 1933), pp. 839-864

[4] M. Sgrensen, P. Urzyczyn, Lectures on the Curry-Howard Isomorphism, Studies in
Logic and the Foundations of Mathematics, 4th July 2006.



[5]

A. Turing, [Delivered to the Society November 1936], “On Computable Numbers,
with an Application to the Entscheidungsproblem” (PDF), Proceedings of the
London Mathematical Society, 2, 42, pp. 230-65, doi:10.1112/plms/s2-42.1.230
and Turing, A.M. (1938). “On Computable Numbers, with an Application to the
Entscheidungsproblem: A correction”. Proceedings of the London Mathematical
Society. 2. 43 (published 1937). pp. 5446, 1937

K. Godel “On Undecidable Propositions of Formal Mathematical Systems”. In
Davis, Martin (ed.). The Undecidable. Kleene and Rosser (lecture note-takers);
Institute for Advanced Study (lecture sponsor). New York: Raven Press, 1934.

J. Lambek, P.J. Scott, Introduction to Higher Order Categorical Logic, Cambridge
University Press, New York, 1986.



	Introduction
	The Untyped -Calculus
	The Church-Rosser Theorem

