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1 Introduction

The execution of a computation is a process of allowed transformations to a term in
some language which either continues indefinitely or terminates after a finite number
of steps. If termination occurs, then the term which is “left at the end” is special in
that it is the term where the computation ended. For example,

1+243 (1)
is not computed yet, as it may be transformed to
3+3

which can then be transformed to 6. Of course, there is another route of computation
which could have been taken, performing the second addition of first obtains 1+ 5,
which then yields 6. The property that there exists the term 6 which both computation
paths 1+2+3 —>3+3and 1+2+ 3 — 145 can be computed to is the property of
confluence of natural number addition.

The goal of this note is to introduce a system of computation, the untyped \-calculus,
and prove the Church-Rosser theorem which states that the untyped A-calculus is con-
fluent.

2 The Untyped M-Calculus

The untyped A-calculus sits among a collection of type theories which have been used
as a foundation for mathematics [7], a foundation for logic [I], (although it was later
found to be inconsistent [2]), and a foundation of certain programming languages such
as AGDA, Lisp, Haskell, Coq, COC, etc. The untyped A-calculus is the simplest of
these theories, and although is rarely used in its original form, is a good entry point to



many of the important ideas concerning the more modern type theories.

The main reference for this section is [4, §3.3].

Definition 1. Let ¥ be a (countably) infinite set of variables, and let £ be the language
consisting of ¥ along with the special symbols

A . ( )

Let £* be the set of words of £, more precisely, an element w € £* is a finite sequence
(w1, ..., wy,) where each w; is in £, for convenience, such an element will be written as
wy.. w,. Now let A, denote the smallest subset of £* such that

e ifv €V thenx € Ay,
o if M, N € A, then (MN) € A,
o ifx €V and M € A, then (A\x.M) € A,

A, is the set of preterms. A preterm M such that M € V is a variable, if M =
(M, My) for some preterms My, My, then M is an application, and if M = (\x, M")
for some x € ¥ and M' € A, then M is an abstraction.

In practice, it becomes unwieldy to use this notation for the preterms exactly, and
so the following notation is adopted:

Definition 2. e For preterms My, My, M3, the preterm My My Mz means ((My M) Ms)),
e For variables x,y and a preterm M, the preterm Azy.M means (Az.(Ay.M)).

The variables x which appear in the subpreterm M of a preterm Az.M are viewed
as “markers for substitution”, (see Remark . For this reason, a distinction is made
between the variable x and the variable y in, for example, the preterm Ax.zy:

Definition 3. Given a preterm M, let FV(M) be the following set of variables, defined
recursively

o if M =z where x is a variable then FV(M) = {z},
o if M = MM, then FV(M) = FV(M,) U FV(Ms,),
o if M = X\x.M' then FV(M) = FV(M')\ {x}.

A wvariable © € FV(M) is a free variable of M, a variable x which appears in M but
18 not a free variable is a bound variable.

As mentioned, bound variables will be viewed as “markers for substitution”, so we
define the following equivalence relation on A, which relates a preterm M to M’ if M
can be obtained by replacing every bound occurrence of a variable x in M’ with another
variable y:



Definition 4. For any term M, let M[x := y| be the preterm given by replacing every
bound occurrence of x in M with y. Define the following equivalence relation on A,:
M ~, M' if there exists x,y € ¥ such that M|z := y| = M’', where no free variable
of M becomes bound in M[x :=y|. In such a case, we say that M is a-equivalent to
M.

Remark 1. The reason why we need to let x and y be such that no free variable of M
becomes bound in M[x := y] is so that a preterm such as Ax.y does not get identified
with the preterm \y.y.

We are now in a position to define the underlying language of A-calculus:

Definition 5. Let A = 2»/~, be the set of A\-terms. The set of free variables of a
A-term [M] is FV(M), which can be shown to be well defined. For convenience, M will
be written instead of [M].

Now the dynamics of the computation of A-terms will be defined.
Definition 6. Single step [-reduction — 4 is the smallest relation on A satisfying:
e the reduction axiom:

— for all variables x and \-terms M, M', (Ax.M)M' —5 M[z := M'|, where
Mz := M'] is the term given by replacing every free occurrence of x in M
with M’

e the following compatibility axioms:
— if M =3 M' then (MN) =g (M'N) and (NM) —5 (NM'),
— if M —3 M’ then for any variable x, A\x.M —5 Az M'.

A subterm of the form (Az.M)M' is a f-redex, and (Ax.M)M' single step f-reduces
to M.

Remark 2. Strictly, single step B reduction should be defined on preterms and then
shown that a well defined relation is induced on terms, but this level of detail has been
omitted for the sake of clarity.

Remark 3. The reducition axiom shows precisely in what sense a bound variable is a
“marker for substitution”. For example, (Axv.x)M —g M and (A\y.y)M —z M, which
15 why \x.x 1s identified with \y.y.

It is through single step [-reduction that computation may be performed. In fact,
A-calculus is capable of performing natural number addition:

Example 1. Define the following A-terms:
o ONE := \fzx.fzx,



o TWO := \fz.ffz,
e THREE := \fxz.fffz,
e PLUS := Mmnfz.mf(nfz)
then

PLUS ONE TWO = (Amnfx.mf(nfz))Afx.fz)Afz.ffx)
—5 ()\nfat()\fxia:)i(nfx))()\f:cffx)
Anfa.(\r.fz)(nfe)) (M. f f)

Anfe.fnfz)(\fz.ffz)

—s (

—8 (

—g (Afw.f(Afo.ffr)fx)
—s (M. f(Az.ffz)z)

—s (Mfx.fffr)=THREE

where each step is obtained by substituting the right most underlined \-term inplace of
the left most underlined variable.

Historically, is this how Church first defined computable functions.

3 The Church-Rosser Theorem

Example[Ishows one possible sequence of S-reductions which reduces PLUS ONE TWO
to THREE, however, different valid sequences exist. Moreover, no matter what path
is taken, one can always find a path to THREE. The following theorem, which is the
main point of this note, states that such a term always exists:

Definition 7. Multi step [-reduction — (or simply B-reduction) is the smallest
relation on A satisfying

o the reduction axiom:
— if M —3 M' then M — M’,
o reflexivity:
— if M = M' then M — M,
e transitivity:
— if My — My and My — Mjs then My — Mj

If M — M’, then M multistep [-reduces to M’.



Theorem 1 (The Church Rosser Theorem). If M; — My and My — Mjs then there
exists a term My such that the diagram

MlﬂMg

L

M3 —» M,y
commutes. That is, multi step [ reduction is confluent.

Proof. The proof will proceed by introducing a new relation = on A which satisfies the
following:

o if M —5 M’ then M = M,
o if M = M’ then M — M’,

o if My = M, and M; = Mj3 then there exists My € A which makes the following
diagram commute

M1:>M2

bl

M; —— M,

This is sufficient as if My, = MY, ..., MY and M, = MY, ..., M™ are sequences of
A-terms such that
MH —3 M12 —B ... 78 Mlm

and
]\411 —)5 le —)B —)5 ]\4”1

then the diagram

M1:M11:>M12 Mlm:M2
M21
M = M™



can be completed to the following commuting diagram

M1:M11:>M12 Mlm:MQ
M ——ns M?*? M2
My = M™ —= M"? M

from which it follows that M™™ satisfies the required properties of My.

Towards this end, define the following relation on A:

Definition 8. Parallel § reduction = is the smallest relation on A satisfying
o the reduction axiom:
— if M = M' and N = N’ then (A\x.M)N = M'[z := N'],
o reflexivity:
— if M = M' then M = M,
e the following compatibility axioms:
— if M = M' and N = N’ then (MN) = (M'N"),
— if M = M’ then \x.M = \x.M'.

Remark 4. §-reduction might introduce new [-redexes which are not “visible” in the
original term. For example

(Ar.zzx)(Az.x) - (Az.x)(Az.x)(Az.x)

By transitivity, (Az.xxz)(Ax.x) - \x.x. However, parallel f-reduction is not transitive,
so (Ar.xxz)(Ax.x) & Av.x. So M = N only if N is obtained from M by reducing a
collection of the (8 redexes in M and not ones which are introduced by this reduction
process.

Clearly, it M —5 M’ then M = M’ and if M = M’ then M — M'. It remains to
show that parallel § reduction is confluent.

First, we claim that if M; = M, and Ny = N, then M;[x := Nj] = Ms[x := Ny]. To



prove this claim, we proceed by inducting on the “minimum number of usages of the
axioms of parallel § reduction required to prove that M; = M,”. More precisely, let

So:={(M,M) | M € A}

and for 7 > 0, let S; be the smallest set such that

e Si1CS;,

o if (M, My), (N1, No) € S;—1 then ((M1Ny), (MaN3)) € S;

o if (M,N) € S;_1 then (A\z.M, \z.N) € 5,

o if (My, Ms), (N1, Ny) € S;_1 then ((Ax.M7)Ny, Nolz := My]) € S;
Clearly, M = N if and only if (M, N) € S := U°,S;. Define the following function:

p: S5 —=N
(M,N)— min{i e N| (M,N) € S;}

we proceed by (strong) induction on ¢(My, My). If @(My, My) = 0 then M; = M,
from which it follows that M;[z := Ny| = Ms[z := Ny]. Say the result holds true for
o(My, M) < k. Then there are three cases, corresponding to M; being a variable, an
application, or an abstraction (see Deﬁnition. If M, is a variable, then (M, Ms) =0
and we have reduced to the base case. If My = Ay.Mj then M; = M, implies that
My = Ax.MJ. By the inductive hypothesis M][z := Ni] = Mj[x := N,] which implies
Ay.(M{[z := Nq]) = Ay.(My[z := Ns))
so, (A\y.M7)[z := Ni] = (\y. M) [x := Ny
S0, Ml[.fE = Nl] = MQ[,CIZ’ = NQ]
Lastly, say M; = (M} M?). Then either M| is an abstraction or it is not. If it is not
then the proof is similar to the case where M is an abstraction. Say M} = (\z.M]").
Now, either My = (Az. M} )M2, in which case the proof is similar to the case when M,
is an abstraction, or My = MJ [z := M2]. In this case, by the inductive hypothesis we

have
M [z = Ni] = My [x = Noj

and

from which it follows that
Az M [z = Ni])(M2[z == V1)) = O M [z := No])(M2[z == No))
which implies

M|z := Ny] = (()\lell)Mf)[:v =N = (()\xM%/)Mg)[x = Ny| = Ms[z := Ny

7



which establishes the claim.

To finish the proof, say M; = Ms and M; = M;, we will show that there exists
an appropriate term M, by induction on [(Mj), the length of M;. This is broken up
into cases in a similar way to the proof of the claim above, the only non-trivial case is
when

My = \e.MYYM2, My =Mz := M2,  Ms;= Mz := M2

By the inductive hypothesis, there exists M} and M? such that the diagrams

M = My M} —= M}
bl
M3 —= M} M3 =—= M}

both commute. Now, by the claim proved above,
M21/[:U = M3 = Mi/[x = M7 Mgll[x = M3 = Mi/[x = M7

and so,
Ao MIYMZ = Q. MOYM? e MP)YM2 = (\x.M})M?

ie, the diagram
Ml — MQ

[

My —— M,

commutes, as required. O
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