# Proofs, rings, and ideals 

Daniel Murfet, William Troiani<br>University of Melbourne, University of Sorbonne Paris Nord

2022

## Geometry of Interaction



| Permutations | Operators | Rings |
| :---: | :---: | :---: |
| $(12)(34)(56)$ | $\llbracket \pi \rrbracket=\left(\begin{array}{cccc}0 & 0 & p & q \\ 0 & q p^{*}+q p^{*} & 0 & 0 \\ p^{*} & 0 & 0 & 0 \\ q^{*} & 0 & 0 & 0\end{array}\right)$ | $?$ |

## Formulas

## Definition (Formulas)

- Unoriented atoms $X, Y, Z, \ldots$
- An oriented atom (or atomic proposition) is a pair $(X,+)$ or ( $X,-$ ) where $X$ is an unoriented atom.
Pre-formulas:
- Any atomic proposition is a preformula.
- If $A, B$ are pre-formulas then so are $A \otimes B, A \ngtr B$.
- If $A$ is a pre-formula then so is $\neg A$.

Formulas: quotient of pre-formulas:

$$
\begin{aligned}
\neg(A \otimes B) \sim \neg B \ngtr \neg A & \neg(A \ngtr B) \sim \neg B \otimes \neg A \\
\neg(X,+) \sim(X,-) & \neg(X,-) \sim(X,+)
\end{aligned}
$$

## Polynomial ring of a proof structure

Definition (Sequence of (un)oriented atoms)
Let $A$ be a formula with sequence of oriented atoms
$\left(\left(X_{1}, x_{1}\right), \ldots,\left(X_{n}, x_{n}\right)\right)$. The sequence of unoriented atoms of $A$ is $\left(X_{1}, \ldots, X_{n}\right)$ and the set of unoriented atoms of $A$ is the disjoint union $\left\{X_{1}\right\} \amalg \cdots \amalg\left\{X_{n}\right\}$.

Definition (Polynomial ring $P_{A}$ of a formula $A$ )
$P_{A}$ is the free commutative $k$-algebra on the set of unoriented atoms of $A$ :

$$
P_{A}=k\left[X_{1}, \ldots, X_{n}\right]
$$

Let $\pi$ be a proof structure with edge set $E$ and denote by $A_{e}$ the formula labelling edge $e \in E$. The polynomial ring of $\pi$, denoted $P_{\pi}$ is the following, where $U_{e}$ is the set of unoriented atoms of $A_{e}$.

$$
P_{\pi}:=\bigotimes_{e \in E} P_{A_{e}} \cong k\left[\coprod_{e \in E} U_{e}\right]
$$

## Polynomial ring example

Let $\pi$ denote the following proof net.


$$
\begin{aligned}
& P_{\pi}= \\
& k[\{X\} \amalg\{Y\} \amalg\{X\} \coprod\{Y\} \amalg\{X\} \coprod\{Y\} \amalg\{X\} \amalg\{Y\} \amalg\{X\}] \\
& =k\left[X_{1}, Y_{2}, X_{3}, Y_{4}, X_{5}, Y_{6}, X_{7}, Y_{8}, X_{9}\right]
\end{aligned}
$$

But what about the links?

## Links

Definition (Link ideal $I_{l}$, link coordinate ring $R_{l}$ )

$\left(\left(X_{1}, x_{1}\right), \ldots,\left(X_{n}, x_{n}\right)\right)$ is the sequence of oriented atoms of $A$, and $\left(\left(Y_{1}, y_{1}\right), \ldots,\left(Y_{m}, y_{m}\right)\right)$ is that of $B$.

$$
\begin{array}{cc}
I_{l} \subseteq P_{A} \otimes P_{\neg A} & R_{l}:=P_{A} \otimes P_{\neg A} / I_{l}
\end{array}
$$

## Tensor/Par links

Tensor/Par link $l$ :


Let $\boxtimes=\otimes$ if $l$ is a tensor link, and $\boxtimes=\mathcal{P}$ if $l$ is a par link.

$$
\begin{gathered}
I_{l} \subseteq P_{A} \otimes P_{B} \otimes P_{A \otimes B} \\
I_{l}=\left(\left\{X_{i}-X_{i}^{\prime}\right\}_{i=1}^{n} \cup\left\{Y_{j}-Y_{j}^{\prime}\right\}_{j=1}^{m}\right) \\
=\left(\left\{X_{i} \otimes 1 \otimes 1-1 \otimes 1 \otimes X_{i}\right\}_{i=1}^{n} \cup\left\{1 \otimes Y_{j} \otimes 1-1 \otimes 1 \otimes Y_{j}\right\}_{j=1}^{m}\right) \\
R_{l}=P_{A} \otimes P_{B} \otimes P_{A \boxtimes B} / I_{l}
\end{gathered}
$$

Definition (Defining ideal $I_{\pi}$, coordinate ring $R_{\pi}$ )
$I_{\pi}:=\sum_{l} I_{l} \subseteq P_{\pi}$ where $l$ ranges over all links of $\pi . R_{\pi}:=P_{\pi} / I_{\pi}$.

## Example of coordinate ring of a link

$$
\text { Let } A:=\left(\neg X_{2} \otimes Y_{3}\right) \ngtr\left(\neg Z_{6} \otimes W_{7}\right) \text {. }
$$



Let $l$ denote the red axiom link, and $l^{\prime}$ denote the blue par link.

$$
\left.\begin{array}{rl}
I_{l}=\left(X_{1}-X_{2}\right) \subseteq k\left[X_{1}, X_{2}\right] & R_{l}
\end{array}=k\left[X_{1}, X_{2}\right] / I_{l}\right] \text { } \begin{aligned}
& \cong k\left[X_{1}\right] \\
I_{l^{\prime}}=\left(X_{2}-X_{2}^{\prime}, Y_{3}-Y_{3}^{\prime}, Z_{6}-Z_{6}^{\prime}, W_{7}-W_{7}^{\prime}\right) & R_{l^{\prime}} \\
& =k\left[X_{2}, X_{2}^{\prime}, Y_{3}, Y_{3}^{\prime}, Z_{6}, Z_{6}^{\prime}, W_{7}, W_{7}^{\prime}\right] / I_{l^{\prime}} \\
& \cong k\left[X_{2}, Y_{3}, Z_{6}, W_{7}\right]
\end{aligned}
$$

## Example of coordinate ring of a proof structure

 $A:=\left(\neg X_{2} \otimes Y_{3}\right) \mathcal{P}\left(\neg Z_{6} \otimes W_{7}\right)$

$$
\begin{aligned}
P_{\pi} & =k\left[X_{1}, X_{2}, X_{2}^{\prime}, X_{2}^{\prime \prime}, Y_{3}, Y_{3}^{\prime}, Y_{3}^{\prime \prime}, Y_{4}, Z_{5}, Z_{6}, Z_{6}^{\prime}, Z_{6}^{\prime \prime}, W_{7}, W_{7}^{\prime}, W_{7}^{\prime \prime}, W_{8}\right] \\
I_{\pi} & =\left(X_{1}-X_{2}\right)+\left(Y_{3}-Y_{4}\right)+\left(Z_{5}-Z_{6}\right)+\left(W_{7}-W_{8}\right) \\
& +\left(X_{2}-X_{2}^{\prime}, Y_{3}-Y_{3}^{\prime}\right)+\left(Z_{6}-Z_{6}^{\prime}, W_{7}-W_{7}^{\prime}\right) \\
& +\left(X_{2}^{\prime}-X_{2}^{\prime \prime}, Y_{3}^{\prime}-Y_{3}^{\prime \prime}, Z_{6}^{\prime}-Z_{6}^{\prime \prime}, W_{7}^{\prime}-W_{7}^{\prime \prime}\right) \\
R_{\pi} & =P_{\pi} / I_{\pi} \cong k[X, Y, Z, W]
\end{aligned}
$$

## Persistent walks



$$
X_{1} \amalg \cdots \amalg X_{n} \longleftrightarrow \quad J \quad Y_{1} \amalg \cdots \amalg Y_{n}
$$



## Persistent walks



## Definition

Let $\pi$ be a proof structure admitting a conclusion $A$. Choose also an unoriented atom $X$ in $A$. A persistent walk of $X$ is a walk $\nu$ in $\pi$ satisfying the following conditions.

1. The formula $A$ labels some edge $e$, the first edge $e_{1}$ of $\nu$ is $e$.
2. If $i>1$ then $X$ uniquely determines an edge $e_{i} \neq e_{i-1}$ adjacent with $e_{i-1}$ via $J, I^{1}, I^{2}$.

## Theorem

The coordinate ring of a proof structure $\pi$ is isomorphic to a polynomial ring in $n$ indeterminants, where the number of persistent walks in $\pi$ is equal to $2 n$.

## Cut reduction

## $a$-redexes:


$m$-redex:

(cut)

## Modelling cut-reduction

## Definition

Let $\gamma: \pi \longrightarrow \pi^{\prime}$ be a reduction, there exists homomorphisms.

$T_{\gamma}, \gamma$ reducing an $a$-redex:


## Modelling cut reduction

$T_{\gamma}, \gamma$ reducing an $m$-redex:


## Modelling cut reduction

$S_{\gamma}, \gamma$ reducing an $a$-redex.


## Modelling cut reduction

$S_{\gamma}, \gamma$ reducing an $m$-redex.


## Cut elimination on the level of the coordinate rings

## Proposition

Let $\gamma$ be any reduction, we have $T_{\gamma}\left(I_{\pi^{\prime}}\right) \subseteq I_{\pi}, S_{\gamma}\left(I_{\pi}\right) \subseteq I_{\pi^{\prime}}$ and the induced morphisms of $k$-algebras $\bar{T}, \bar{S}_{\gamma}$ making the following diagram commute, are mutually inverse isomorphisms. In the following, $p: P_{\pi} \rightarrow R_{\pi}$ and $p^{\prime}: P_{\pi^{\prime}} \rightarrow R_{P_{\pi^{\prime}}}$ are projection maps.

$$
\begin{aligned}
& I_{\pi} \longrightarrow P_{\pi} \xrightarrow{p} R_{\pi} \\
& S_{\gamma}\left(\Gamma^{T_{\gamma}}\right. \\
& \bar{S}_{\gamma}\left(\lceil ) \bar{T}_{\gamma}\right. \\
&{ }^{2} \longrightarrow R_{\pi^{\prime}}
\end{aligned}
$$

## Permutation

## Proposition

Let $\pi$ be a proof net with single conclusion $A$ with oriented atoms $\left(\left(U_{1}, u_{1}\right), \ldots,\left(U_{n}, u_{n}\right)\right)$. Then $n=2 m$ is even, and there is a subsequence $i_{1}<\cdots<i_{m}$ with complement $j_{1}<\cdots<j_{m}$ in $\{1, \cdots, n\}$ such that $u_{i_{a}}=+, u_{j_{a}}=-$ for $1 \leq a \leq m$ and if we write $X_{a}=U_{i_{a}}, Y_{a}=U_{j_{a}}$ for $1 \leq a \leq m$ then $\beta_{+}, \beta_{-}$in the following diagram are isomorphisms.


Furthermore, the composite $\beta_{-}^{-1} \beta_{+}: k\left[X_{1}, . ., X_{m}\right] \longrightarrow k\left[Y_{1}, \ldots, Y_{m}\right]$ is given for some permutation $\sigma_{\pi}$ of $\{1, \ldots, m\}$ by:

$$
\beta_{-}^{-1} \beta_{+}\left(X_{i}\right)=Y_{\sigma_{\pi}(i)}, \quad 1 \leq i \leq m
$$

## Proofs as permutations

## Definition (The essence $\operatorname{Ess} \pi$ of $\pi$ )

Let $\pi$ admit no $m$-redexes and assume all conclusions of all axiom links are atomic. Ess $\pi$ is the disjoint union of the unoriented atoms appearing as conclusions to axiom links which are not premise to cut links.

## Definition

Let $d_{i}$ denote the least integer such that

$$
\left(\alpha_{\pi} \circ \gamma_{\pi}\right)^{d_{i}}(X) \in \operatorname{Ess} \pi
$$

Notice that such an integer $d_{i}$ always exists as $\pi$ is a proof net.
Define for any unoriented atom appearing in the conclusion to any axiom link in $\pi$ :

$$
\delta_{\pi}(X)=\left(\alpha_{\pi} \circ \gamma_{\pi}\right)^{d_{i}}(X)
$$

## Comparison



## Proposition

Let $\pi$ be a proof net with single conclusion $A$ with sequence of oriented atoms given by: $\left(\left(U_{1}, u_{1}\right), \ldots,\left(U_{n}, u_{n}\right)\right)$. Then for all $i=1, \ldots, n$ we have:

$$
\delta_{\pi}\left(U_{i}\right)=U_{\sigma(i)}
$$

## Division algorithm for polynomials in multiple variables

Choose an order $x_{1}<\cdots<x_{n}$, this induces lexicographic order on the monic monomials of $k\left[x_{1}, \ldots, x_{n}\right]$ with respect to the degrees.
Consider $\mathbb{C}[x>y]$.

$$
y<x y<x^{2}<x^{2} y^{10}<x^{3}<\cdots
$$

Now, divide according to leading terms!

$$
\begin{array}{cc}
q_{0}: & x y^{2} \\
q_{1}: & y^{2} \\
x^{2} y & \frac{1}{3 x^{3} y^{3}+x y^{2}-y} \\
x+y & \frac{x^{3} y^{3}}{} \\
& \begin{array}{l}
x y^{2}-y \\
\\
\end{array}
\end{array}
$$

## Leading terms

Given polynomials $f_{1}, \ldots, f_{n}$ we have the following inclusion, where $\left\langle g_{1}, \ldots, g_{m}\right\rangle$ denotes the ideal generated by the polynomials $g_{1}, \ldots, g_{m}$.

$$
\left\langle\operatorname{LT} f_{1}, \cdots, \operatorname{LT} f_{n}\right\rangle \subseteq\left\langle\operatorname{LT}\left\{f_{1}, \ldots, f_{n}\right\}\right\rangle
$$

This reverse inclusion does not hold in general. Indeed, consider the polynomial ring $k[x, y]$ with $y<x$. Let $f_{1}, f_{2}$ respectively denote the polynomials $x^{3}-2 x y$ and $x^{2} y-2 y^{2}+x$. We have:

$$
\left\{\operatorname{LT} f_{1}, \operatorname{LT} f_{2}\right\}=\left\{x^{3}, x^{2} y\right\}
$$

however, the following polynomial is in the ideal generated by $\left\{f_{1}, f_{2}\right\}$.

$$
y\left(x^{3}-2 x y\right)-x\left(x^{2} y-2 y^{2}+x\right)=-x^{2}
$$

Hence, $x^{2}$ is in the leading ideal. However, $x^{2}$ is not in the ideal generated by the polynomials $x^{3}, x^{2} y$.

## Gröbner bases

## Definition

A set of polynomials $\left\{f_{1}, \ldots, f_{n}\right\}$ satisfying the following:

$$
\left\langle\operatorname{LT} f_{1}, \cdots \operatorname{LT} f_{n}\right\rangle=\left\langle\operatorname{LT}\left\{f_{1}, \ldots, f_{n}\right\}\right\rangle
$$

is a Gröbner basis for the ideal $\left\langle f_{1}, \ldots, f_{n}\right\rangle$ generated by $f_{1}, \ldots, f_{n}$.

## Definition

The $S$-polynomial of polynomials $g, h \in k\left[x_{1}, \ldots, x_{n}\right]$ is defined to be the following, where $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ where $\beta_{i}=\max \left((\operatorname{deg} g)_{i},(\operatorname{deg} h)_{i}\right) .$.

$$
S(g, h):=\frac{x^{\beta}}{\mathrm{LT} g} g-\frac{x^{\beta}}{\mathrm{LT} h} h
$$

This is indeed a polynomial, and is designed to obtain cancellation of leading terms.

## Buchberger Algorithm

## Definition

Given a finite sequence $G=\left(f_{1}, \ldots, f_{m}\right)$ of polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$ we define the Buchberger algorithm as follows.

Algorithm
On input $G$.

1. For all $i<j$ calculate $S\left(f_{i}, f_{j}\right)$.
2. Consider the lexicographic order on the set of pairs $(i, j)$ where $i, j \in\{1, \ldots, m\}$. From smallest to largest, with respect to this order, divide $S(i, j)$ by $G$. If the remainder is 0 for all pairs $(i, j)$ then terminate the algorithm and return the sequence $G$. Otherwise, let $\left(i^{\prime}, j^{\prime}\right)$ be the least pair such that division of $S\left(i^{\prime}, j^{\prime}\right)$ by $G$ results in a non-zero remainder $r$.
3. Append the polynomial $r$ to the end of the sequence $G$ and return to Step (1).

Let $\pi$ denote the following proof net.

$\pi$ reduces to $\pi^{\prime}$ :


We now consider the sets of generators of the defining ideals of $\pi$ and $\pi^{\prime}$.

$$
\begin{gathered}
G_{\pi}:=\left\{X_{1}-Y_{1}, Y_{1}-Y_{2}, Y_{2}-Y_{3}, Y_{3}-Y_{4}, Y_{4}-X_{2}\right\}, \quad G_{\pi^{\prime}}:=\left\{X_{1}-X_{2}\right\} \\
Y_{1}>Y_{2}>Y_{3}>Y_{4}>X_{1}>X_{2}
\end{gathered}
$$

## There is something to do



$$
\begin{gathered}
G_{\pi}=\left\{f_{1}=X_{1}-Y_{1}, f_{2}=Y_{1}-Y_{2}, f_{3}=Y_{2}-Y_{3}, f_{4}=Y_{3}-Y_{4}, f_{5}=Y_{4}-X_{2}\right\} \\
Y_{1}>Y_{2}>Y_{3}>Y_{4}>X_{1}>X_{2}
\end{gathered}
$$

The leading terms of $f_{1}, \ldots, f_{5}$ respectively are $-Y_{1}, Y_{1}, Y_{2}, Y_{3}, Y_{4}$ and the leading term of $f_{1}+\cdots+f_{5}$ is $X_{1}$. Hence:

$$
X_{1} \in \mathrm{LT}\left\langle G_{\pi}\right\rangle, \quad X_{1} \notin\left\langle\mathrm{LT} G_{\pi}\right\rangle
$$

Thus, $G_{\pi}$ is not Gröbner basis.

We now calculate the $10 S$-polynomials which arise from $G_{\pi}$.

$$
\begin{array}{ccc}
S\left(f_{1}, f_{2}\right)=Y_{2}-X_{1} & S\left(f_{1}, f_{3}\right)=Y_{1} Y_{3}-Y_{2} X_{1} & S\left(f_{1}, f_{4}\right)=Y_{1} Y_{4}-X_{1} X_{3} \\
S\left(f_{1}, f_{5}\right)=Y_{1} X_{2}-X_{1} Y_{4} & S\left(f_{2}, f_{3}\right)=Y_{1} Y_{3}-Y_{2}^{2} & S\left(f_{2}, f_{4}\right)=Y_{1} Y_{4}-Y_{2} Y_{3} \\
S\left(f_{2}, f_{5}\right)=Y_{1} X_{2}-Y_{2} Y_{4} & S\left(f_{3}, f_{4}\right)=Y_{2} Y_{4}-Y_{2}^{2} & S\left(f_{3}, f_{5}\right)=Y_{2} X_{2}-Y_{3} Y_{4} \\
S\left(f_{4}, f_{5}\right)=Y_{3} X_{2}-Y_{4}^{2} & &
\end{array}
$$

For each $i>j, i, j \in\{1, \ldots, 5\}$ we now divide $S\left(f_{i}, f_{j}\right)$ by $G$. In fact, this always gives a remainder zero except for the particular case when $(i, j)=(1,2)$, which we show on the next slide.

## Division

$$
\begin{aligned}
& G_{\pi}=\left\{f_{1}=X_{1}-Y_{1}, f_{2}=Y_{1}-Y_{2}, f_{3}=Y_{2}-Y_{3}, f_{4}=Y_{3}-Y_{4}, f_{5}=Y_{4}-X_{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{3}-X_{1} \\
& Y_{4}-X_{1} \\
& Y_{4}-X_{2} \\
& X_{2}-X_{1} \\
& \left(G_{\pi} \cup\left\{X_{2}-X_{1}\right\}\right) \cap\left\{X_{2}-X_{1}\right\}=G_{\pi^{\prime}}
\end{aligned}
$$

## Summary

- We defined a new Geometry of Interaction model and showed how it fits into the existing literature (Gol $0, \mathrm{Gol} 1$ ).
- We related "plugging of formulas" to an already existing algorithm.
Next steps:
- More algebraic structure, eg, Koszul Complexes.
- Extend this model to MELL.
- Use this as a foundation for more exotic models of MLL/MELL.
- Quantum error correction codes.
- Landau-Ginzburg models, the bicategory of hypersurface singularities.


## Thank you

Questions?

## (Bonus frame) Proof sketch

$$
\begin{aligned}
& I_{\pi} \longrightarrow P_{\pi} \xrightarrow{p} R_{\pi} \\
& S_{\gamma} \downarrow T_{\gamma} \bar{S}_{\gamma} \downarrow \bar{p}^{\prime} \downarrow \bar{T}_{\gamma} \\
& I_{\pi^{\prime}} \longrightarrow P_{\pi^{\prime}} \xrightarrow{p^{\prime}} R_{\pi^{\prime}}
\end{aligned}
$$

Existence: easy. $\bar{T}_{\gamma}, \bar{S}_{\gamma}$ isomorphisms: suffices to show:

$$
\begin{aligned}
\bar{T}_{\gamma} \bar{S}_{\gamma} p & =p \\
\bar{S}_{\gamma} \bar{T}_{\gamma} p^{\prime} & =p^{\prime}
\end{aligned}
$$

as $p, p^{\prime}$ are surjective. This is equivalent to $p^{\prime} S_{\gamma} T_{\gamma}=p^{\prime}, p T_{\gamma} S_{\gamma}=p$, or $p^{\prime}\left(S_{\gamma} T_{\gamma}-1\right)=0, p\left(T_{\gamma} S_{\gamma}-1\right)=0$. It suffices to check this on generators, ie, on unoriented atoms. It is clear that $S_{\gamma} T_{\gamma}=1$, however we have $T_{\gamma} S_{\gamma} \neq 1$. The circumstances where this is the case is indicated schematically on the next slide.

## (Bonus frame) Proof continued



## (Bonus frame) Example of Proposition

Let $\pi$ denote the following proof net.


We apply $\eta$-expansion:


## （Bonus frame）After $\eta$－expansion



## (Bonus frame) After reducing $m$-redexes



$$
\delta\left(X_{1}\right)=X_{3} \quad \delta\left(X_{3}\right)=X_{1} \quad \delta\left(X_{4}\right)=X_{2} \quad \delta\left(X_{2}\right)=X_{4}
$$

## (Bonus frame) Comparison continued

Returning to $\pi$ :


The following are elements of the defining ideal $I_{\pi}$ of $\pi$.

$$
X_{2}-X_{8} \quad X_{8}^{\prime \prime}-X_{12}^{\prime \prime} \quad X_{12}-X_{10} \quad X_{10}^{\prime \prime}-X_{6}^{\prime \prime} \quad X_{6}-X_{4}
$$

and so are $X_{i}-X_{i}^{\prime}, X_{i}^{\prime}-X_{i}^{\prime \prime}$ for $i=2,4,6,10,12$. Hence $\sigma(2)=4$ and $\sigma(4)=2$. Similarly, $\sigma(1)=3$ and $\sigma(3)=1$.

$$
\delta\left(X_{1}\right)=X_{3} \quad \delta\left(X_{3}\right)=X_{1} \quad \delta\left(X_{4}\right)=X_{2} \quad \delta\left(X_{2}\right)=X_{4}
$$

