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1 Topological bases and neighbourhood bases

We will use extensively the notion of a neighbourhood which in some texts are taken to be open, here however
we do not require this:

Definition 1.0.1. A neighbourhood of a point x in a topological space X is a subset V ⊆ X of X containing
an open set U such that x ∈ U ⊆ V .

Remark 1.0.2. Neighbourhoods which are not necessarily open occur in situations where the topological
space has extra structure. For instance, a non-open subgroup A′ of a topological abelian group A may
contain an open subset U containing 0 where U is not a subgroup. The terminology “the subgroup A′ is a
neighbourhood of 0” is simpler language.

When defining topologies, it is often easier to define a topology basis :

Definition 1.0.3. Let X be a set. A topology basis B of X is a collection of subsets of X such that

1. The B cover X,

2. if U, V ∈ B then for every x ∈ U ∩ V there exists W ∈ B containing x such that W ⊆ U ∩ V .

If X is a topological space, then a collection of open subsets B is a topological basis if every open set
U ⊆ X can be written as a union of elements in B.

Any topological basis in the second sense is a topological basis in the first sense, and conversely, every
topological basis B in the first sense gives rise to a unique topology such that B is a topological basis in the
second sense.

Lemma 1.0.4. Given a set X and topology basis B, there is a unique topology T on X such that B becomes
a topology basis for X as a topological space.

Proof. Let T be the topology given by unions of elements of B. Clearly we have that B is a topology basis
for X with respect to this topology.

If U ∈ T ′ where T ′ is any topology on X such that B is a topology basis then U can be written as the
union of elements of B and so U ∈ T .

Conversely, if U ∈ T then since B is a topology basis for T ′ we have that every element of B is open (in
T ′), and thus U ∈ T ′.

It is sometimes more convenient to define a topology by considering particular sets containing each point
indivisually:

Definition 1.0.5. Let X be a set, a system of neighbourhoods is a collection of sets of subsets {B(x)}x∈X
of X subject to:

1. B(x) 6= ∅.

2. if U ∈ B(x) then x ∈ U ,

3. if U, V ∈ B(x) then there exists W ∈ B(x) such that W ⊆ U ∩ V ,

4. if U ⊆ B(x) then there exists a subset V ⊆ U containing x such that for all y ∈ V , there is W ∈ B(y)
such that W ⊆ V .

Definition 1.0.6. LetX be a topological space and x ∈ X a point. A neighbourhood filter (neighbourhood
system) of x is a collection of neighbourhoods U of x such that for any arbitrary neighbourhood V ⊆ X of
x there exists U ∈ U such that U ⊆ V .
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Lemma 1.0.7. Let X be a set and {B(x)}x∈X a system of neighbourhoods. There exists a unique topology
on X such that each B(x) is a neighbourhood filter of x, for all x.

Proof. Define a subset of A ⊆ X to be B-open if for every x ∈ A there exists U ∈ B(x) such that U ⊆ A.
Then let T be the collection of B-open subsets of X.

Let U be a neighbourhood of a point x ∈ X. Then there exists a B-open subset A ⊆ U containing x. By
definition of B-open, there exists an element of B(x) contained inside A. Thus B(x) forms a neighbourhood
filter for x.

Let T ′ be any other such topology and let U ∈ T ′. Then for every x ∈ U there exists an element of
V ⊆ B(x) such that V ⊆ U . Moreover, there exists W ⊆ V which is B-open (by (4)), and so V ∈ T .

Convesely, if U ∈ T then U ∈ T ′ follows from (3).

We conclude by describing the relationship between a topological basis and a system of neighbourhoods.

Proposition 1.0.8. Let B be a topological basis for a set X. Then for each x the collection of all sets
B(x) := {U ∈ B | x ∈ U} is a system of neighbourhoods.

Conversely, if {B(x)}x∈X is a system of neighbourhoods then B :=
⋃
x∈X B(x) is a topological basis.

Moreover, if B is a topology basis, then the topology induced by B is equal to the topology induced by the
system of neighbourhoods {B(x)}x∈X . If {B(x)}x∈X is a system of neighbourhoods, then the topology induced
by this system of neighbourhoods is equal to the topology induced by the topology basis B.

Proof. Since B covers X we have that B(x) 6= ∅. That U ∈ B(x) implies x ∈ U follows from the definition
of B(x). If U, V ∈ B(x) then for all y ∈ U ∩ V ther exists W 3 y such that W ⊆ U ∩ V , so apply this to
y = x. Lastly, let U ∈ B(x) and let y ∈ U . Take V ∈ B(y) so that there exists W ⊆ U ∩ V such that
y ∈ W ⊆ U ∩ V .

For the second claim, let U, V ∈ B. Say U ∈ B(x) and V ∈ B(y) with U ∩ V 6= ∅. Let z ∈ U ∩ V so
that x, z,∈ U and z, y ∈ V . There exists Wx ∈ B(z) such that Wx ⊆ U and Wy ∈ B(z) such that Wy ⊆ V
by axiom 4. Thus there exists Wxy ⊆ Wx ∩Wy such that Wxy ⊆ Wx ∩Wy and thus Wxy ⊆ U ∩ V .

Assume we are given a topological basis B. Let TB be the topology generated by the topological bass,
and TB(x)x the topology generated by the system of neighbourhoods. First we show TB ⊆ TB(x)x : by Lemma
1.0.7 it suffices to show for all x ∈ X that B(x) is a neighbourhood filter of x. Let U ∈ B be a neighbourhood
of x. Then by definition of B(x) we have U ∈ B(x).

Now we show TB(x)x ⊆ TB: by Lemma 1.0.4 it suffices to show that B is a topological basis. Let U be
B-open and u ∈ U . By definition of B-open there exists V ∈ B(u) such that V ⊆ U . Thus TB(x)x = TB.

The remainder of the proof is similar.

Remark 1.0.9. In essence, a system of neighbourhoods {B(x)} of X is just a topological basis B of X
parametrised by the elements x ∈ U ∈ B, ranging over all x and all U . The axioms for a system of
neighbourhoods is then just the translation of the axioms for a topological basis to this new setting:

• Axioms 1,2 together are equivalent to the condition that B covers X,

• Axioms 3, 4 together are equivalent to the statement then if U, V ∈ B then there exists W ∈ B such
that W ⊆ U ∩ V .

2 Completion of topological abelian groups

Lemma 2.0.1. Let G be a topological abelian group and H the intersection of all neighbourhoods of 0 in G.
Then

1. H is a subgroup,

2. H is the closure of {0},
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3. G/H is hausdorff,

4. G is hausdorff if and only if H = 0.

Proof. (1) Let a ∈ H. We need to first show that −a ∈ V where V is an arbitrary open neighbourhood
of 0. Let ρ : G −→ G be the inverse map g 7→ −g. We can reduce to showing −a ∈ ρ−1(V ) for all open
neighbourhoods V of 0 as ρ is a homeomorphism. This is clear though as a ∈ V for all such V .

Similarly, let a, b ∈ H and consider the homeomorphism Ta : G −→ G, g 7→ a+g. This is also a homeomor-
phism so it suffices to show a+ b is in every set of the form T−1

g (V ) for some g ∈ G and open neighbourhood
V of 0. We take g = −a and this is now obvious.

(2) First we notice that if x ∈ H then x and 0 have the same set of open neighbourhoods: since x ∈ H
it is clear that every open neighbourhood of 0 is an open neighbourhood of x, we now show the converse. Let
V be an open neighbourhood of x. Then

x ∈ V =⇒ −x ∈ −V
=⇒ 0 ∈ x− V
=⇒ x ∈ x− V, as every open nbhd of 0 is such of x,

=⇒ 0 ∈ −V
=⇒ 0 ∈ V

Now say Z is a closed set containing {0}, then Zc is open and does not containing 0 and hence does not
contain any element of H, from what we just calculated. Thus H ⊆ Z and so H ⊆ {0}. Conversely, let
x ∈ {0}. Consider an open neighbourhood V of 0. We have

0 ∈ V =⇒ x ∈ x+ V

=⇒ 0 ∈ x+ V, as every open nbhd of x is such of 0,

=⇒ −x ∈ V
=⇒ −x ∈ H
=⇒ x ∈ H

(3) By (2) the diagonal ∆ is the inverse image under subtraction of {0}. The set {0} under the subspace
topology is closed by (2).

(4) Follows from (3).

Definition 2.0.2. Let G be a topological abelian group. A cauchy sequence in G is a sequence (x1, x2, ...)
of elements in G such that for all neighbourhoods U of 0 there exists N > 0 such that for n,m ≥ N we have
xn− xm ∈ U . A sequence of elements (x1, x2, ...) converges to 0 if for all open neighbourhoods U of 0, there
exists N > 0 such that ∀n > N we have xn ∈ U . We write (xn) −→ 0 in this case (even though there may be
more elements than just 0 in H).

Lemma 2.0.3. The relation ∼ on the set of all cauchy sequences in G about 0 given by (xn)n ∼ (yn)n if
(xn − yn)n −→ 0 is an equivalence relation.

Proof. Reflexivity is clear. For symmetry it suffices to show that if (xn)n is cauchy then so is (−xn)n. If any
element x ∈ X is contained in any open neighbourhood V of 0 then −x ∈ −V and all neighbourhoods of 0
are given by −V . For transitivity it suffices to show the sum of cauchy sequences (xn)n and (yn)n (given by
the sequence (xn + yn)n is cauchy. Let V be an open neighbourhood of 0. Consider +−1(V ), by the definition
of the product topology there exists opern neighbourhoods of 0; U,U ′ such that U × U ′ ⊆ +−1(V ). Now let
N1, N2 > 0 be such that xn−xm ∈ U and yn−ym ∈ U ′ for n,m > maxN1, N2. Then xn+yn−xm−ym ∈ V .
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There is a topology on the set of equivalence classes of cauchy sequences on a topological group G, it is
defined as follows:

Definition 2.0.4. Let G be a topological abelian group and let G denote the set of cauchy sequences in G.
The induced topology is given as follows: for every neighbourhood V of 0 in G let V̂ be the set containing
all cauchy sequences (xn)n which are eventually in V , that is, there exists N > 0 such that ∀n > N we have
xm ∈ N . The set {(xn)n + V̂ | V ⊆ G neighbourhood, (xn)n ∈ Cauchy(G)} forms a system of neighbourhoods
in Cauchy(G).

Remark 2.0.5. I haven’t checked this but I think the following is true: let (M,dM) be a metric space and
(M̂, dM̂) its completion. Then the topology T induced by the metric dM̂ is equivalent to the topology T ′
consisting of subsets Û ⊆ M̂ of equivalence classes of cauchy sequences all of which are eventually in U ,
ranging over all U in the topology on M induced by the metric dM .

Definition 2.0.6. The completion Ĝ (sometimes denoted Cplt(G)) of a topological abelian group G is the
topological abelian group of equivalence classes of cauchy sequences with the quotient space topology of the
induced topology (Definition 2.0.4). Addition is given pointwise.

Remark 2.0.7. A system of neighbourhoods for the topology of the completion of a topological abelian
group is given by the collection of all V̂ , with V ⊆ G open, where V̂ consists of equivalence classes of cauchy
sequences [(xn)n] where all members of the equivalence class are eventually in V .

There is a canonical map φ : G −→ Ĝ defined by g 7→ (g)n and this map has kernel kerφ = H (by (1) of
Lemma 2.0.1).

Lemma 2.0.8. Completion is a functor TopAbGp −→ CompleteTopAbGp.

Proof. Let f : G −→ G′ be a continuous homomorphism and let (xn)n be a cauchy sequence in G. Let V
be an open neighbourhood of 0 in G′, and consider f−1(V ) which is open in G. There exists N such that
∀n,m ≥ N we have xn− xm ∈ f−1(V ) thus ∀n,m ≥ N we have f(xn)− f(xm) ∈ V . Thus (f(xn))n is cauchy
and thus we have defined f̂ : Ĝ −→ Ĝ′. Clearly, Cplt idG = idCpltG′ and

Cplt gf(xn)n = (gf(xn))n = Cplt g(f(xn))n = Cplt gCplt f(xn)n

so we get functoriality. That the completion of a topological abelian group is complete is Lemma 2.0.24
below.

We now come up with another way of arriving at completions in a particular context:

Definition 2.0.9. A filtration (Gn) of an abelian group G is a countably infinite chain of subgroups (. . . G2 ⊆
G1 ⊆ G0 = G). A filtered abelian group is an abelian group G along with a filtration (Gn) of G. A
homomorphism of filtered abelian groups φ : G −→ H is a homomorphism such that φ(Gn) ⊆ Hn.

Remark 2.0.10. A filtration of an arbitrary group (not necessarily abelian) is a countably infinite chain of
normal subgroups. Since all subgroups of abelian groups are normal, this is superfluous for our considerations.

Lemma 2.0.11. Let G be an abelian group and (Gn) a filtration. Then {g + Gn}n≥0,g∈G is a system of
neighbourhoods.

Proof. The only non-trivial point is axiom (4) which is taken care of as g+Gn ⊆ Gn as Gn is a subgroup.

We will thus talk of the topology induced by such a filtration, we also have from Lemma 1.0.7 that this
filtration forms a countable neighbourhood filter.

Lemma 2.0.12. Let G be a abelian group and (Gn) a filtration. The abelian group G when endowed with the
topology induced by the filtration is a topological abelian group.
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Proof. Let ρ : G −→ G, ρ(g) = −g denote the inverse map. For all n we have ρ−1(g+Gn) = −g+ ρ−1(Gn) so
it suffices to show for all Gn that ρ−1(Gn) is open, which is true as ρ−1(Gn) = −Gn = Gn as Gn is a group.

To see the addition map + : G × G −→ G,+(a, b) = a + b is continuous, let (a, b) ∈ g + Gn then
(a, b) ∈ (a+Gn)× (b+Gn) ⊆ +−1(g +Gn).

Definition 2.0.13. Let G be a topological abelian group. A countable fundamental system is a filtration
(Gn) which forms a neighbourhood filter (Definition 1.0.6) of 0.

Lemma 2.0.14. If G is a topological abelian group which admits a countable fundamental system (Gn), then
each Gi is both open and closed.

Proof. Let g ∈ Gi, then g + Gi is a neighbourhood of g and g + Gi ⊆ Gi as Gi is a subgroup. Thus there is
an open subset U such that g ∈ U ⊆ Gi and so Gi is open. In fact, this also shows

⋃
g 6∈Gn

(g + Gn) is open,
which indeed is the complement of Gi.

If G is an abelian group with a countable fundamental system, we can define the completion as an inverse
limit :

Definition 2.0.15. Let G be an abelian group along with a family of subgroups {Gn}∞n=0. Say we have a
family of homomorphisms {θn : Gn −→ Gn−1}n>0. We call the data of the triple (G, {Gn}∞n=0, {θn}n>0) an
inverse system. The inverse system is surjective if all the maps θn are.

The inverse limit of abelian groups corresponding to an inverse system is the abelian group lim
←−

Gn

whose underlying set is:

lim
←−

Gn := {sequences (xn)n | xi ∈ Gi, θn(xn) = xn−1}

with addition defined pointwise. The topology is the subspace topology of the product topology.

Definition 2.0.16. Given a countable fundamental system (Gn) the completion of G, denoted Ĝ is the
inverse limit of topological abelian groups:

lim
←−

G/Gn

Remark 2.0.17. We can also define this using the language of limits of a category: for each n > 0 there is
a morphism G −→ G/Gn−1 such that Gn maps to 0. Thus we obtain a homomorphism θn : G/Gn −→ G/G.
Let J be the diagram consisting of all objects G/Gn and morphisms ϕn−1, then consider the limit through
the inclusion functor J : J −→ AbGp : lim

←J
J , then lim

←−
G/Gn is such a limit. Diagramatically, this is the

limit of
. . .

θ3−→ G/G2
θ2−→ G/G1

θ1−→ G/G0

Lemma 2.0.18. If G is an abelian topological group whose topology is given by a filtration, then the two
notions of completion (Definition 2.0.15 and Definition 2.0.6) give isomorphic topological abelian groups.

Proof. Let G be a topological group and (Gn)n a countable fundamental system of subgroup neighbourhoods.
Let ĜT denote the completion a la Definition 2.0.6 and let ĜA denote the completion a la Definition 2.0.15.
We define an explicit isomorphism Φ : ĜT −→ ĜA and inverse:

Let (xn)n ∈ ĜT and denote by πn : G −→ G/Gn the projection. The image of (xn)n under π̂n is eventually
constant, that is, if N is such that ∀n,m > N , xn − xm ∈ GN , then for all n > N we have π(xn) = π(xN+1).
Denote this constant by ξN . Our next claim is that (ξn)n is an element of ĜA.

For each n > 0 the map πn descends to a map θn : G/Gn −→ G/Gn−1 which is such that ξn 7→ ξn−1. To
see this, we pick representatives xn, xn−1 ∈ G of ξn, ξn−1 respectively and notice: xn − xn−1 ∈ Gn ⊆ Gn−1

thus,
θn(ξn) = πn−1(xn) = πn−1(xn−1) = ξn−1

Addition modulo Gn is well defined, thus we have a homomorphism from cauchy sequences to elements of
ĜA, we now show this descends to a map from ĜT .

6



Let (xn)n and (yn)n be equivalent cauchy sequences and fix n, we show ξxn − ξyn = 0. Since we have a
homomorphism it suffices to show ξx−yn = 0. This follows immediately from the definition of two cauchy
sequences being equivalent.

We define an inverse map ĜA −→ ĜT by taking representatives: let (ξn)n ∈ ĜA and pick xn ∈ G whose
image in G/Gn is ξn. Then we have θn−1(ξn) = ξn−1, in other words, xn − xn−1 ∈ Gn−1. So we have a cauchy
sequence. These maps are clearly inverse to each other.

Bicontinuity?

Notice also that we have two canonical maps φA : G −→ ĜA and φT : G −→ ĜT . These fit into the follow
commuting diagram:

G ĜT

ĜA

φT

φA
Φ (1)

Remark 2.0.19. The definition of ĜA presupposes a fixed choice of subgroups {Gn}n which is a drawback
of this definition. One could invent a notion of equivalent sequences of subgroups but this is cumbersome
considering the fact that the topological definition already has such a notion built into it. For instance, there
may be multiple different sequences which give the same topology on G, and thus topology theory does not
distinguish them.

Proposition 2.0.20. Given three inverse systems {An}, {Bn}, {Cn}. If

0 −→ {An} −→ {Bn} −→ {Cn} −→ 0

is a short exact sequence of inverse systems, then

0 −→ lim
←−

An −→ lim
←−

Bn −→ lim
←−

Cn

is a short exact sequence. Moreover, if {An} is a surjective inverse system, then

0 −→ lim
←−

An −→ lim
←−

Bn −→ lim
←−

Cn −→ 0

is exact.

Proof. Let A denote
∏∞

n=0An and define a map dA : A −→ A which maps ξn −→ ξn − θn+1(ξn+1). Then
ker dA = lim

←−
An. Then we have the following commutative diagram

0 A B C 0

0 A B C 0

dA dB dC

so by the snake Lemma (see [2]) we have an exact sequence:

0→ lim
←−

An → lim
←−

Bn → lim
←−

Cn → Coker dA → Coker dB → Coker dC → 0

so it remains to show that if {An} is a surjective inverse system, then Coker dA = 0, that is, dA is surjective.
Given (an)n ∈ A we can solve inductively xi − θi+1(xi+1) = an.
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Corollary 2.0.21. Let (G, {Gn}, {θn}) be an inverse system and let

0 −→ G′ −→ G
p−→ G′′ −→ 0

be a short exact sequence of groups. Then the induced sequence

0 −→ Ĝ′ −→ Ĝ −→ Ĝ′′ −→ 0

is exact where Ĝ′ = lim
←−

G′/(G′ ∩Gn) and Ĝ′′ = lim
←−

G′′/p(Gn).

Proof. Apply Proposition 2.0.20 to the exact sequence of inverse systems

0 −→ {G′/(G′ ∩Gn)} −→ {G/Gn} −→ {G/p(Gn)} −→ 0

Corollary 2.0.22. Finite direct sum of abelian groups commutes with completion.

Proof. By Corollary 2.0.21 we have that

0 −→ Cplt(G′) −→ Cplt(G′ ⊕G′′) −→ Cplt(G′′) −→ 0

and
0 −→ Cplt(G′) −→ Cplt(G′)⊕ Cplt(G′′) −→ Cplt(G′′) −→ 0

are both short exact sequences, hence the two middle groups are isomorphic.

Let G be a group and consider a filtration

. . . ⊆ G2 ⊆ G1 ⊆ G0 = G

Denote by p : G −→ G/Gn be the projection, and fix a particular Gn. Then there is a finite family of
subgroups of G/Gn given by

0 = p(Gn) ⊆ p(Gn−1) ⊆ . . . ⊆ p(G1) ⊆ p(G0) = G/Gn

Thus, if G′′ := G/Gn, elements of Ĝ′′ are uniquely determined by finite sequences (x0, ..., xn) where if j < i,
xi mod j = xj, that is, (x0, ..., xn) = (xn, ..., xn) it follows that Ĝ′′ ∼= G′′. Moreover, G′′ ∼= G/G′ and

Ĝ′′ ∼= Ĝ/Ĝ′ (by Corollary 2.0.21) and so we have proven:

Lemma 2.0.23. If G is a topological abelian group whose topology is given by a filtration {Gn}n, then

Ĝ/Ĝn
∼= G/Gn

Taking inverse limits we have:

Lemma 2.0.24.
ˆ̂
G ∼= Ĝ

That is, Ĝ is complete:

Definition 2.0.25. If the canonical morphism φ : G −→ Ĝ, φ(g) = (g)n is an isomorphism, then G is
complete.

Remark 2.0.26. Notice that φ : G −→ Ĝ need not be injective.

Remark 2.0.27. Notice by Lemma 2.0.1 that φ has kernel given by

kerφ =
∞⋂
n=0

Gn
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3 I-adic completion of a ring/module

Lemma 3.0.1. If A is a ring and I ⊆ A is an ideal, then there is a filtration of the underlying abelian group
of A:

. . . ⊆ I2 ⊆ I ⊆ I0 = A

and so we obtain a topological abealian group Â which indeed is a topological ring.

Proof. Denote the multiplication map by × : A × A −→ A,×(a, b) = ab. Let ab ∈ x + In, then (a, b) ∈
(a+ In)× (b+ In) ⊆ ×−1(x+ In).

Definition 3.0.2. For a ring A with ideal I, the I-adic completion is the topological ring Â.

Proposition 3.0.3. The canonical map φ : A −→ Â is continuous.

Proof. Since for each a ∈ A the map Ta : A −→ A is a homeomorphism it suffices to prove φ−1(În) is open
for all n, but this set is just In.

For modules we have:

Definition 3.0.4. If G = M is an A-module, with A a topological ring, let I ⊆ A be an ideal. Take Gn = InM
and we obtain the I-topology. Indeed this endows M with the structure of a topological Â-module (where
Â is the I-adic completion). If f : M −→ N is an A-module homomorphism, then Inf(M) ⊆ InN and so
there is an induced continuous function f̂ : M̂ −→ N̂ .

There are other ways of defining the same topology on M :

Definition 3.0.5. Let (Mn) be a filtration of submodules (ie, a filtration of the underlying abelian group).
If the filtration satisfies IMi ⊆Mi+1 then we have an I-filtration and if there exists N ≥ 0 so that if n > N
we have IMn = Mn+1 we have a stable I-filtration.

Lemma 3.0.6. The topology given by any stable I-filtration agrees with the I-topology.

Proof. For arbitrary n we have Mn+N+1 = InMN+1 ⊆ InM . Conversely, for arbitrary m we have ImM =
ImM0 ⊆Mm.

A rational number q ∈ Q is uniquely determined by its base 10 representation, where we allow for negative
powers, q =

∑n
j=0 aj10−j for some n ∈ Z. This representation generalises to the real numbers by allowing j

to be arbitrarily small:

R =
{ ∞∑

j=0

aj10−j | aj ∈ Z
}

Another formulation of the real numbers is given by equivalence classes of power cauchy sequences. Both
these means of constructing the real numbers from the rational numbers can be generalised.

Consider the polynomial ring k[x] where k is a field. Let m denote the maximal ideal (x) ⊆ k[x] and

consider the completion k̂[x] of k[x] with respect to (x). An element of this is an equivalence class of a cauchy
sequence of elements in k[x] represented by (a0, a1, ...) say. For each i, reducing ai modulo (xi) yields an
element âi ∈ k[x], doing this for all i yields an element â0 + â1x+ â2x

2 + . . . ∈ kJxK. Moreover, this element is
independent of choice of representative (a0, a1, ...), for if (b0, b1, ...) was another representative we would have

for all i > 0 that bi − ai = 0 mod (x)i. Thus we have a well defined map k̂[x] −→ kJxK. It is easy to see this
is an isomorphism:

Lemma 3.0.7. The completion of k[x] at the ideal (x) is isomorphic to kJxK.
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4 The Artin-Rees Lemma

Definition 4.0.1. A graded ring is a ring A together with a countably infinite family of subgroups {An}n≥0

of the underlying group of A such that A =
⊕

n≥0An and AnAm ⊆ An+m for all n,m ≥ 0. Thus A0 is a ring
and each An is an A-module.

If A is a graded ring then a graded A-module is an A-module along with with a countably infinite family
of submodules {Mn}n≥0 such that M =

⊕
n≥0Mn and AnMm ⊆Mm+n, thus each Mn is an A0-module.

We denote
⊕

n>0An by A+.

Definition 4.0.2. Let M,N be graded A-modules, a homomorphism of graded A-modules f : M −→ N
is a homomorphism of modules such that f(Mn) ⊆ Nn for all n ≥ 0.

Lemma 4.0.3. For a graded ring A, the following are equivalent:

• A is Noetherian,

• A0 is Noetherian and A is a finitely generated as an A0-algebra.

Proof. Let A be Noetherian. Then A0
∼= A/A+ and so is Noetherian. Let A+ be generated as an ideal by

α1, ..., αm which we may assume to be homogeneous and of degrees k1, ..., km respectively (notice each ki > 0).
Denote by A′ the A0-subalgebra of A generated by α1, ..., αm. We proceed with the second claim by showing
An ⊆ A′ by induction on n. Clearly, A0 ⊆ A′. Now say n > 0. Let a ∈ An \A0 so that a ∈ A+. We can write
a =

∑m
i=0 aiαi. We have that deg(ai) = n− ki (where we take ai = 0 if n− ki < 0). The result then follows

by the inductive hypothesis.
The other implication follows from Hilbert’s Basis Theorem.

Notation 4.0.4. Given a (not necessarily graded) ring A and an ideal I we denote the graded ring
⊕

n≥0 I
n

by I∗. If M is an A-module and Mn is an I-filtration then M∗ =
⊕

n≥0Mn is a graded I∗-module.

If A is Noetherian and α1, ..., αn are generators for I then I∗ = A[α1, ..., αn] and is Noetherian (by Lemma
4.0.3). The next main result we are heading towards is:

Proposition 4.0.5. Given a short exact sequence of finitely generated A-modules, with A Noetherian:

0 −→M ′ −→M −→M ′′ −→ 0

the following sequence is also exact:

0 −→ M̂ ′ −→ M̂ −→ M̂ ′′ −→ 0

To prove this, we want to lean on Corollary 2.0.21, however, that Corollary used a fixed choice of filtration,
and the definitions of M̂ ′, M̂ ′′ also used a different fixed choice, do these different choices give isomorphic
modules?

The topology used to construct M̂ ′′ is induced by the filtration (InM ′′)n which is equal to (p(InM))n (by
definition of module homomorphism) but the topology used to construct M̂ ′ is that induced by the filtration
(InM)n and Corollary 2.0.21 uses the sequence (M ′ ∩ InM)n instead. The proof of Proposition 4.0.5 thus
reduces to showing these two topologies are equivalent, which is an application of the following Theorem (the
fact that M ′/InM ′ is a surjective inverse system is clear, and considering the equivalence we are about to
prove, this is sufficient):

Theorem 4.0.6. Let A be a Noetherian ring, I ⊆ A an ideal, M a finitely-generated A-module and M ′ a
submodule of M . Then the filtrations (InM ′)n and

(
(InM) ∩M ′)

n
induce equivalent topologies.

To prove Theorem 4.0.6 we will need:
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Lemma 4.0.7 (Artin-Rees Lemma). Let A be a Noetherian ring, I ⊆ A an ideal, M a finitely generated
A module, and (Mn)n a stable I-filtration of M . If M ′ is a submodule of M , then (M ′ ∩Mn)n is a stable
I-filtration of M ′.

for which we need:

Lemma 4.0.8. Let A be Noetherian, and M a finitely generated A-module with an I-filtration (Mn)n. Then
the following are equivalent:

1. M∗ is a finitely generated A∗-module (Notation 4.0.4),

2. the filtration (Mn)n is I-stable.

Proof of Lemma 4.0.8. Each Mn is a finitely generated module over a Noetherian ring and is therefore itself
Noetherian, and thus finitely generated. It follows that Qn :=

⊕n
j=0 Mj is finitely generated. The A∗-

submodule generated by Qn can be explicitly written as

Qn ⊕
∞⊕
j=1

IjMn

which we denote by M∗
n. This is a finitely generated I∗-module (as Mn is a finitely generated A-module) and

so we have an ascending chain
M∗

1 ⊆M∗
2 ⊆ . . .

which eventually stabilises if and only if there exists N such that for all m > N , we have IMm = Mm+1,
which is another way of stating the result.

Converse?

Proof of Lemma 4.0.7. We have I(M ′ ∩Mn) ⊆ IM ′ ∩ IMn ⊆ M ′ ∩Mn+1 and hence (M ′ ∩Mn)n is an I-
filtration. Hence it defines a graded I∗-module which is a submodule of M ′∗ and therefore finitely generated
(as I∗ is Noetherian). The result follows from Lemma 4.0.8.

Proof of Theorem 4.0.6. By Lemma 3.0.6 we have that any two stable I-filtrations induce equivalent topolo-
gies. The result then follows by Lemma 4.0.7.

5 Krull’s Theorem

Since there is a homomorphism φ : A −→ Â, we can consider M̂ as an A-module and thus form Â⊗AM . In
the case that M is a finitely generated module over a noetherian ring, this agrees with the completion:

Proposition 5.0.1. For any ring A, if M is finitely-generated then Â⊗AM −→ M̂ is injective. Moreover,
this is an isomorphism if A is Noetherian.

Proof. Since M is finitely generated there is a short exact sequence

0 −→ N −→ F −→M −→ 0

We construct the commutative diagram

Â⊗N Â⊗ F Â⊗M 0

0 N̂ F̂ M̂ 0

α β γ

δ

By Corollary 2.0.22 we have that β is an isomorphism. Since the bottom row is exact, δ is surjective, it
follows from these two facts that γ is injective. If A is noetherian, then N is also finitely generated, thus α is
surjective. It then follows from the four Lemma that γ is injective.
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Notation 5.0.2. Let I, J ⊆ A be ideals and let Â be the I-completion. We denote by Ĵ the ideal generated
by the image of A −→ Â.

Lemma 5.0.3. Let A be a ring and I ⊆ A an ideal, and n > 0, denote the homomorphism A/In −→ Â/În

by ψ. Let J ⊆ A/In be an ideal. Then the image of J under ψ is equal to Ĵ .

Proof. Consider elements of the completion as equivalence classes of cauchy sequences. Let (bn)n be a cauchy
sequence representing an element of Ĵ . Elements of Ĵ are given by linear combinations of elements in ψ(J)
with scalars given by elements in Â/Î, thus we can assume that each bi ∈ J . There exists N such that for
all m > N we have bN − bm ∈ In. Consider the sequence (bN , bN , ...), we claim this is equivalent to (bn)n.
Indeed, (bN − bn)n eventually consists of elements in In and so is eventually 0, establishing the claim.

Proposition 5.0.4. If A is Noetherian, Â its I-adic completion, then

1. Î ∼= Â⊗A I,

2. (In)ˆ = (Î)n,

3. In/In+1 ∼= În/În+1,

4. Î is contained in the Jacobson radical of Â.

Proof. (1): Apply Proposition 5.0.1.

(2): Using (1) applied to I and that tensor product commutes with finite products:

(In)ˆ∼= Â⊗ In ∼= (Â⊗ I)n ∼= (Î)n

(3): By Lemma 2.0.23 we have A/In+1 ∼= Â/În+1. Lemma 5.0.3 then implies In/In+1 ∼= În/În+1.

(4): Â is complete in its Î-adic topology (using (2)). So, for x ∈ Î we have

(1− x, 1− x, 1− x, ...)(1, 1 + x, 1 + x+ x2, ...) = (1− x, 1− x2, 1− x3, ...) = (1, 1, 1, ...)− (x, x2, x3, ...)

and (x, x2, x3, ...) is equivalent to 0, so 1− x in Â is a unit. That is, x is an element of the Jacobson radical
of Â.

Remark 5.0.5. In the proof of part (4) of 5.0.4 we have used the statement that for any ring R and any
element x ∈ R we have that x is in the jacobson radical if and only if 1 − xy is a unit for all y ∈ R. The
reason why we only consider 1 − x is because we claim that Î is contained within the jacobson radical and
we know that Î is itself an ideal, so it suffices to show 1− x is a unit for all x ∈ Î.

Remark 5.0.6. The proof that In/In+1 ∼= În/În+1 leaves this map implicit and uses the limit definition
of completion. In the special case where (A,m) is a local ring we can show that A/mn ∼= Â/m̂n using the
cauchy sequence definition of completion directly: indeed the composition A −→ Â −→ Â/m̂n is surjective
with kernel mn, and so descends to an isomoprhism A/mn −→ Â/m̂n.

Proposition 5.0.7. Let A be a Noetherian local ring and m its maximal ideal. Then the m-adic completion
of A at m is a local ring with maximal ideal m̂.

Proof. We have that Â/m̂ ∼= A/m is a field and thus m̂ is maximal. It follows from (4) of Proposition 5.0.4
that m̂ is contained within the jacobson radical J which itself is the intersection of all prime ideals of Â and
so is contained in m. Thus m̂ = J, which implies m̂ is the unique maximal ideal of Â.

We classify the kernel of the canonical map M −→ M̂ , this will be another application of Theorem 4.0.6.
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Theorem 5.0.8 (Krull’s Theorem). Let A be a Noetherian ring, I ⊆ A an ideal, M a finitely generated
A-module, and M̂ the I-completion of M . Then the kernel E =

⋂∞
n=0 I

nM of the group homomorphism

φ : M −→ M̂ consists of those x ∈M annihilated by some element of the set 1 + I.

Proof. Consider the space E with topology given by the sequence ((InM) ∩ E)n (which are all equal to E).
This is a space where the only neighbourhood of 0 is all of E itself. By Theorem 4.0.6 we have that this
topology coincides with the topology given by (InE)n. We thus have IE = E. Since M is finitely generated
and A is noetherian, E is also finitely generated and so it follows from the Cayley-Hamilton Theorem (see
[1]) and the fact that IE = E that (1 + α)E = 0 for some α ∈ I.

Conversely, if (1 + α)x = 0 then

x = −αx = α2x = ... ∈
∞⋂
n=1

InM = E

Corollary 5.0.9. Let A be a Noetherian domain, I a proper ideal of A. Then
⋂
n≥0 I

n = 0.

Proof. 1 + I contains no zero divisors nor the element 0.

Corollary 5.0.10. Let A be a Noetherian ring, I an ideal of A contained in the Jacobson radical and let M
be a finitely generated A-module. Then the I-topology of M is Hausdorff, ie,

⋂
n≥0 I

nM = 0.

Proof. Since I is contained in the jacobson radical, every element of 1 + I is a unit.

As an important special case:

Corollary 5.0.11. Let A be a Noetherian local ring, m its maximal ideal, M a finitely generated A-module.
Then the m-topology of M is Hausdorff. In particular, the m-topology of A is Hausdorff.

Corollary 5.0.12. Let A be a Noetherian ring, p a prime ideal of A. Then the intersection of all p-primary
(Definition ??) ideals of A is the kernel of A −→ Ap.

Proof. Let m = pAp be the maximal ideal of Ap. By Corollary ?? we have that all the m-primary ideals of Ap

are contained between mn and m for some n. Thus by Corollary 5.0.11 the intersection of all the m-primary
ideals of the Ap is 0. These ideals lift to the p-primary ideals of A. Let l : A −→ Ap denote the localisation
map, we compute ker l where by Corollary 5.0.11 we have 0 =

⋂
n≥0 m

n:

ker l = l−1(0) = l−1(
⋂
n≥0

mn) = l−1(
⋂

m-primary

I) =
⋂

p-primary

I

where the equality labelled ∗ follows from .

6 The completion of a Noetherian ring is Noetherian

We aim to prove:

Theorem 6.0.1. Let A be a Noetherian ring and I an ideal of A. The I-completion Â of A is Noetherian.

The important objects working behind the scenes are:
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Definition 6.0.2. Let A be a ring and I an ideal of A. Define:

GI(A) :=
∞⊕
n=0

In/In+1

This is a graded ring, multiplication is defined as [x]n[y]m = [xy]n+m.
Similarly, if M is an A-module and {Mn}n an I-filtration of M , define:

G(M) :=
∞⊕
n=0

Mn/Mn+1

which is a graded GI(A)-module. Let Gn(M) denote Mn/Mn+1.

Theorem 6.0.1 will follow from the following Proposition:

Proposition 6.0.3. Let A be a ring, I an ideal of A, M an A-module, {Mn}n an I-filtration of M . Suppose
that A is complete in the I-topology and that M is Hausdorff in its filtration topology (ie, that

⋂
n≥0Mn = 0).

Suppose also that G(M) is a finitely generated G(A)-module. Then M is a finitely generated A-module.

We will need the following two lemmas:

Lemma 6.0.4. Let A be a Noetherian ring, I an ideal of A. Then

1. GI(A) is Noetherian,

2. GI(A) and GÎ(Â) are isomorphic as graded rings,

3. if M is a finitely generated A-module and {Mn}n is a stable I-filtration of M , then GI(M) is a finitely
generated graded GI(A)-module.

Proof. (1) Since A is Noetherian, I is finitely generated, say by x1, ..., xn. Let x̄i be the image of xi in I/I2.
Then GI(A) = (A/I)[x̄1, ..., x̄n]. To see this, consider an element of In/In+1 ⊆ GI(A) which can be written
as
∑
|Λ|=m αΛx̄

Λ where Λ = (λ1, ..., λn), where x̄Λ = x̄λ11 ...x̄
λn
n . Since λ1 + . . . + λn = m we have that each x̄i

has degree 1, that is, x̄i ∈ I/I2 by the definition of multiplication in this ring.
(2) Follows from Proposition 5.0.4.
(3) There exists N ≥ 0 such that MN+n = InMN for all n ≥ 0, hence G(M) is generated as an A-

module by
⊕

n≤N Gn(M). Each Gn(M) = Mn/Mn+1 is Noetherian (being finitely generated modules over a
Noetherian ring) and annihilated by I, hence this is finitely generated as an A/I-module. Hence G(M) is
finitely generated as a G(A)-module.

Lemma 6.0.5. Let φ : A −→ B be a homomorphism of filtered groups (Definition 2.0.9) and let G(φ) :
G(A) −→ G(B), φ̂ : Â −→ B̂ be the induced homomorphism of the associated graded and completed groups
respectively. Then

1. if G(φ) is injective then so is φ̂,

2. if G(φ) is surjective then so is φ̂.

Proof. Let αm : A/Am −→ B/Bm be the homomorphism induced by φ. Consider the commutative diagram
with exact rows:

0 An/An+1 A/An+1 A/An 0

0 Bn/Bn+1 B/Bn+1 B/Bn 0

Gn(φ) αn+1 αn
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which by the snake Lemma induces the exact sequence

0→ kerGn(φ)→ kerαn+1 → kerαn → cokerGn(φ)→ cokerαn+1 → cokerαn → 0 (2)

It’s easy to see that G(φ) injective implies that Gn(φ) is injective for all n, so in this case, kerGn(φ) = 0,
and G0(φ) : A/A1 is the same morphism as α1, so kerα1 = 0. The exact sequence then implies kerα2 = 0,
proceeding by induction we have kerαn = 0 for all n. Inverse limits is a left exact functor (Proposition 2.0.20)
and so the first result follows.

A drawing of G(φ) might look like:

. . .
⊕

A3/A4

⊕
A2/A3

⊕
A1/A2

⊕
A0/A1

. . .
⊕

B3/B4

⊕
B2/B3

⊕
B1/B2

⊕
B0/B1

G4(φ) G3(φ) G2(φ) G1(φ)

and so G(φ) surjective implies each Gn(φ) is surjective. Thus cokerGn(φ) = 0. Using (2) it then follows that
each αn is surjective, and thus φ̂ is surjective.

We now move to the proof of Proposition 5.0.7, the essence of the proof will be to begin with generators of
G(M) as a G(A)-module and then pick representatives of these which lie inside M , in fact these representatives
generate M as an A-module. We will construct a finitely generated free A-module F and homomorphism
φ : F −→M which fits into the commutative diagram (of abelian groups):

F M

F̂ M̂

φ

φ̂

the proof will be completed by showing φ is surjective.

Proof of Proposition 5.0.7. Pick a finite set of generators {ξ1, ..., ξr} of G(M) and assume these have been
split into their homogeneous components (that is, assume each ξi is homogeneous). Denote the degree of ξi
by n(i) and pick a representative xi ∈ Mn(i) of each ξi. Consider the I-filtration on A given by (Ik−n(i))k for
each n(i) (where Ik−n(i) = A if k− n(i) ≤ 0) and consider F :=

⊕r
i=1 A. Let m be the least integer such that

there exists 1 ≤ i ≤ r such that m− n(i) ≥ 0 then F admits an I-filtration

r⊕
i=1

A =
r⊕
i=1

Im−n(i) ⊆
r⊕
i=1

Im+1−n(i) ⊆
r⊕
i=1

Im+2−n(i) ⊆ . . .

We now construct a surjective homomorphism of G(A)-modules G(F ) −→ G(M). Let φ : F −→ M be the
homomorphism which maps the ith copy of 1 to xi. This is a homomorphism of filtered groups as:

φ
( r⊕

i=1

Im+k−n(i)
)

= Im+k−n(1)x1 + . . .+ Im+k−n(r)xr

⊆ Im+k−n(1)Mn(1) + . . .+ Im+k−n(r)Mn(r)

⊆Mm+k ⊆Mk

Furthermore, φ is surjective: if m ∈ G(M) then m = α1ξ1 + . . . αrξr where each αi ∈ G(A) is of degree k−n(i)
(with αi = 0 if k − n(i) < 0). So for each non-zero αi we have

φ(αi) = αiξi
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and so the image of the sum of the non-zero αi map to m. We now apply Lemma 6.0.5 to deduce that φ̂ is
surjective, we consider the commuting diagram of group homomorphisms

F M

F̂ M̂

φ

α β

φ̂

Now, F is a free A-module and A is complete, it follows that F is complete (by commuting finite direct sum
with completion, Lemma 2.0.22), thus α is an isomorphism. Moreover, M Hausdorff and so β is injective. It
then follows that φ is surjective.

Corollary 6.0.6. With the hypotheses of Proposition 6.0.3, if G(M) is a Noetherian G(A)-module, then M
is a Noetherian A-module.

Proof. Let M ′ ⊆M be a submodule, we show M ′ is finitely generated. Let M ′
n = M ′ ∩Mn, then (M ′

n) is an
I-filtration of M ′, and the embedding M ′

n −→ Mn gives rise to an injective homomorphism M ′
n/M

′
n+1 −→

Mn/Mn+1, hence an embedding G(M ′) −→ G(M). Since G(M) is Noetherian, G(M ′) is finitely generated,
also M ′ is Hausdorff, since

⋂
n≥0M

′
n ⊆

⋂
n≥0Mn = 0, hence by Proposition 5.0.7 we have that M ′ is finitely

generated as an A-module.

At long last, we can prove the main result of this Section:

Theorem 6.0.7. If A is a Noetherian ring, I an ideal of A, then the I-completion Â of A is Noetherian.

Proof. We know that GI(A) ∼= GÎ(Â) is Noetherian. Now apply Corollary 6.0.6 to the complete ring Â,

taking M = Â.

Corollary 6.0.8. If A is a Noetherian ring, the power series ring A[[x1, ..., xn]] in n variables is Noetherian.
In particular, k[[x1, ..., xn]] (k a field) is Noetherian.

7 Hensel’s Lemma

The goal of this Section is to prove Hensel’s Lemma (Lemma 7.0.4). We begin with an observation concerning
the division algorithm for polynomials in one variable:

Lemma 7.0.1. Let A be an arbitrary ring, f, g ∈ A[x], with deg g > deg f , and assume f is monic. Then
the division algorithm g/f can still be performed yielding g = αf + β with deg β < deg = f , moreover, the
polynomials α, β are unique in the sense that if α′, β′ are such that deg β′ < deg f and g = α′f + β′ then
α = α′, β = β′.

Proof. That the division algorithm can still be performed is simply the observation that the only divisions
which occur in the algorithm are with 1 in the denominator as f is monic.

Now we prove the uniqueness claim. We have

g = αf + β, and g = α′f + β′ (3)

and so 0 = (α− α′)f + β − β′. This implies that β − β′, which satisfies deg(β − β′) < deg f , is a multiple of
monic f . Thus β − β′ = 0.

Now 0 = (α− α′)f . The leading coefficinet of (α− α′)f is 0 and also is α− α′ by monotonicity of f .
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We make another observation: say (f1, f2, ...) is a Cauchy sequence in A (with respect to the m-adic
topology), then since A is complete, there exists a ∈ A such that (fn)n and (a)n belong to the same equivalence
class, which is to say (fn − a)n −→ 0. Say b ∈ A was also such that (fn − b)n −→ 0, then for all i ≥ 0 we
have fn − a, fn − b ∈ mi =⇒ b− a ∈ mi, in other words:

(fn − a)n − (fn − b)n = (b− a)n −→ 0 (4)

This means that b− a ∈
⋂∞
i=0 m which, if A is Noetherian, is 0. Thus:

Lemma 7.0.2. In a complete, Noetherian ring, Cauchy sequences have admit limits which are unique.

Notation 7.0.3. If f ∈ A[x] is a polynomial and (A,m) a local ring, we denote by f̄ the image of f in
(A/m)[x].

We are now ready to prove:

Lemma 7.0.4 (Hensel’s Lemma). Let (A,m) be a Noetherian, local, complete ring, and f ∈ A[x] a monic
polynomial of degree n and G,H ∈ (A/m) monic, coprime, polynomials of respective degrees r, n− r such that
f̄ = GH. Then there exists monic polynomials g, h ∈ A[x] respectively of degree r, n− r such that f = gh.

Proof. We lean on the completeness of A: say we have two sequences (g1, g2, ...), (h1, h2, ...) of monic polyno-
mials gi, hi ∈ A[x] satisfying:

1. For all i > 0 : deg gi = r, deg hi = n− r,

2. for all i > 0 : f ≡ gihi(modmi),

3. for all i < j : gi ≡ gj(modmi), hi ≡ hj(modmi).

For a general polynomial q ∈ A[x] we will denote the ith coefficient of q by qi. Condition (1) implies the
existence of sequences (g1k, g2k, ...), (h1k,2k , ...) of coefficients of g, h respectively. Moreover, (3) implies these
sequences are Cauchy sequences, so since A is a complete and Noetherian, by Lemma 7.0.2 we have limits
ak, bk ∈ A of (g1k, g2k, ...), (h1k,2k , ...) respectively.

We then define

g = a0 + a1x+ . . .+ ar−1x
r−1 + xr and h = b0 + b1x+ . . .+ bn−r−1x

n−r−1 + xn−r (5)

which we claim is such that f = gh. Let φ : A −→ Â denote the canonical map from a ring to its completion.
To show f = gh it suffices to show the coefficients (f − gh)i for 0 ≤ i ≤ n are all 0, and to show this, it
suffices to show φ

(
(f − gh)i

)
= 0 as A is Noetherian (and so φ has trivial kernel).

We make a calculation:

φ
(
(f − gh)i

)
= φ

(
(f)i

)
− φ
(
(gh)i

)
= φ

(
fi
)
−

i∑
j=0

φ(aj)φ(bi−j)
)

= (fi −
i∑

j=0

g1jh1,i−j, fi −
i∑

j=0

g2jh2i−j, ...), by construction of aj, bi−j

and so φ
(
(f − gh)i

)
= 0 by (2).

We now move onto constructing (g1, g2, ...), (h1, h2, ...) satisfying (1), (2), (3).
We construct gk, hk satisfying (1), (2) inductively and show they satisfy the following uniqueness claim: if

g′k, h
′
k are such that g′k = G, h′k = H and f ≡ g′kh

′
k(modmk) then g′k ≡ gk, h

′
k = h′k(modmk). This uniqueness

claim implies (3).
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For the base case, just pick arbitrary representatives for the coefficients of F,G in A (making sure to pick
1 for 1 + m) and build g1, h1 from these choices. These clearly satisfy the required properties.

Now assume we have gk, hk for some fixed k ≥ 1 and assume these polynomials satisfy all the requirements.
Set ∆ = f − gkhk, which by the inductive hypothesis is an element of mk[x]. We notice that

f ≡ ∆ + gkhk(modmk+1) (6)

and so the goal is to write ∆ + gkhk(modmk+1) as a product gk+1hk+1. Since F,G are coprime, there exists
polynomials α, β ∈ A[x] such that

1 ≡ αgk + βhk(modm[x]) (7)

Multiplying both sides by ∆ we have

∆ ≡ ∆αgk + ∆βhk(modmk+1[x]) (8)

For pedagogical reasons we make the following observation, however this next paragraph can be skipped
entirely and the proof still holds: since ∆ ∈ mk we have that ∆2 ∈ m2k ⊆ mk+1 and so we can now write

f ≡ ∆ + ∆αgk + ∆βhk + ∆α∆β

≡ (gk + ∆α)(hk + ∆β)(modmk+1[x])

which makes it look like we have achieved our goal. However we do not have a handle on the degree of gk+∆α
nor hk + ∆β and so we use the division algorithm to replace ∆α,∆β by polynomails of degree < r, n− r.

We know that gk, hk are monic, so we divide ∆α by hk to produce γ, ε ∈ A[x] such that

∆α = γhk + ε (9)

We can now write

∆ ≡ (γhk + ε)gk + ∆βhk (10)

≡ εgk + (γgk + ∆β)hk(modmk+1[x]) (11)

We set hk+1 := hk + ε and gk+1 := gk + γgk + ∆β. Thus, calculating modmk+1, we have:

gk+1hk+1 ≡ (gk + γgk + ∆β)(hk + ε) (12)

≡ gkhk + εgk + (γgk + ∆β)hk + (γgk + ∆β)ε (13)

≡
(
gk + (γgk + ∆β)

)(
hk + ε

)
+ (γgk + ∆β)ε (14)

We now make a few final observations and we have reduced to proving the uniqueness claim. First, since
∆ ∈ mk[x] it follows from (9) that 0 ≡ γhk + ε(modmk[x]) and so by the uniqueness part of the division
algorithm (Lemma 7.0.1) we have that γ, ε ∈ mk[x]. Thus γgk ∈ mk[x] and so γgk + ∆β ∈ mk[x] and so
(γgk + ∆β)ε ∈ m2k[x] ⊆ mk+1[x]. Combining this with (14) we have

gk+1hk+1 ≡
(
gk + (γgk + ∆β)

)(
hk + ε

)
(modmk+1[x]) (15)

Moreover, by the division algorithm we have deg ε < n− r which implies deg(εgk) < n. Also, f, gk, hk are all
monic and so ∆ (which equals f − gkhk) has degree < n. We have from (10) that

∆− εgk ≡ (γgk + ∆β)hk (modmk+1[x]) (16)

where the left hand side is a degree < n polynomial. Thus deg(γgk + ∆β) < r. Considering this, we now have
that gk+1, hk+1 are monic and of respective degrees r, n− r. It now remains to show uniqueness.

This is the easiest part of the proof. We would truly be re-writing verbatim what is in [3] so we do not
reproduce it here.
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