An Introduction to untyped λ -calculus, and the Church-Rosser Theorem

Will Troiani

August 2019

1 Introduction

The execution of a computation is a process of allowed transformations to a term in some language which either continues indefinitely or terminates after a finite number of steps. If termination occurs, then the term which is "left at the end" is special in that it is the term where the computation ended. For example,

$$1 + 2 + 3$$
 (1)

is not *computed* yet, as it may be transformed to

3 + 3

which can then be transformed to 6. Of course, there is another route of computation which could have been taken, performing the second addition of (1) first obtains 1+5, which then yields 6. The property that there exists the term 6 which both computation paths $1+2+3 \rightarrow 3+3$ and $1+2+3 \rightarrow 1+5$ can be computed to is the property of *confluence* of natural number addition.

The goal of this note is to introduce a system of computation, the *untyped* λ -calculus, and prove the Church-Rosser theorem which states that the untyped λ -calculus is *con-fluent*.

2 The Untyped λ -Calculus

The untyped λ -calculus sits among a collection of type theories which have been used as a foundation for mathematics [7], a foundation for logic [1], (although it was later found to be inconsistent [2]), and a foundation of certain programming languages such as AGDA, Lisp, Haskell, Coq, COC, etc. The untyped λ -calculus is the simplest of these theories, and although is rarely used in its original form, is a good entry point to many of the important ideas concerning the more modern type theories.

The main reference for this section is [4, §3.3].

Definition 1. Let \mathscr{V} be a (countably) infinite set of variables, and let \mathscr{L} be the language consisting of \mathscr{V} along with the special symbols

$$\lambda$$
 . ()

Let \mathscr{L}^* be the set of words of \mathscr{L} , more precisely, an element $w \in \mathscr{L}^*$ is a finite sequence $(w_1, ..., w_n)$ where each w_i is in \mathscr{L} , for convenience, such an element will be written as $w_1...w_n$. Now let Λ_p denote the smallest subset of \mathscr{L}^* such that

- if $x \in \mathscr{V}$ then $x \in \Lambda_p$,
- if $M, N \in \Lambda_p$ then $(MN) \in \Lambda_p$,
- if $x \in \mathscr{V}$ and $M \in \Lambda_p$ then $(\lambda x.M) \in \Lambda_p$

 Λ_p is the set of **preterms**. A preterm M such that $M \in \mathcal{V}$ is a **variable**, if $M = (M_1M_2)$ for some preterms M_1, M_2 , then M is an **application**, and if $M = (\lambda x, M')$ for some $x \in \mathcal{V}$ and $M' \in \Lambda_p$ then M is an **abstraction**.

In practice, it becomes unwieldy to use this notation for the preterms exactly, and so the following notation is adopted:

Definition 2. • For preterms M_1, M_2, M_3 , the preterm $M_1M_2M_3$ means $((M_1M_2)M_3))$,

• For variables x, y and a preterm M, the preterm $\lambda xy.M$ means $(\lambda x.(\lambda y.M))$.

The variables x which appear in the subpreterm M of a preterm $\lambda x.M$ are viewed as "markers for substitution", (see Remark 3). For this reason, a distinction is made between the variable x and the variable y in, for example, the preterm $\lambda x.xy$:

Definition 3. Given a preterm M, let FV(M) be the following set of variables, defined recursively

- if M = x where x is a variable then $FV(M) = \{x\}$,
- if $M = M_1 M_2$ then $FV(M) = FV(M_1) \cup FV(M_2)$,
- if $M = \lambda x.M'$ then $FV(M) = FV(M') \setminus \{x\}.$

A variable $x \in FV(M)$ is a **free variable** of M, a variable x which appears in M but is not a free variable is a **bound variable**.

As mentioned, bound variables will be viewed as "markers for substitution", so we define the following equivalence relation on Λ_p which relates a preterm M to M' if M can be obtained by replacing every bound occurrence of a variable x in M' with another variable y:

Definition 4. For any term M, let M[x := y] be the preterm given by replacing every bound occurrence of x in M with y. Define the following equivalence relation on Λ_p : $M \sim_{\alpha} M'$ if there exists $x, y \in \mathcal{V}$ such that M[x := y] = M', where no free variable of M becomes bound in M[x := y]. In such a case, we say that M is α -equivalent to M'.

Remark 1. The reason why we need to let x and y be such that no free variable of M becomes bound in M[x := y] is so that a preterm such as $\lambda x.y$ does not get identified with the preterm $\lambda y.y$.

We are now in a position to define the underlying language of λ -calculus:

Definition 5. Let $\Lambda = \Lambda_P/\sim_{\alpha}$ be the set of λ -terms. The set of free variables of a λ -term [M] is FV(M), which can be shown to be well defined. For convenience, M will be written instead of [M].

Now the dynamics of the computation of λ -terms will be defined.

Definition 6. Single step β -reduction \rightarrow_{β} is the smallest relation on Λ satisfying:

- the reduction axiom:
 - for all variables x and λ -terms $M, M', (\lambda x.M)M' \rightarrow_{\beta} M[x := M']$, where M[x := M'] is the term given by replacing every free occurrence of x in M with M',
- the following compatibility axioms:
 - if $M \rightarrow_{\beta} M'$ then $(MN) \rightarrow_{\beta} (M'N)$ and $(NM) \rightarrow_{\beta} (NM')$,
 - if $M \to_{\beta} M'$ then for any variable $x, \lambda x.M \to_{\beta} \lambda xM'$.

A subterm of the form $(\lambda x.M)M'$ is a β -redex, and $(\lambda x.M)M'$ single step β -reduces to M'.

Remark 2. Strictly, single step β reduction should be defined on preterms and then shown that a well defined relation is induced on terms, but this level of detail has been omitted for the sake of clarity.

Remark 3. The reducition axiom shows precisely in what sense a bound variable is a "marker for substitution". For example, $(\lambda x.x)M \rightarrow_{\beta} M$ and $(\lambda y.y)M \rightarrow_{\beta} M$, which is why $\lambda x.x$ is identified with $\lambda y.y$.

It is through single step β -reduction that computation may be performed. In fact, λ -calculus is capable of performing natural number addition:

Example 1. Define the following λ -terms:

• ONE := $\lambda f x. f x$,

- $TWO := \lambda fx.ffx$,
- THREE := $\lambda f x. f f f x$,
- $PLUS := \lambda mnfx.mf(nfx)$

then

$$PLUS \ ONE \ TWO = (\lambda mnfx.\underline{m}f(nfx))(\lambda fx.fx)(\lambda fx.ffx)$$

$$\rightarrow_{\beta} (\lambda nfx.(\lambda fx.\underline{fx})\underline{f}(nfx))(\lambda fx.ffx)$$

$$\rightarrow_{\beta} (\lambda nfx.(\lambda x.f\underline{x})(\underline{nfx}))(\lambda fx.ffx)$$

$$\rightarrow_{\beta} (\lambda nfx.\underline{fnfx})(\underline{\lambda fx.ffx})$$

$$\rightarrow_{\beta} (\lambda fx.f(\lambda fx.\underline{ffx})\underline{fx})$$

$$\rightarrow_{\beta} (\lambda fx.f(\lambda x.ff\underline{x})\underline{x})$$

$$\rightarrow_{\beta} (\lambda fx.ffx) = THREE$$

where each step is obtained by substituting the right most underlined λ -term inplace of the left most underlined variable.

Historically, is this how Church first defined computable functions.

3 The Church-Rosser Theorem

Example 1 shows one possible sequence of β -reductions which reduces PLUS ONE TWO to THREE, however, different valid sequences exist. Moreover, no matter what path is taken, one can always find a path to THREE. The following theorem, which is the main point of this note, states that such a term always exists:

Definition 7. Multi step β -reduction \rightarrow (or simply β -reduction) is the smallest relation on Λ satisfying

- the reduction axiom:
 - if $M \rightarrow_{\beta} M'$ then $M \twoheadrightarrow M'$,
- reflexivity:

$$-$$
 if $M = M'$ then $M \twoheadrightarrow M'$,

• transitivity:

- if $M_1 \twoheadrightarrow M_2$ and $M_2 \twoheadrightarrow M_3$ then $M_1 \twoheadrightarrow M_3$

If $M \twoheadrightarrow M'$, then M multistep β -reduces to M'.

Theorem 1 (The Church Rosser Theorem). If $M_1 \twoheadrightarrow M_2$ and $M_1 \twoheadrightarrow M_3$ then there exists a term M_4 such that the diagram

commutes. That is, multi step β reduction is **confluent**.

Proof. The proof will proceed by introducing a new relation \Rightarrow on Λ which satisfies the following:

- if $M \to_{\beta} M'$ then $M \Rightarrow M'$,
- if $M \Rightarrow M'$ then $M \twoheadrightarrow M'$,
- if $M_1 \Rightarrow M_2$ and $M_1 \Rightarrow M_3$ then there exists $M_4 \in \Lambda$ which makes the following diagram commute

This is sufficient as if $M_1 = M^{11}, ..., M^{1m}$ and $M_1 = M^{11}, ..., M^{n1}$ are sequences of λ -terms such that

$$M^{11} \to_{\beta} M^{12} \to_{\beta} \ldots \to_{\beta} M^{1m}$$

and

$$M^{11} \to_{\beta} M^{21} \to_{\beta} \ldots \to_{\beta} M^{n1}$$

then the diagram

can be completed to the following commuting diagram

from which it follows that M^{nm} satisfies the required properties of M_4 .

Towards this end, define the following relation on Λ :

Definition 8. *Parallel* β *reduction* \Rightarrow *is the smallest relation on* Λ *satisfying*

• the reduction axiom:

$$- if M \Rightarrow M' and N \Rightarrow N' then (\lambda x.M)N \Rightarrow M'[x := N'],$$

• reflexivity:

- if M = M' then $M \Rightarrow M'$,

- the following compatibility axioms:
 - if $M \Rightarrow M'$ and $N \Rightarrow N'$ then $(MN) \Rightarrow (M'N')$,
 - if $M \Rightarrow M'$ then $\lambda x.M \Rightarrow \lambda x.M'$.

Remark 4. β -reduction might introduce new β -redexes which are not "visible" in the original term. For example

$$(\lambda x.xxx)(\lambda x.x) \twoheadrightarrow (\lambda x.x)(\lambda x.x)(\lambda x.x)$$

By transitivity, $(\lambda x.xx)(\lambda x.x) \rightarrow \lambda x.x$. However, parallel β -reduction is not transitive, so $(\lambda x.xxx)(\lambda x.x) \not\Rightarrow \lambda x.x$. So $M \Rightarrow N$ only if N is obtained from M by reducing a collection of the β redexes in M and not ones which are introduced by this reduction process.

Clearly, if $M \to_{\beta} M'$ then $M \Rightarrow M'$ and if $M \Rightarrow M'$ then $M \twoheadrightarrow M'$. It remains to show that parallel β reduction is confluent.

First, we claim that if $M_1 \Rightarrow M_2$ and $N_1 \Rightarrow N_2$ then $M_1[x := N_1] \Rightarrow M_2[x := N_2]$. To

prove this claim, we proceed by inducting on the "minimum number of usages of the axioms of parallel β reduction required to prove that $M_1 \Rightarrow M_2$ ". More precisely, let

$$S_0 := \{ (M, M) \mid M \in \Lambda \}$$

and for i > 0, let S_i be the smallest set such that

- $S_{i-1} \subseteq S_i$,
- if $(M_1, M_2), (N_1, N_2) \in S_{i-1}$ then $((M_1N_1), (M_2N_2)) \in S_i$,
- if $(M, N) \in S_{i-1}$ then $(\lambda x.M, \lambda x.N) \in S_i$,
- if $(M_1, M_2), (N_1, N_2) \in S_{i-1}$ then $((\lambda x.M_1)N_1, N_2[x := M_2]) \in S_i$

Clearly, $M \Rightarrow N$ if and only if $(M, N) \in S := \bigcup_{i=0}^{\infty} S_i$. Define the following function:

$$\begin{split} \varphi:S \to \mathbb{N} \\ (M,N) \mapsto \min\{i \in \mathbb{N} \mid (M,N) \in S_i\} \end{split}$$

we proceed by (strong) induction on $\varphi(M_1, M_2)$. If $\varphi(M_1, M_2) = 0$ then $M_1 = M_2$ from which it follows that $M_1[x := N_1] \Rightarrow M_2[x := N_2]$. Say the result holds true for $\varphi(M_1, M_2) < k$. Then there are three cases, corresponding to M_1 being a variable, an application, or an abstraction (see Definition 1). If M_1 is a variable, then $\varphi(M_1, M_2) = 0$ and we have reduced to the base case. If $M_1 = \lambda y \cdot M'_1$ then $M_1 \Rightarrow M_2$ implies that $M_2 = \lambda x \cdot M'_2$. By the inductive hypothesis $M'_1[x := N_1] \Rightarrow M'_2[x := N_2]$ which implies

$$\lambda y.(M_1'[x := N_1]) \Rightarrow \lambda y.(M_2'[x := N_2])$$

so, $(\lambda y.M_1')[x := N_1] \Rightarrow (\lambda y.M_2')[x := N_2]$
so, $M_1[x := N_1] \Rightarrow M_2[x := N_2]$

Lastly, say $M_1 = (M_1^1 M_1^2)$. Then either M_1^1 is an abstraction or it is not. If it is not then the proof is similar to the case where M_1 is an abstraction. Say $M_1^1 = (\lambda x. M_1^{1'})$. Now, either $M_2 = (\lambda x. M_2^{1'}) M_2^2$, in which case the proof is similar to the case when M_1 is an abstraction, or $M_2 = M_2^{1'} [x := M_2^2]$. In this case, by the inductive hypothesis we have

$$M_1^{1'}[x=N_1] \Rightarrow M_2^{1'}[x=N_2]$$

and

$$M_1^2[x=N_1] \Rightarrow M_2^2[x=N_2]$$

from which it follows that

$$(\lambda x.M_1^{1'}[x := N_1])(M_1^2[x := N_1]) \Rightarrow (\lambda x.M_2^{1'}[x := N_2])(M_2^2[x := N_2])$$

which implies

$$M_1[x := N_1] = \left((\lambda x.M_1^{1'})M_1^2 \right) [x := N_1] \Rightarrow \left((\lambda x.M_2^{1'})M_2^2 \right) [x := N_2] = M_2[x := N_2]$$

which establishes the claim.

To finish the proof, say $M_1 \Rightarrow M_2$ and $M_1 \Rightarrow M_3$, we will show that there exists an appropriate term M_4 by induction on $l(M_1)$, the length of M_1 . This is broken up into cases in a similar way to the proof of the claim above, the only non-trivial case is when

$$M_1 = (\lambda x. M_1^{1'}) M_1^2, \qquad M_2 = M_2^{1'} [x := M_2^2], \qquad M_3 = M_3^{1'} [x := M_3^2]$$

By the inductive hypothesis, there exists $M_4^{1\prime}$ and M_4^2 such that the diagrams

both commute. Now, by the claim proved above,

$$M_2^{1'}[x := M_2^2] \Rightarrow M_4^{1'}[x := M_4^2]$$
 $M_3^{1'}[x := M_3^2] \Rightarrow M_4^{1'}[x := M_4^2]$

and so,

$$(\lambda x.M_2^{1'})M_2^2 \Rightarrow (\lambda x.M_4^{1'})M_4^2 \qquad (\lambda x.M_3^{1'})M_3^2 \Rightarrow (\lambda x.M_4^{1'})M_4^2$$

ie, the diagram

$$\begin{array}{c} M_1 \Longrightarrow M_2 \\ \downarrow & \downarrow \\ M_3 \Longrightarrow M_4 \end{array}$$

commutes, as required.

References

- A. Church, An Unsolvable Problem of Elementary Number Theory, American Journal of Mathematics, Vol. 58, No. 2. (Apr., 1936), pp. 345-363.
- [2] A. Church, A Set of Postulates for the Foundation of Logic Annals of Mathematics Second Series, Vol. 33, No. 2 (Apr., 1932), pp. 346-366
- [3] A. Church, A Set of Postulates for the Foundation of Logic (Second Paper), Annals of Mathematics Vol. 34, No. 4 (Oct., 1933), pp. 839-864
- [4] M. Sørensen, P. Urzyczyn, *Lectures on the Curry-Howard Isomorphism*, Studies in Logic and the Foundations of Mathematics, 4th July 2006.
- [5] A. Turing, [Delivered to the Society November 1936], "On Computable Numbers, with an Application to the Entscheidungsproblem" (PDF), Proceedings of the London Mathematical Society, 2, 42, pp. 230–65, doi:10.1112/plms/s2-42.1.230 and Turing, A.M. (1938). "On Computable Numbers, with an Application to the Entscheidungsproblem: A correction". Proceedings of the London Mathematical Society. 2. 43 (published 1937). pp. 544–6, 1937
- [6] K. Gödel "On Undecidable Propositions of Formal Mathematical Systems". In Davis, Martin (ed.). The Undecidable. Kleene and Rosser (lecture note-takers); Institute for Advanced Study (lecture sponsor). New York: Raven Press, 1934.
- [7] J. Lambek, P.J. Scott, Introduction to Higher Order Categorical Logic, Cambridge University Press, New York, 1986.