An Introduction to untyped λ-calculus

Will Troiani

August 2019

1 Introduction

Across the different definitions of an algorithm the execution of a computation is in some way a process of allowed transformations to an expression which either continues indefinitely or terminates after a finite number of steps. For example,

$$
\begin{equation*}
1+2+3 \tag{1}
\end{equation*}
$$

is not computed yet, as it may be transformed to

$$
3+3
$$

which can then be transformed to 6 . Of course, there is another route of computation which could have been taken, performing the second addition of (1) first obtains $1+5$, which then yields 6 . The property that there exists the term 6 which both computation paths $1+2+3 \rightarrow 3+3$ and $1+2+3 \rightarrow 1+5$ can be computed to is the property of confluence of natural number addition.

The goal of this note is to introduce a system of computation, the untyped λ-calculus, and prove the Church-Rosser theorem which states that the untyped λ-calculus is confluent.

2 The Untyped λ-Calculus

The untyped λ-calculus sits among a collection of type theories which have been used as a foundation for mathematics [7], a foundation for logic [1], (although it was later found to be inconsistent [2]), and a foundation of certain programming languages such as AGDA, Lisp, Haskell, Coq, COC, etc. The untyped λ-calculus is the simplest of these theories, and although is rarely used in its original form, is a good entry point to many of the important ideas concerning the more modern type theories.

The main reference for this section is [4, §3.3].

Definition 1. Let \mathscr{V} be a (countably) infinite set of variables, and let \mathscr{L} be the language consisting of \mathscr{V} along with the special symbols

$$
\lambda \quad . \quad(\quad)
$$

Let \mathscr{L}^{*} be the set of words of \mathscr{L}, more precisely, an element $w \in \mathscr{L}^{*}$ is a finite sequence $\left(w_{1}, \ldots, w_{n}\right)$ where each w_{i} is in \mathscr{L}, for convenience, such an element will be written as $w_{1} \ldots w_{n}$. Now let Λ_{p} denote the smallest subset of \mathscr{L}^{*} such that

- if $x \in \mathscr{V}$ then $x \in \Lambda_{p}$,
- if $M, N \in \Lambda_{p}$ then $(M N) \in \Lambda_{p}$,
- if $x \in \mathscr{V}$ and $M \in \Lambda_{p}$ then $(\lambda x . M) \in \Lambda_{p}$
Λ_{p} is the set of preterms. A preterm M such that $M \in \mathscr{V}$ is a variable, if $M=$ $\left(M_{1} M_{2}\right)$ for some preterms M_{1}, M_{2}, then M is an application, and if $M=\left(\lambda x, M^{\prime}\right)$ for some $x \in \mathscr{V}$ and $M^{\prime} \in \Lambda_{p}$ then M is an abstraction.

In practice, it becomes unwieldy to use this notation for the preterms exactly, and so the following notation is adopted:

Definition 2. - For preterms M_{1}, M_{2}, M_{3}, the preterm $M_{1} M_{2} M_{3}$ means $\left.\left(\left(M_{1} M_{2}\right) M_{3}\right)\right)$,

- For variables x, y and a preterm M, the preterm $\lambda x y \cdot M$ means $(\lambda x .(\lambda y \cdot M))$.

The variables x which appear in the subpreterm M of a preterm $\lambda x . M$ are viewed as "markers for substitution", (see Remark 3). For this reason, a distinction is made between the variable x and the variable y in, for example, the preterm $\lambda x . x y$:

Definition 3. Given a preterm M, let $\mathrm{FV}(M)$ be the following set of variables, defined recursively

- if $M=x$ where x is a variable then $\mathrm{FV}(M)=\{x\}$,
- if $M=M_{1} M_{2}$ then $\operatorname{FV}(M)=\mathrm{FV}\left(M_{1}\right) \cup \operatorname{FV}\left(M_{2}\right)$,
- if $M=\lambda x \cdot M^{\prime}$ then $\mathrm{FV}(M)=\mathrm{FV}\left(M^{\prime}\right) \backslash\{x\}$.

A variable $x \in \mathrm{FV}(M)$ is a free variable of M, a variable x which appears in M but is not a free variable is a bound variable.

As mentioned, bound variables will be viewed as "markers for substitution", so we define the following equivalence relation on Λ_{p} which relates a preterm M to M^{\prime} if M can be obtained by replacing every bound occurrence of a variable x in M^{\prime} with another variable y :

Definition 4. For any term M, let $M[x:=y]$ be the preterm given by replacing every bound occurrence of x in M with y. Define the following equivalence relation on Λ_{p} : $M \sim_{\alpha} M^{\prime}$ if there exists $x, y \in \mathscr{V}$ such that $M[x:=y]=M^{\prime}$, where no free variable of M becomes bound in $M[x:=y]$. In such a case, we say that M is α-equivalent to M^{\prime}.

Remark 1. The reason why we need to let x and y be such that no free variable of M becomes bound in $M[x:=y]$ is so that a preterm such as $\lambda x . y$ does not get identified with the preterm $\lambda y . y$.

We are now in a position to define the underlying language of λ-calculus:
Definition 5. Let $\Lambda=\Lambda_{p} / \sim_{\alpha}$ be the set of λ-terms. The set of free variables of a λ-term $[M]$ is $\mathrm{FV}(M)$, which can be shown to be well defined. For convenience, M will be written instead of $[M]$.

Now the dynamics of the computation of λ-terms will be defined.
Definition 6. Single step β-reduction \rightarrow_{β} is the smallest relation on Λ satisfying:

- the reduction axiom:
- for all variables x and λ-terms $M, M^{\prime},(\lambda x . M) M^{\prime} \rightarrow_{\beta} M\left[x:=M^{\prime}\right]$, where $M\left[x:=M^{\prime}\right]$ is the term given by replacing every free occurrence of x in M with M^{\prime},
- the following compatibility axioms:
- if $M \rightarrow_{\beta} M^{\prime}$ then $(M N) \rightarrow_{\beta}\left(M^{\prime} N\right)$ and $(N M) \rightarrow_{\beta}\left(N M^{\prime}\right)$,
- if $M \rightarrow_{\beta} M^{\prime}$ then for any variable $x, \lambda x . M \rightarrow_{\beta} \lambda x M^{\prime}$.

A subterm of the form $(\lambda x . M) M^{\prime}$ is a β-redex, and $(\lambda x . M) M^{\prime}$ single step β-reduces to $M\left[x:=M^{\prime}\right]$.

Remark 2. Strictly, single step β reduction should be defined on preterms and then shown that a well defined relation is induced on terms, but this level of detail has been omitted for the sake of clarity.

Remark 3. The reducition axiom shows precisely in what sense a bound variable is a "marker for substitution". For example, $(\lambda x . x) M \rightarrow_{\beta} M$ and $(\lambda y . y) M \rightarrow_{\beta} M$, which is why $\lambda x . x$ is identified with $\lambda y . y$.

It is through single step β-reduction that computation may be performed. In fact, λ-calculus is capable of performing natural number addition:

Example 1. Define the following λ-terms:

- ONE $:=\lambda f x . f x$,
- TWO $:=\lambda f x . f f x$,
- THREE $:=\lambda f x . f f f x$,
- PLUS $:=\lambda m n f x \cdot m f(n f x)$
then

$$
\begin{aligned}
P L U S ~ O N E ~ T W O & =(\lambda m n f x \cdot \underline{m} f(n f x)) \underline{(\lambda f x . f x)}(\lambda f x . f f x) \\
& \rightarrow_{\beta}(\lambda n f x \cdot(\lambda f x \cdot \underline{f x}) \underline{f(n f x)})(\lambda f x . f f x) \\
& \rightarrow_{\beta}(\lambda n f x \cdot(\lambda x . \underline{x}) \underline{(n f x)})(\lambda f x . f f x) \\
& \rightarrow_{\beta}(\lambda n f x . f \underline{n} f x) \underline{(\lambda f x \cdot f f x)} \\
& \rightarrow_{\beta}(\lambda f x . f(\lambda f x \cdot \underline{f f x}) \underline{f x} x) \\
& \rightarrow_{\beta}(\lambda f x . f(\lambda x \cdot f \underline{x}) \underline{x}) \\
& \rightarrow_{\beta}(\lambda f x . f f f x)=T H R E E
\end{aligned}
$$

where each step is obtained by substituting the right most underlined λ-term inplace of the left most underlined variable.

Historically, is this how Church first defined computable functions.

3 The Church-Rosser Theorem

Example 1 shows one possible sequence of β-reductions which reduces PLUS ONE TWO to THREE, however, different valid sequences exist. Moreover, no matter what path is taken, one can always find a path to THREE. The following theorem, which is the main point of this note, states that such a term always exists:

Definition 7. Multi step β-reduction \rightarrow (or simply β-reduction) is the smallest relation on Λ satisfying

- the reduction axiom:
- if $M \rightarrow_{\beta} M^{\prime}$ then $M \rightarrow M^{\prime}$,
- reflexivity:
- if $M=M^{\prime}$ then $M \rightarrow M^{\prime}$,
- transitivity:
- if $M_{1} \rightarrow M_{2}$ and $M_{2} \rightarrow M_{3}$ then $M_{1} \rightarrow M_{3}$

If $M \rightarrow M^{\prime}$, then M multistep β-reduces to M^{\prime}.

Theorem 1 (The Church Rosser Theorem). If $M_{1} \rightarrow M_{2}$ and $M_{1} \rightarrow M_{3}$ then there exists a term M_{4} such that the diagram

commutes. That is, multi step β reduction is confluent.
Proof. The proof will proceed by introducing a new relation \Rightarrow on Λ which satisfies the following:

- if $M \rightarrow_{\beta} M^{\prime}$ then $M \Rightarrow M^{\prime}$,
- if $M \Rightarrow M^{\prime}$ then $M \rightarrow M^{\prime}$,
- if $M_{1} \Rightarrow M_{2}$ and $M_{1} \Rightarrow M_{3}$ then there exists $M_{4} \in \Lambda$ which makes the following diagram commute

This is sufficient as if $M_{1}=M^{11}, \ldots, M^{1 m}$ and $M_{1}=M^{11}, \ldots, M^{n 1}$ are sequences of λ-terms such that

$$
M^{11} \rightarrow_{\beta} M^{12} \rightarrow_{\beta} \ldots \rightarrow_{\beta} M^{1 m}
$$

and

$$
M^{11} \rightarrow_{\beta} M^{21} \rightarrow_{\beta} \ldots \rightarrow_{\beta} M^{n 1}
$$

then the diagram

can be completed to the following commuting diagram

from which it follows that $M^{n m}$ satisfies the required properties of M_{4}.

Towards this end, define the following relation on Λ :
Definition 8. Parallel β reduction \Rightarrow is the smallest relation on Λ satisfying

- the reduction axiom:
- if $M \Rightarrow M^{\prime}$ and $N \Rightarrow N^{\prime}$ then $(\lambda x . M) N \Rightarrow M^{\prime}\left[x:=N^{\prime}\right]$,
- reflexivity:
- if $M=M^{\prime}$ then $M \Rightarrow M^{\prime}$,
- the following compatibility axioms:
- if $M \Rightarrow M^{\prime}$ and $N \Rightarrow N^{\prime}$ then $(M N) \Rightarrow\left(M^{\prime} N^{\prime}\right)$,
- if $M \Rightarrow M^{\prime}$ then $\lambda x . M \Rightarrow \lambda x \cdot M^{\prime}$.

Remark 4. β-reduction might introduce new β-redexes which are not "visible" in the original term. For example

$$
(\lambda x \cdot x x x)(\lambda x \cdot x) \rightarrow(\lambda x \cdot x)(\lambda x \cdot x)(\lambda x \cdot x)
$$

By transitivity, $(\lambda x . x x x)(\lambda x . x) \rightarrow \lambda x . x$. However, parallel β-reduction is not transitive, so $(\lambda x . x x x)(\lambda x . x) \nRightarrow \lambda x . x$. So $M \Rightarrow N$ only if N is obtained from M by reducing a collection of the β redexes in M and not ones which are introduced by this reduction process.

Clearly, if $M \rightarrow_{\beta} M^{\prime}$ then $M \Rightarrow M^{\prime}$ and if $M \Rightarrow M^{\prime}$ then $M \rightarrow M^{\prime}$. It remains to show that parallel β reduction is confluent.

First, we claim that if $M_{1} \Rightarrow M_{2}$ and $N_{1} \Rightarrow N_{2}$ then $M_{1}\left[x:=N_{1}\right] \Rightarrow M_{2}\left[x:=N_{2}\right]$. To
prove this claim, we proceed by inducting on the "minimum number of usages of the axioms of parallel β reduction required to prove that $M_{1} \Rightarrow M_{2}$ ". More precisely, let

$$
S_{0}:=\{(M, M) \mid M \in \Lambda\}
$$

and for $i>0$, let S_{i} be the smallest set such that

- $S_{i-1} \subseteq S_{i}$,
- if $\left(M_{1}, M_{2}\right),\left(N_{1}, N_{2}\right) \in S_{i-1}$ then $\left(\left(M_{1} N_{1}\right),\left(M_{2} N_{2}\right)\right) \in S_{i}$,
- if $(M, N) \in S_{i-1}$ then $(\lambda x . M, \lambda x . N) \in S_{i}$,
- if $\left(M_{1}, M_{2}\right),\left(N_{1}, N_{2}\right) \in S_{i-1}$ then $\left(\left(\lambda x . M_{1}\right) N_{1}, N_{2}\left[x:=M_{2}\right]\right) \in S_{i}$

Clearly, $M \Rightarrow N$ if and only if $(M, N) \in S:=\cup_{i=0}^{\infty} S_{i}$. Define the following function:

$$
\begin{aligned}
\varphi: S & \rightarrow \mathbb{N} \\
(M, N) & \mapsto \min \left\{i \in \mathbb{N} \mid(M, N) \in S_{i}\right\}
\end{aligned}
$$

we proceed by (strong) induction on $\varphi\left(M_{1}, M_{2}\right)$. If $\varphi\left(M_{1}, M_{2}\right)=0$ then $M_{1}=M_{2}$ from which it follows that $M_{1}\left[x:=N_{1}\right] \Rightarrow M_{2}\left[x:=N_{2}\right]$. Say the result holds true for $\varphi\left(M_{1}, M_{2}\right)<k$. Then there are three cases, corresponding to M_{1} being a variable, an application, or an abstraction (see Definition11). If M_{1} is a variable, then $\varphi\left(M_{1}, M_{2}\right)=0$ and we have reduced to the base case. If $M_{1}=\lambda y \cdot M_{1}^{\prime}$ then $M_{1} \Rightarrow M_{2}$ implies that $M_{2}=\lambda x \cdot M_{2}^{\prime}$. By the inductive hypothesis $M_{1}^{\prime}\left[x:=N_{1}\right] \Rightarrow M_{2}^{\prime}\left[x:=N_{2}\right]$ which implies

$$
\begin{aligned}
\lambda y \cdot\left(M_{1}^{\prime}\left[x:=N_{1}\right]\right) & \Rightarrow \lambda y \cdot\left(M_{2}^{\prime}\left[x:=N_{2}\right]\right) \\
\text { so, }\left(\lambda y \cdot M_{1}^{\prime}\right)\left[x:=N_{1}\right] & \Rightarrow\left(\lambda y \cdot M_{2}^{\prime}\right)\left[x:=N_{2}\right] \\
\text { so, } M_{1}\left[x:=N_{1}\right] & \Rightarrow M_{2}\left[x:=N_{2}\right]
\end{aligned}
$$

Lastly, say $M_{1}=\left(M_{1}^{1} M_{1}^{2}\right)$. Then either M_{1}^{1} is an abstraction or it is not. If it is not then the proof is similar to the case where M_{1} is an abstraction. Say $M_{1}^{1}=\left(\lambda x . M_{1}^{1^{\prime}}\right)$. Now, either $M_{2}=\left(\lambda x \cdot M_{2}^{1^{\prime}}\right) M_{2}^{2}$, in which case the proof is similar to the case when M_{1} is an abstraction, or $M_{2}=M_{2}^{1^{\prime}}\left[x:=M_{2}^{2}\right]$. In this case, by the inductive hypothesis we have

$$
M_{1}^{1^{\prime}}\left[x=N_{1}\right] \Rightarrow M_{2}^{1^{\prime}}\left[x=N_{2}\right]
$$

and

$$
M_{1}^{2}\left[x=N_{1}\right] \Rightarrow M_{2}^{2}\left[x=N_{2}\right]
$$

from which it follows that

$$
\left(\lambda x \cdot M_{1}^{1^{\prime}}\left[x:=N_{1}\right]\right)\left(M_{1}^{2}\left[x:=N_{1}\right]\right) \Rightarrow\left(\lambda x \cdot M_{2}^{1^{\prime}}\left[x:=N_{2}\right]\right)\left(M_{2}^{2}\left[x:=N_{2}\right]\right)
$$

which implies

$$
M_{1}\left[x:=N_{1}\right]=\left(\left(\lambda x . M_{1}^{1^{\prime}}\right) M_{1}^{2}\right)\left[x:=N_{1}\right] \Rightarrow\left(\left(\lambda x . M_{2}^{1^{\prime}}\right) M_{2}^{2}\right)\left[x:=N_{2}\right]=M_{2}\left[x:=N_{2}\right]
$$

which establishes the claim.

To finish the proof, say $M_{1} \Rightarrow M_{2}$ and $M_{1} \Rightarrow M_{3}$, we will show that there exists an appropriate term M_{4} by induction on $l\left(M_{1}\right)$, the length of M_{1}. This is broken up into cases in a similar way to the proof of the claim above, the only non-trivial case is when

$$
M_{1}=\left(\lambda x \cdot M_{1}^{1^{\prime}}\right) M_{1}^{2}, \quad M_{2}=M_{2}^{1^{\prime}}\left[x:=M_{2}^{2}\right], \quad M_{3}=M_{3}^{1^{\prime}}\left[x:=M_{3}^{2}\right]
$$

By the inductive hypothesis, there exists $M_{4}^{1^{\prime}}$ and M_{4}^{2} such that the diagrams

both commute. Now, by the claim proved above,

$$
M_{2}^{1^{\prime}}\left[x:=M_{2}^{2}\right] \Rightarrow M_{4}^{1^{\prime}}\left[x:=M_{4}^{2}\right] \quad M_{3}^{1^{\prime}}\left[x:=M_{3}^{2}\right] \Rightarrow M_{4}^{1^{\prime}}\left[x:=M_{4}^{2}\right]
$$

and so,

$$
\left(\lambda x \cdot M_{2}^{1^{\prime}}\right) M_{2}^{2} \Rightarrow\left(\lambda x \cdot M_{4}^{1^{\prime}}\right) M_{4}^{2} \quad\left(\lambda x \cdot M_{3}^{1^{\prime}}\right) M_{3}^{2} \Rightarrow\left(\lambda x \cdot M_{4}^{1^{\prime}}\right) M_{4}^{2}
$$

ie, the diagram

commutes, as required.

References

[1] A. Church, An Unsolvable Problem of Elementary Number Theory, American Journal of Mathematics, Vol. 58, No. 2. (Apr., 1936), pp. 345-363.
[2] A. Church, A Set of Postulates for the Foundation of Logic Annals of Mathematics Second Series, Vol. 33, No. 2 (Apr., 1932), pp. 346-366
[3] A. Church, A Set of Postulates for the Foundation of Logic (Second Paper), Annals of Mathematics Vol. 34, No. 4 (Oct., 1933), pp. 839-864
[4] M. Sørensen, P. Urzyczyn, Lectures on the Curry-Howard Isomorphism, Studies in Logic and the Foundations of Mathematics, 4th July 2006.
[5] A. Turing, [Delivered to the Society November 1936], "On Computable Numbers, with an Application to the Entscheidungsproblem" (PDF), Proceedings of the London Mathematical Society, 2, 42, pp. 230-65, doi:10.1112/plms/s2-42.1.230 and Turing, A.M. (1938). "On Computable Numbers, with an Application to the Entscheidungsproblem: A correction". Proceedings of the London Mathematical Society. 2. 43 (published 1937). pp. 544-6, 1937
[6] K. Gödel "On Undecidable Propositions of Formal Mathematical Systems". In Davis, Martin (ed.). The Undecidable. Kleene and Rosser (lecture note-takers); Institute for Advanced Study (lecture sponsor). New York: Raven Press, 1934.
[7] J. Lambek, P.J. Scott, Introduction to Higher Order Categorical Logic, Cambridge University Press, New York, 1986.

