
Computation in logic as the splitting of
idempotents in algebraic geometry;

two models of multiplicative linear logic.

Daniel Murfet, William Troiani

University of Melbourne, University of Sorbonne Paris Nord

2022



Geometry of Interaction, patterns of equality

Identification of variables in a sequent calculus, intuitionistic logic.

(ax)p ⊢ p
(ax)p ⊢ p (ax)p ⊢ p (L ⊃)p ⊃ p, p ⊢ p (L ⊃)p ⊃ p, p ⊃ p, p ⊢ p (ctr)p ⊃ p, p ⊢ p (R ⊃)p ⊃ p ⊢ p ⊃ p

Proof nets.

(ax)

¬A A

⋮ ⋮

⋮ ⋮

¬A A

(cut)



Dynamics

We understand proofs as static objects quite well, but what about
as dynamic objects?

(ax) (ax) (ax)

¬A2 A3 ¬A10 A11 ¬A6 A7

⊗ `
A4 ⊗ ¬A9 ¬A5 `A8

(cut)

(ax)

(ax) ¬A10 A11 (ax)

¬A2 A3 ¬A6 A7

(cut) (cut)



Matrix factorisations

For a polynomial U(x) ∈ C[x] the equation

V (x)2 = U(x)

may have no solution in polynomials, but it may acquire solutions
when we enlarge our sphere of consideration to include matrices.

Example

The polynomail U(x1, x2) = x2
1 +x2

2 ∈ C[x1, x2] has no square root,
but nonetheless

( 0 x1 − ix2

x1 + ix2 0
)

2

= (x2
1 + x2

2) ⋅ I = U(x1, x2) ⋅ I

where I is the 2 × 2 identity matrix.



Matrix factorisations, formally defined

Definition

A matrix factorisation of a polynomial U(x) ∈ C[x] is a pair
(X,dX) consisting of a Z2-graded, free, finitely generated
k-module X and a differential dX which is an odd linear
transformation satisfying

d2
X = U(x) ⋅ I

Since X is Z2-graded we can write X =X0 ⊕X1. Since dX is odd
we have an object resembling a chain complex.

. . .
pXÐ→X1

qXÐ→X0
pXÐ→X1

qXÐ→ . . .

Theorem

The category hmf(x,U(x)) is the zero category if and only if
U(x) has no singularities.



A taste of the bicategory of Landau-Ginzburg models (over
C)

The objects are certain types of polynomials (so called potentials).

(x,U(x)) (y, V (y)), (z,W (z))

The category of morphisms (x,U(x))Ð→ (y, V (y)) is

hmf((x, y), U(x) − V (y))



“Infinitary” compositions

Matrix factorisations can be composed using the tensor product
but only up to homotopy:

(C[x], U(x))
(X,dX)

Ð→ (C[y], V (y))
(Y,dY )

Ð→ (C[z],W (z))

Define
Y ○X = (Y ⊗k[y]X,dY ⊗ 1 + 1⊗ dX)

The resulting matrix factorisation Y ○X (of W (z) −U(x)) is a
free module of possibly infinite rank over C[x, z].

Example

Take X = C[x, y]m, Y = C[y, z]m′
. Then

X ⊗C[y] Y ≅ C[x, y, z]mm
′

which is free, but not finitely generated over C[x, z].



Semantics of composition

A methodical process for recovering a matrix factorisation proper
which is homotopy equivalent to the composite is the contents of
Murfet’s paper [13]. The relevant part of this process for today’s
purposes is the definition of the cut of two matrix factorisations.

Definition

Let Y be a matrix factorisation of the difference of two
polynomials U(x) − V (y) and X of V (y) −W (z). Define

JV (y) = C[y1, . . . , ym]/(∂y1V (y), . . . , ∂ymV (y))

The cut of X,Y is

Y ∣X = Y ⊗C[y] JV (y) ⊗C[y]X



Extracting the composite from the cut
Recall that the Clifford Algebra Cn is generated by elements
µ1, . . . , µn, ν1, . . . , νn subject to:

[µi, µj] = −2δij [νi, νj] = 2δij [µi, νj] = 0

where [ξ, ζ] = ξζ + ζξ for ξ, ζ ∈ {µ1, . . . , µn, ν1, . . . , νn}. Let Sn
denote ⋀(Cθ1 ⊕ . . .⊕Cθn) where θ1, . . . , θn are formal variables,
and n is the length of the sequence y.

Lemma

There exists a homotopy equivalence of matrix factorisations over
C[x, z]

Y ⊗k[y] JV (y) ⊗C[y]X = Y ∣X Sn ⊗C (Y ⊗X)

For today, we will black box the definition of this homotopy,
however it is worth noting that explicit equations exist which define
it. See [13].



Clifford action

There is a Cm action on Sm and hence on Sm ⊗C (Y ⊗X). This is
induced by two canonical endomorphisms which exist on Sm. The
wedge and contraction maps.

θi ∶
d−1

⋀ (Cθ1 ⊕ . . .⊕Cθn)Ð→
d

⋀(Cθ1 ⊕ . . .⊕Cθn)
θj1 ∧ . . . ∧ θjd−1 z→ θi ∧ θj1 ∧ . . . ∧ θjd−1

and

θ∗i ∶
d

⋀(Cθ1 ⊕ . . .⊕Cθn)Ð→
d−1

⋀ (Cθ1 ⊕ . . .⊕Cθn)

θj1 ∧ . . . ∧ θjd z→
d

∑
k=1

(−1)k+1δjk=iθj1 ∧ . . . ∧ θ̂jk ∧ . . . ∧ θjd

Set µi = θi − θ∗i , νi = θi + θ∗i . Passing this through the homotopy of
the previous slide, we obtain a Clifford algebra representation (up
to homotopy) on the cut Y ∣X.



Recovering the composite

Consider the endomorphism e = θ∗1 . . . θ∗mθm . . . θ1 ∶ Sm Ð→ Sm.
This is the projection onto k sitting inside Sm. Thus we obtain a
pair of morphisms

Sm ⊗C (Y ⊗X) Y ⊗X
e

ι

satisfying the properties that eι = idY ⊗X and ιe = e. Carrying this
through the homotopy

Y ∣X ≃ Sm ⊗C (Y ⊗X)

we see that extracting Y ⊗X from Y ∣X amounts to computing
the image of the endomorphism corresponding to e.



Summary of the process

Finding a pair of maps ι and the space Y ⊗X is a process referred
to as splitting the idempotent e. Since Y ∣X is a genuine matrix
factorisation (that is, it is finitely generated), and since the
splitting of e can be performed as a step-by-step process using
explicit maps, we take Y ○X in the following diagram to be the
finite model of Y ⊗X.

Y ∣X Sm ⊗C (Y ⊗X)

Y ○X Y ⊗X

eι

Is this cut-elimination? This is how we motivate the search for a
model of multiplicative linear logic in the setting of matrix
factorisations.



Formulas

Definition (Formulas)

▸ Unoriented atoms X,Y,Z, ...

▸ An oriented atom (or atomic proposition) is a pair (X,+) or
(X,−) where X is an unoriented atom.

Pre-formulas:

▸ Any atomic proposition is a preformula.

▸ If A,B are pre-formulas then so are A⊗B, A`B.

▸ If A is a pre-formula then so is ¬A.

Formulas: quotient of pre-formulas:

¬(A⊗B) ∼ ¬B ` ¬A ¬(A`B) ∼ ¬B ⊗ ¬A

¬(X,+) ∼ (X,−) ¬(X,−) ∼ (X,+)



The model, formulas
If (x,U(x)), (y, V (y)) are pairs consisting of a sequence of
variables and a polynomial over those variables (with base ring C)
then define

(x,U(x)) ◻ (y, V (y)) ∶= ((x, y), U(x) + V (y))

Definition

Say A has oriented atoms (X1, x1), . . . , (Xn, xn). Then

JAK ∶= ((X1, . . . ,Xn),
n

∑
i=1

xiX
2
i )

J¬AK ∶= ((Xn, . . . ,X1),−
n

∑
i=1

xiX
2
i )

JA⊗BK ∶= JAK ◻ JBK
JA`BK ∶= JAK ◻ JBK



Inducing matrix factorisations from sequences

Consider polynomails ∑ni=1 x
2
i ,∑

n
i=1 y

2
i , ∈ C[x1, . . . , xn, y1 . . . , yn].

Lemma

As operators on ⋀(Cθ1 ⊕ . . .⊕Cθn)⊗C C[x1, . . . , xn, y1, . . . , yn]
we have the following equality:

(
n

∑
i=1

(xi + yi)θi +
n

∑
i=1

(xi − yi)θ∗i )
2 =

n

∑
i=1

x2
i −

n

∑
i=1

y2
i

We call this the Koszul matrix factorisation corresponding to the
sequence

(x1 − y1, . . . , xn − yn)

This sequence in turn should be thought of as a choice of pairing
of the variables x1, . . . , xn with the variables y1, . . . , yn.



The model, axiom and cut

Say A has oriented atoms (X1, x1), . . . , (Xn, xn).

(ax)⊢ ¬A,A

We define a matrix factorisation

Ax ∶ (∅,0)Ð→ J¬AK ◻ JAK

For each unoriented atom Xi of A there is a corresponding
unoriented atom X ′

i of ¬A. We take the Koszul matrix
factorisation corresponding to the sequence

(X1 −X ′

1, . . . ,Xn −X ′

n)

Our interpretation of (cut) is the same matrix factorisation

Cut ∶ JAK ◻ J¬AKÐ→ (∅,0)



The model, tensor and par

Say B has oriented atoms (Y1, y1), . . . , (Ym, ym).

⊢ Γ,A ⊢∆,B (R⊗)⊢ Γ,∆,A⊗B

We define a matrix factorisation

Tensor ∶ JAK ◻ JBKÐ→ JA⊗BK = JAK ◻ JBK

Each unoriented atom Xi of A has a copy X ′

i in the unoriented
atoms of A⊗B, and similarly each unoriented atom Yj of B. We
take the Koszul matrix factorisation corresponding to the sequence

(X1 −X ′

1, . . . ,Xn −X ′

n, Y1 − Y ′

1 , . . . , Ym − Y ′

m)

This is a variant on the identity. Our interpretation of (R`) is
exactly the same, we label it Par.



The model, exchange

Exchange is similar.

⊢ Γ,A,B,∆ (ex)⊢ Γ,B,A,∆

We define a matrix factorisation

Ex ∶ JAK ◻ JBKÐ→ JBK ◻ JAK

For each unoriented atom Z in the combined sequence of those in
A and B, there is a corresponding unoriented atom Z ′ in the
combined sequence of those in B and A. We take the Koszul
matrix factorisation corresponding to the sequence

(X1 −X ′

1, . . . ,Xn −X ′

n, Y1 − Y ′

1 , . . . , Ym − Y ′

m)



Proofs as compositions of matrix factorisations

(ax)⊢ ¬A,A (R`)⊢ ¬A`A

(ax)⊢ ¬A,A (ax)⊢ ¬A,A (R⊗)⊢ ¬A,A⊗ ¬A,A (ex)
A⊗ ¬A,¬A,A (cut)⊢ ¬A,A

This is interpreted as follows, the goal is to compute this
composite using the cut (of matrix factorisations).

(∅,0) ◻ (∅,0)

(∅,0) ◻ (J¬AK ◻ JAK) ◻ (J¬AK ◻ JAK)

(J¬AK ◻ JAK) ◻ (J¬AK ◻ JA⊗ ¬AK ◻ JAK)

(J¬A`AK) ◻ (JA⊗ ¬AK ◻ J¬AK ◻ JAK)

(∅,0) ◻ J¬AK ◻ JAK

Ax◻Ax

Ax◻ id◻Tensor◻ id

Par◻Ex◻ id

Cut◻ id◻ id



A fork in the road

There are now at least three different approaches we can take:

▸ Focus on the sequences which give rise to the matrix
factorisations (this is done in “Elimination and cut-elimination
in multiplicative linear logic”, [14]).

▸ Focus on the Koszul complexes and use the fact that we have
chosen specific polynomials (recall that the polynomial
associated to each formula is the sum of squares of its
unoriented atoms). This lead to “proofs as Quantum Error
Correction Codes”, to appear.

▸ Focus on the matrix factorisations themselves. Still a work in
progress.



Elimination, cut-elimination, and falling roofs

Definition (Polynomial ring PA of a formula A)

PA is the free commutative C-algebra on the set of unoriented
atoms of A:

PA = C[X1, ...,Xn]

Let π be a proof structure with edge set E and denote by Ae the
formula labelling edge e ∈ E. The polynomial ring of π, denoted
Pπ is the following, where Ue is the set of unoriented atoms of Ae.

Pπ ∶=⊗
e∈E

PAe ≅ C[∐
e∈E

Ue]



Links

Definition (Link ideal Il, link coordinate ring Rl)

Axiom/Cut link l:

(ax)

¬A A

⋮ ⋮

⋮ ⋮

¬A A

(cut)

((X1, x1), ..., (Xn, xn)) is the sequence of oriented atoms of A.

Il ⊆ PA ⊗ P¬A
Il = (Xi −X ′

i)ni=1 = (Xi ⊗ 1 − 1⊗Xi)ni=1
Rl ∶= PA ⊗ P¬A/Il



Tensor/Par links

Tensor/Par link l:

⋮ ⋮

A B

⊗

A⊗B

⋮

⋮ ⋮

A B

`
A`B

⋮

Let ⊠ = ⊗ if l is a tensor link, and ⊠ = ` if l is a par link.

Il ⊆ PA ⊗ PB ⊗ PA⊠B
Il = ({Xi −X ′

i}ni=1 ∪ {Yj − Y ′

j }mj=1)
= ({Xi ⊗ 1⊗ 1 − 1⊗ 1⊗Xi}ni=1 ∪ {1⊗ Yj ⊗ 1 − 1⊗ 1⊗ Yj}mj=1)

Rl = PA ⊗ PB ⊗ PA⊠B/Il

Definition (Defining ideal Iπ, coordinate ring Rπ)

Iπ ∶= ∑l Il ⊆ Pπ where l ranges over all links of π. Rπ ∶= Pπ/Iπ.



Example of coordinate ring of a proof structure
A ∶= (¬X2 ⊗ Y3)` (¬Z6 ⊗W7)

(ax) (ax) (ax) (ax)

X1 ¬X2 Y3 ¬Y4 Z5 ¬Z6 W7 ¬W8

c ⊗ c c ⊗ c

¬X2 ⊗ Y3 ¬Z6 ⊗W7

`
A

c

Pπ = C[X1,X2,X
′

2,X
′′

2 , Y3, Y
′

3 , Y
′′

3 , Y4, Z5, Z6,

Z ′

6, Z
′′

6 ,W7,W
′

7,W
′′

7 ,W8]
Iπ = (X1 −X2) + (Y3 − Y4) + (Z5 −Z6) + (W7 −W8)
+ (X2 −X ′

2, Y3 − Y ′

3) + (Z6 −Z ′

6,W7 −W ′

7)
+ (X ′

2 −X ′′

2 , Y
′

3 − Y ′′

3 , Z
′

6 −Z ′′

6 ,W
′

7 −W ′′

7 )
Rπ = Pπ/Iπ ≅ C[X,Y,Z,W ]



Results

Definition

Given a sequence F = (f1, . . . , fs) of polynomials and a monomial
order < on C[X1, . . . ,Xn] we denote by Bes(F,<) the output of
the Buchberger Algorithm with early stopping.

Theorem

There is an equality of sets

G
(0)
π′ = Bes(G(Γ)

π ,<Γ) ∩ Pπ′ .



Graphical presentation

Vertical axis (higher = greater): order <, horizontal axis:
enumeration of variables (the suggested order here is meaningless).

Example

Let X1, . . . ,X6 be ordered by X5 <X1 <X6 <X3 <X2 <X4.
Then R< is

X4

X2

X3

X6

X1

X5



Falling roofs

X4

X2

X3

X6

X1

X5

X4

X2

X3

X6

X1

X5

X4

X2

X3

X6

X1

X5

X4

X2

X3

X6

X1

X5

Figure: The falling roofs algorithm applied to the graph of Example 5,
reading from left to right and top to bottom.



Example

As a simple example, consider C[Y > Z >X] with associated
sequence (Y −X,Y −Z).

Y

Z

X

Falling Roofs terminates at the following

Y

Z

X

from which we can extract the sequence (Z −X,Y −Z).



Associated sequences

To the original sequence (Y −X,Y −Z) there is an associated
sequence (Y +X,−Y −Z) so that

(Y −X)(Y +X) + (Y −Z)(−Y −Z)
= Z2 −X2

= (Z2 − Y 2) + (Y 2 −X2)

From this pair of sequences and the sequence (Z −X,Y −Z)
obtained from falling roofs we can construct a fourth sequence
(Y +X,X −Z) which has the property

(Z −X)(Y +X) + (Y −Z)(X −Z)
= ZY +ZX −XY −X2 + Y X −ZY −ZX +Z2

= Z2 −X2



Isomorphisms of matrix factorisations

So Falling Roofs calculates a sequence of pairs of sequences

((f1, g1), (f2, g2))

with the property f1 ⋅ g1 = f2 ⋅ g2 = Z2 −X2.
We read each of these pairs of sequences (fi, gi) as the
composition of two matrix factorisations:

{gi, fi} ∶= ((⋀(Cθ1 ⊕Cθ2)⊗C C[X,Y,Z],
gi

1θ∗1 + gi2θ∗2 + fi1θ1 + fi2θ2))

The calculations above (which is the work of Falling Roofs)
induces an isomorphism of matrix factorisations

{g1, f1} ≅ {g2, f2} (1)



Passing to the cut...
If we look at the cut rather than the composition, something
interesting happens...

{(gi, fi)} ∶= {(gi, fi)}⊗C[Y ] C (2)

We have a family of maps

Cut of X
∆Ð→ Y

∆Ð→ Z = {Z + Y,Z − Y } ∣ {Y +X,Y −X}

{g1, f1}

{g2, f2}

{Z +X,Z −X}

≅

≃

(3)



QECC

The final isomorphism {Z +X,Z −X}Ð→ {g2, f2} maps
1z→ 1 + θ1θ2 which, by reading indices, can be thought of as the
entangled qubit ∣00⟩ + ∣11⟩.
Thus, it is inevitable that the organisation steps of Falling Roofs
correspond to something in the Quantum Error Correcting Codes
literature. When this is taken to its logical end, we find that
cut-elimination corresponds to the quantum error correction
process.



Dynamics

Theorem (The Reduction Theorem)

For each reduction γ ∶ π Ð→ π′ there exists a subset Cπ ⊆ Sπ and
an isomorphism:

γ̂ ∶Hπ′ Ð→HCππ
such that for every g ∈ Sπ ∖Cπ there is a unique g′ ∈ Sπ′ making
the following diagram commute:

Hπ′ HCππ

Hπ′ HCππ

γ̂

g′ g

γ̂

and this map g z→ g′ is a bijection Sπ ∖Cπ Ð→ Sπ′ .



We label the relevant links of π,π′ according to the following
diagram.

l(ax)
(ax) l● l●

A ¬A A A

m●
l(cut)
(cut) m●

For each oriented atom (U, y) of A we define a Z2-degree zero
map for y = + by:

γU ∶⋀CψlU Ð→⋀CψlU ⊗⋀Cψl(cut)U ⊗⋀Cψl(ax)U

∣j⟩z→ 1√
2
(∣+ + +⟩ + (−1)j ∣− − −⟩)



What is left to do?

▸ Today’s talk has souly been about multiplicative linear logic,
so what about exponential linear logic?

▸ The quantum error correction story can be totally recast in
the guise of hamiltonians and renormalisation (another deep
idea from physics).

▸ Categorifying our models.

▸ “Categorical elimination theory”, coming from falling roofs.
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