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Geometry of Interaction

(ax) (ax) (ax)

¬X X ¬X X ¬X X

c ⊗ c `
X ⊗ ¬X ¬X `X

(cut)

Permutations Operators Rings

(12)(34)(56) JπK =
⎛
⎜
⎜
⎜
⎝

0 0 p q
0 qp∗ + qp∗ 0 0
p∗ 0 0 0
q∗ 0 0 0

⎞
⎟
⎟
⎟
⎠

?



Formulas

Definition (Formulas)

▸ Unoriented atoms X,Y,Z, ...

▸ An oriented atom (or atomic proposition) is a pair (X,+) or
(X,−) where X is an unoriented atom.

Pre-formulas:

▸ Any atomic proposition is a preformula.

▸ If A,B are pre-formulas then so are A⊗B, A`B.

▸ If A is a pre-formula then so is ¬A.

Formulas: quotient of pre-formulas:

¬(A⊗B) ∼ ¬B ` ¬A ¬(A`B) ∼ ¬B ⊗ ¬A

¬(X,+) ∼ (X,−) ¬(X,−) ∼ (X,+)



Polynomial ring of a proof structure

Definition (Sequence of (un)oriented atoms)

Let A be a formula with sequence of oriented atoms
((X1, x1), ..., (Xn, xn)). The sequence of unoriented atoms of A
is (X1, ...,Xn) and the set of unoriented atoms of A is the disjoint
union {X1}∐⋯∐{Xn}.

Definition (Polynomial ring PA of a formula A)

PA is the free commutative k-algebra on the set of unoriented
atoms of A:

PA = k[X1, ...,Xn]

Let π be a proof structure with edge set E and denote by Ae the
formula labelling edge e ∈ E. The polynomial ring of π, denoted
Pπ is the following, where Ue is the set of unoriented atoms of Ae.

Pπ ∶= ⊗
e∈E

PAe ≅ k[∐
e∈E

Ue]



Polynomial ring example

Let π denote the following proof net.

(ax) (ax)

X1 ⊗ ¬Y2 ¬X3 ` Y4 X5 ¬Y6

c ⊗ c

(¬X7 ` Y8) ⊗X9

c

Pπ =

k[{X}∐{Y }∐{X}∐{Y }∐{X}∐{Y }∐{X}∐{Y }∐{X}]

= k[X1, Y2,X3, Y4,X5, Y6,X7, Y8,X9]

But what about the links?



Links

Definition (Link ideal Il, link coordinate ring Rl)

Axiom/Cut link l:

(ax)

¬A A

⋮ ⋮

⋮ ⋮

¬A A

(cut)

((X1, x1), ..., (Xn, xn)) is the sequence of oriented atoms of A,

and ((Y1, y1), ..., (Ym, ym)) is that of B.

Il ⊆ PA ⊗ P¬A
Il = (Xi −X

′
i)
n
i=1 = (Xi ⊗ 1 − 1⊗Xi)

n
i=1

Rl ∶= PA ⊗ P¬A/Il



Tensor/Par links

Tensor/Par link l:

⋮ ⋮

A B

⊗

A⊗B

⋮

⋮ ⋮

A B

`
A`B

⋮

Let ⊠ = ⊗ if l is a tensor link, and ⊠ = ` if l is a par link.

Il ⊆ PA ⊗ PB ⊗ PA⊠B
Il = ({Xi −X

′
i}
n
i=1 ∪ {Yj − Y

′
j }
m
j=1)

= ({Xi ⊗ 1⊗ 1 − 1⊗ 1⊗Xi}
n
i=1 ∪ {1⊗ Yj ⊗ 1 − 1⊗ 1⊗ Yj}

m
j=1)

Rl = PA ⊗ PB ⊗ PA⊠B/Il

Definition (Defining ideal Iπ, coordinate ring Rπ)

Iπ ∶= ∑l Il ⊆ Pπ where l ranges over all links of π. Rπ ∶= Pπ/Iπ.



Example of coordinate ring of a link

Let A ∶= (¬X2 ⊗ Y3)` (¬Z6 ⊗W7).

(ax) (ax) (ax) (ax)

X1 ¬X2 Y3 ¬Y4 Z5 ¬Z6 W7 ¬W8

c ⊗ c c ⊗ c

¬X2 ⊗ Y3 ¬Z6 ⊗W7

`
A

c

Let l denote the red axiom link, and l′ denote the blue par link.

Il = (X1 −X2) ⊆ k[X1,X2] Rl = k[X1,X2]/Il

≅ k[X1]

Il′ = (X2 −X
′
2, Y3 − Y

′
3 , Z6 −Z

′
6,W7 −W

′
7) Rl′ = k[X2,X

′
2, Y3, Y

′
3 , Z6, Z

′
6,W7,W

′
7]/Il′

≅ k[X2, Y3, Z6,W7]



Example of coordinate ring of a proof structure
A ∶= (¬X2 ⊗ Y3)` (¬Z6 ⊗W7)

(ax) (ax) (ax) (ax)

X1 ¬X2 Y3 ¬Y4 Z5 ¬Z6 W7 ¬W8

c ⊗ c c ⊗ c

¬X2 ⊗ Y3 ¬Z6 ⊗W7

`
A

c

Pπ = k[X1,X2,X
′
2,X

′′
2 , Y3, Y

′
3 , Y

′′
3 , Y4, Z5, Z6, Z

′
6, Z

′′
6 ,W7,W

′
7,W

′′
7 ,W8]

Iπ = (X1 −X2) + (Y3 − Y4) + (Z5 −Z6) + (W7 −W8)

+ (X2 −X
′
2, Y3 − Y

′
3) + (Z6 −Z

′
6,W7 −W

′
7)

+ (X ′
2 −X

′′
2 , Y

′
3 − Y

′′
3 , Z

′
6 −Z

′′
6 ,W

′
7 −W

′′
7 )

Rπ = Pπ/Iπ ≅ k[X,Y,Z,W ]



Persistent walks

(ax) X1∐⋯∐Xn Y1∐⋯∐Yn

A ¬A ⋮ ⋮

⋮ ⋮ A ¬A

X1∐⋯∐Xn Y1∐⋯∐Yn (cut)
J

J

⋮ ⋮

X1∐⋯∐Xn A B Y1∐⋯∐Ym

⊠

A ⊠B

⋮

X1∐⋯∐Xn∐Y1∐⋯∐Ym

I2I1



Persistent walks

(ax), (cut) X1∐⋯∐Xn ⊗,` Y1∐⋯∐Ym

X1∐⋯∐Xn Y1∐⋯∐Yn X1∐⋯∐Xn∐Y1∐⋯∐Ym
J

I1 I2

Definition
Let π be a proof structure admitting a conclusion A. Choose also
an unoriented atom X in A. A persistent walk of X is a walk ν
in π satisfying the following conditions.

1. The formula A labels some edge e, the first edge e1 of ν is e.

2. If i > 1 then X uniquely determines an edge ei ≠ ei−1 adjacent
with ei−1 via J, I1, I2.

Theorem
The coordinate ring of a proof structure π is isomorphic to a
polynomial ring in n indeterminants, where the number of
persistent walks in π is equal to 2n.



Cut reduction

a-redexes:

(ax) ⋮

¬A A ¬A

⋮ (cut)

Ð→

⋮

¬A

⋮

⋮ (ax)

A ¬A A

(cut) ⋮

Ð→

⋮

A

⋮

m-redex:

⋮ ⋮ ⋮ ⋮

A B ¬A ¬B

⊗ `
A⊗B ¬A` ¬B

(cut)

Ð→

⋮ ⋮ ⋮ ⋮

A B ¬A ¬B

(cut) (cut)



Modelling cut-reduction

Definition
Let γ ∶ π Ð→ π′ be a reduction, there exists homomorphisms.

Pπ′ Pπ

Tγ

Sγ

Tγ , γ reducing an a-redex:

⋮

¬A

⋮

(ax) ⋮

¬A A ¬A

⋮ (cut)

⋮

A

⋮

⋮ (ax)

A ¬A A

(cut) ⋮



Modelling cut reduction

Tγ , γ reducing an m-redex:

⋮ ⋮ ⋮ ⋮

A B ¬B ¬A

(cut)

(cut)

⋮ ⋮ ⋮ ⋮

A B ¬B ¬A

⊗ `
A⊗B ¬B ` ¬A

(cut)



Modelling cut reduction

Sγ , γ reducing an a-redex.

⋮

¬A

⋮

(ax) ⋮

¬A A ¬A

⋮ (cut)

⋮

A

⋮

⋮ (ax)

A ¬A A

(cut) ⋮



Modelling cut reduction

Sγ , γ reducing an m-redex.

⋮ ⋮ ⋮ ⋮

A B ¬B ¬A

(cut)

(cut)

⋮ ⋮ ⋮ ⋮

A B ¬B ¬A

⊗ `

A⊗B ¬B ` ¬A

(cut)



Cut elimination on the level of the coordinate rings

Proposition

Let γ be any reduction, we have Tγ(Iπ′) ⊆ Iπ, Sγ(Iπ) ⊆ Iπ′ and the
induced morphisms of k-algebras T γ , Sγ making the following
diagram commute, are mutually inverse isomorphisms. In the
following, p ∶ Pπ ↠ Rπ and p′ ∶ Pπ′ ↠ RPπ′ are projection maps.

Iπ Pπ Rπ

Iπ′ Pπ′ Rπ′

p

Sγ Sγ

p′
Tγ T γ



Permutation

Proposition
Let π be a proof net with single conclusion A with oriented atoms
((U1, u1), ..., (Un, un)). Then n = 2m is even, and there is a
subsequence i1 < ⋯ < im with complement j1 < ⋯ < jm in {1,⋯, n} such
that uia = +, uja = − for 1 ≤ a ≤m and if we write Xa = Uia , Ya = Uja for
1 ≤ a ≤m then β+, β− in the following diagram are isomorphisms.

k[X1, ...,Xm]

Pπ Rπ

k[Y1, ..., Ym]

β+

β−

Furthermore, the composite β−1− β+ ∶ k[X1, ..,Xm] Ð→ k[Y1, ..., Ym] is
given for some permutation σπ of {1, ...,m} by:

β−1− β+(Xi) = Yσπ(i), 1 ≤ i ≤m



Proofs as permutations

Definition (The essence Essπ of π)

Let π admit no m-redexes and assume all conclusions of all axiom
links are atomic. Essπ is the disjoint union of the unoriented
atoms appearing as conclusions to axiom links which are not
premise to cut links.

Definition
Let di denote the least integer such that

(απ ○ γπ)
di(X) ∈ Essπ

Notice that such an integer di always exists as π is a proof net.
Define for any unoriented atom appearing in the conclusion to any
axiom link in π:

δπ(X) = (απ ○ γπ)
di(X)



Comparison

k[X1, ...,Xm]

Pπ Rπ

k[Y1, ..., Ym]

β+

β−

δπ(X) = (απ ○ γπ)
di(X) β−1− β+(Xi) = Yσ(i)

Proposition

Let π be a proof net with single conclusion A with sequence of
oriented atoms given by: ((U1, u1), ..., (Un, un)). Then for all
i = 1, ..., n we have:

δπ(Ui) = Uσ(i)



Division algorithm for polynomials in multiple variables

Choose an order x1 < ⋯ < xn, this induces lexicographic order on
the monic monomials of k[x1, ..., xn] with respect to the degrees.
Consider C[x > y].

y < xy < x2 < x2y10 < x3 < ⋯

Now, divide according to leading terms!

q0 ∶
q1 ∶

xy2

y2

x2y
x + y

)x3y3 + xy2 − y

x3y3

xy2 − y
xy2 + y3

− y − y3



Leading terms

Given polynomials f1, ..., fn we have the following inclusion, where
⟨g1, ..., gm⟩ denotes the ideal generated by the polynomials
g1, ..., gm.

⟨LT f1,⋯,LT fn⟩ ⊆ ⟨LT{f1, ..., fn}⟩

This reverse inclusion does not hold in general. Indeed, consider
the polynomial ring k[x, y] with y < x. Let f1, f2 respectively
denote the polynomials x3 − 2xy and x2y − 2y2 + x. We have:

{LT f1,LT f2} = {x3, x2y}

however, the following polynomial is in the ideal generated by
{f1, f2}.

y(x3 − 2xy) − x(x2y − 2y2 + x) = −x2

Hence, x2 is in the leading ideal. However, x2 is not in the ideal
generated by the polynomials x3, x2y.



Gröbner bases

Definition
A set of polynomials {f1, ..., fn} satisfying the following:

⟨LT f1,⋯LT fn⟩ = ⟨LT{f1, ..., fn}⟩

is a Gröbner basis for the ideal ⟨f1, ..., fn⟩ generated by f1, ..., fn.

Definition
The S-polynomial of polynomials g, h ∈ k[x1, ..., xn] is defined to
be the following, where β = (β1, ..., βn) where
βi =max ((deg g)i, (degh)i)..

S(g, h) ∶=
xβ

LT g
g −

xβ

LTh
h

This is indeed a polynomial, and is designed to obtain cancellation
of leading terms.



Buchberger Algorithm

Definition
Given a finite sequence G = (f1, ..., fm) of polynomials in
k[x1, ..., xn] we define the Buchberger algorithm as follows.

Algorithm

On input G.

1. For all i < j calculate S(fi, fj).

2. Consider the lexicographic order on the set of pairs (i, j)
where i, j ∈ {1, ...,m}. From smallest to largest, with respect
to this order, divide S(i, j) by G. If the remainder is 0 for all
pairs (i, j) then terminate the algorithm and return the
sequence G. Otherwise, let (i′, j′) be the least pair such that
division of S(i′, j′) by G results in a non-zero remainder r.

3. Append the polynomial r to the end of the sequence G and
return to Step (1).



Let π denote the following proof net.

(ax) (ax) (ax)

X1 Y1 Y2 Y3 Y4 X2

c (cut) (cut) c

π reduces to π′:
(ax)

X1 X2

c c

We now consider the sets of generators of the defining ideals of π
and π′.

Gπ ∶= {X1−Y1, Y1−Y2, Y2−Y3, Y3−Y4, Y4−X2}, Gπ′ ∶= {X1−X2}

Y1 > Y2 > Y3 > Y4 >X1 >X2



There is something to do

(ax) (ax) (ax)

X1 Y1 Y2 Y3 Y4 X2

c (cut) (cut) c

Gπ = {f1 =X1−Y1, f2 =Y1−Y2, f3 =Y2−Y3, f4 =Y3−Y4, f5 =Y4−X2}

Y1 > Y2 > Y3 > Y4 >X1 >X2

The leading terms of f1, ..., f5 respectively are −Y1, Y1, Y2, Y3, Y4
and the leading term of f1 +⋯ + f5 is X1. Hence:

X1 ∈ LT⟨Gπ⟩, X1 /∈ ⟨LTGπ⟩

Thus, Gπ is not Gröbner basis.



We now calculate the 10 S-polynomials which arise from Gπ.

S(f1, f2) = Y2 −X1 S(f1, f3) = Y1Y3 − Y2X1 S(f1, f4) = Y1Y4 −X1X3

S(f1, f5) = Y1X2 −X1Y4 S(f2, f3) = Y1Y3 − Y
2
2 S(f2, f4) = Y1Y4 − Y2Y3

S(f2, f5) = Y1X2 − Y2Y4 S(f3, f4) = Y2Y4 − Y
2
2 S(f3, f5) = Y2X2 − Y3Y4

S(f4, f5) = Y3X2 − Y
2
4

For each i > j, i, j ∈ {1, ...,5} we now divide S(fi, fj) by G. In
fact, this always gives a remainder zero except for the particular
case when (i, j) = (1,2), which we show on the next slide.



Division

(ax) (ax) (ax)

X1 Y1 Y2 Y3 Y4 X2

c (cut) (cut) c

Gπ = {f1 =X1−Y1, f2 =Y1−Y2, f3 =Y2−Y3, f4 =Y3−Y4, f5 =Y4−X2}

(0,0,1,1,1)

Gπ )Y2 −X1

Y2 − Y3

Y3 − Y4
Y3 −X1

Y4 −X1

Y4 −X2

X2 −X1

(Gπ ∪ {X2 −X1}) ∩ {X2 −X1} = Gπ′



Summary

▸ We defined a new Geometry of Interaction model and showed
how it fits into the existing literature (GoI 0, GoI 1).

▸ We related “plugging of formulas” to an already existing
algorithm.

Next steps:

▸ More algebraic structure, eg, Koszul Complexes.

▸ Extend this model to MELL.
▸ Use this as a foundation for more exotic models of

MLL/MELL.
▸ Quantum error correction codes.
▸ Landau-Ginzburg models, the bicategory of hypersurface

singularities.



Thank you

Questions?



(Bonus frame) Proof sketch

Iπ Pπ Rπ

Iπ′ Pπ′ Rπ′

p

Sγ Sγ

p′
Tγ T γ

Existence: easy. T γ , Sγ isomorphisms: suffices to show:

T γSγp = p

SγT γp
′
= p′

as p, p′ are surjective. This is equivalent to p′SγTγ = p′, pTγSγ = p,
or p′(SγTγ − 1) = 0, p(TγSγ − 1) = 0. It suffices to check this on
generators, ie, on unoriented atoms. It is clear that SγTγ = 1,
however we have TγSγ ≠ 1. The circumstances where this is the
case is indicated schematically on the next slide.



(Bonus frame) Proof continued

⋮

¬A

⋮

(ax) ⋮

¬A A ¬A

⋮ (cut)

⋮

A

⋮

⋮ (ax)

A ¬A A

(cut) ⋮

⋮ ⋮ ⋮ ⋮

A B ¬B ¬A

(cut)

(cut)

⋮ ⋮ ⋮ ⋮

A B ¬B ¬A

⊗ `

A⊗B ¬B ` ¬A

(cut)



(Bonus frame) Example of Proposition
Let π denote the following proof net.

(ax)

(ax) (ax)

¬X1 `X2 X3 ⊗ ¬X4 ¬X5 `X6 X7 ⊗ ¬X8 X9 ⊗ ¬X10 ¬X11 `X12

` ⊗ `
¬C C ¬C

c (cut)

We apply η-expansion:

(ax)

A⊗B ¬A` ¬B

⋮ ⋮

(ax) (ax)

A ¬A B ¬B

⊗ `
A⊗B ¬A` ¬B

⋮ ⋮



(Bonus frame) After η-expansion

(ax) (ax)

(ax) (ax) (ax) (ax)

¬X1 X2 X3 ¬X4 ¬X5 X6 X7 ¬X8 X9 X10 X11 X12

` ⊗ ` ⊗ ⊗ `

¬X1 `X2 X3 ⊗ ¬X4 ¬X5 `X6 X7 ⊗ ¬X8 X9 ⊗ ¬X10 ¬X11 `X12

` ⊗ `

¬C C ¬C

c (cut)



(Bonus frame) After reducing m-redexes

(ax)

(ax) (ax) (ax) (ax) (ax)

¬X1 X2 X7 X11 X9 ¬X5 X3 ¬X4 X6 X10 X12 ¬X8

` (cut) (cut) ⊗ (cut) (cut)

¬X1 `X2 X3 ⊗ ¬X4

`

¬C

c

δ(X1) =X3 δ(X3) =X1 δ(X4) =X2 δ(X2) =X4



(Bonus frame) Comparison continued
Returning to π:

(ax)

(ax) (ax)

¬X1 `X2 X3 ⊗ ¬X4 ¬X5 `X6 X7 ⊗ ¬X8 X9 ⊗ ¬X10 ¬X11 `X12

` ⊗ `
¬C C ¬C

c (cut)

The following are elements of the defining ideal Iπ of π.

X2 −X8 X ′′
8 −X

′′
12 X12 −X10 X ′′

10 −X
′′
6 X6 −X4

and so are Xi −X
′
i ,X

′
i −X

′′
i for i = 2,4,6,10,12. Hence σ(2) = 4

and σ(4) = 2. Similarly, σ(1) = 3 and σ(3) = 1.

δ(X1) =X3 δ(X3) =X1 δ(X4) =X2 δ(X2) =X4


