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1.1 §1

1.1:
a) The affine coordinate ring is defined by the formula A(Y ) = k[x, y]/I(Y ). In this instance, I(Y ) = (y−x2)
as (y − x2) is a radical ideal. Let ϕ : k[x, y] → k[x] be the morphism defined by x 7→ x and y 7→ x2. This is
surjective and ker(ϕ) = (y − x2), so that A(Y ) ∼= k[x].

b) We have A(Z) = k[x, y]/(1 − xy). This is in fact isomorphic to k[x]x. To see this, define a morphism
ϕ : k[x, y]→ k[x]x by x 7→ x and y 7→ x−1. Then ϕ is a surjection and its kernel is exactly (1− xy).

c) First note that if p(x, y) is a homogeneous polynomial of degree n in k[x, y], where k is an algebraically
closed field, then p splits into a product of linear factors. To see this write p = yng(x

y
). Then g(x

y
) will split

so we can write p = yn(x
y
− a1)...(x

y
− an) = (x− a1y)...(x− any).

Now, suppose that f(x, y) is an irreducible quadratic over an algebraically closed field k. Let p(x, y) be
the degree 2 homogeneous part of f . By the above we can write p = (ax− by)(cx−dy). Potentially swapping
variables we can assume without loss of generality that a 6= 0. If these factors are linearly dependent, we can
do a change of variables to replace x with ax− by (note that replacing x with a linear polynomial in x and y
induces an automorphism of k[x, y]). Then f(x, y) = x2 + ax+ by + c. We can then do a change of variables
and replace ax+ by + c with −y, giving f(x, y) = x2 − y. Solving f = 0 then gives y = x2.

If both factors are linearly independent, we can assume that a, d 6= 0. Thus by a change of variables
(replacing ax− by with x and cx− dy with y, which induces an automorphism of k[x, y] as these factors are
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linearly independent) we can write f(x, y) = xy+ ax+ by+ c. We then have f(x, y) = (x+ b)(y+ a) + c− ab.
Another change of variables then allows us to write f(x, y) = xy − 1. Solving for f = 0 then gives xy = 1.

1.2: For the first part, simply note that Y = Z(y − x2, z − x3). Similarly to 1.1c, we can see that
k[x, y, z]/(y − x2, z − x3) ∼= k[x]. Since k[x] has no nilpotent elements, (y − x2, z − x3) is a radical ideal
and is thus equal to I(Y ). Hence A(Y ) ∼= k[x], as required.

1.3: Y = Z(y) ∪ Z(x) ∪ Z(x2 − y) and the corresponding ideals are (y), (x), and (x2 − y).

1.4: A basis for the closed sets of A1 × A1 is given by {X × Y | X ⊆ A1 closed, Y ⊆ A1 closed} which
means every closed set is finite. However, the set Z(y−x) ⊆ A2 is closed and infinite (k is algebraically closed
and thus infinite), thus these topologies are not equal.

1.5: If B is finitely generated then B ∼= k[x1, ..., xn]/a for some ideal a. Moreover, if B has no nilpotent
elements then a is radical. Which means Z(a) is such that

A(Z(a)) = k[x1, ..., xn]/IZ(a) = k[x1, ..., xn]/
√
a = k[x1, ..., xn]/a ∼= B

The converse is obvious.

1.6: See [3].

1.7:
a) Routine, if one was only interested in the case of algebraic sets then use the bijection between algebraic
sets and radical ideals coupled with the corresponding statements for Noetherian rings.

b) If X is not quasi-compact then one can construct from an infinite cover with no finite subcover a strictly
ascending chain of open subsets, taking complements of which induces a strictly decreasing chain of closed sets.

c) Follows easily by considering the contrapositive.

d) Let X be Noetherian and Hausdorff. The space X decomposes into finitely many irreducible components
X = X1 ∪ . . . ∪Xn. Each Xi is Noetherian, Hausdorff, and irreducible. By irreducibility, any two non-empty
open sets of Xi have non-empty intersection, which contradicts the Hausdorff condition unless Xi consists of
a single element. Thus X is finite. Lastly, any finite, Hausdorff space is discrete.

1.8:
Decompose Y ∩H into finitely many irreducibles Y ∩H = Y1∪ ...∪Yn with no Yi containing any other. Each Yi
is an irreducible subset of Y and so corresponds to a prime pi of A(Y ). Since Yi is also a subset of H it follows
that pi contains (IH)A(Y ) =

(
IZ(f)

)
A(Y ) = (f)A(Y ). In fact, since there is no irreducible subset strictly

between Yi and Y it follows that pi is minimal over (f)A(Y ), that is, dimA(Y )/pi = dimA(Y )− 1 = r − 1.
Since primes ideals of A(Y )/pi correspond to irreducible subsets of Yi we thus have dimYi = r − 1.

1.9:
Decompose Z(a) into finitely many irreducible components Z(a) = Y1 ∪ . . . ∪ Yn with no Yi containing any
other. Each Yi corresponds to a prime ideal pi which is minimal over a. By Krull’s Principal Ideal Theorem,
ht. p ≤ r. We also know

ht. pi + dimAn/pi = dimAn

thus dimYi = dimAn/pi ≥ n− r.

1.10:
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a) Solved in [3].

b) Solved in [3].

c) Consider the Sierpinski space Σ := {0, 1} with topology
{
∅, {0}, {0, 1}

}
. We have that {0} = Σ so

{0} is dense. Furthermore, dim{0} = 0. However, dim Σ = 1 as demonstrated by the following sequence
{0} ⊆ Σ.

d) This is obvious as if Y 6= X then any chain of irreducible, closed subsets of Y remain so as subsets
of X. Since X itself is irreducible, Y 6= X =⇒ dimY < dimX.

e) Consider N with the the topology whose closed sets are all initial segments.

1.12 x2 + y2 + 1. We have that ZA2
R
(x2 + y2 + 1) = ∅ which by definition is not irreducible.

1.2 §2

Throughout, S = k[x0, ..., xn]
2.1:
For clarity, if a ⊂ S is an ideal we will write ZPn(a) for the zero set in Pn and ZAn+1(a) for the zero set in
An+1.

Let a ⊆ S be homogeneous and say f ∈ S is a homogeneous polynomial such that deg f > 0 and for all
P ∈ ZPn(a) we have that f(P ) = 0. It follows that for all non-zero P ∈ ZAn+1(a) we have that f(P ) = 0.
Moreover, since deg f > 0 and f is homogeneous it follows that f(0, ..., 0) = 0. Thus for all P ∈ ZAn+1(a) we
have that f(P ) = 0 and so by the regular nullstellensatz we have that f r ∈ a for some r > 0.

2.2:
Say ZPn(a) = ∅. Then ZAn+1(a) is either empty or the singleton set {(0, ..., 0)}. In the case that it is empty,
it follows from the nullstellensatz that a = S, and in the case that it is the singleton set containing (0, ..., 0)
we have that

√
a = S+ again by the nullstellensatz, thus (i) ⇒ (ii). Now say

√
a = S+ and let d be the

least integer such that there exists a polynomial of degree d in a, we claim that Sd ⊆ a. For each i there
exists di > 0 such that xdii ∈ a, as

√
a = S+. Let d = maxi di. Then xdi ∈ a for all i, as these generate

Sd we have that Sd ⊆ a. If
√
a = S then a = S. Thus (ii) ⇒ (iii). Lastly, if a ⊃ Sd for some d then

ZAn+1(a) ⊆ ZAn+1(Sd) = {(0, ..., 0)} and so ZPn(a) = ∅.

2.3:
a),b),c) are trivial.
d) First notice that if Z(a) = ∅ then IZ(a) = S, but from the previous part it might be that

√
a = S+, so

we cannot assert that IZ(a) =
√
a. Assuming Z(a) 6= ∅ then we have that IAn+1ZAn+1(a) =

√
a. Notice that

all elements of
√
a are homogeneous, and so IPnZPn(a) =

√
a.

e) Let W ⊇ Y be closed, we show ZI(Y ) ⊆ W . Write W = Z(a). By a) it suffices to show I(Y ) ⊇ a. This
holds as W ⊇ Y implies I(Y ) ⊇ I(W ) = IZ(a), which by d) is equal to

√
a. The result then follows as a ⊆

√
a.

2.4:
a) The previous exercise implies that there is a one-to-one order reversing bijection between proper radical
ideals of S not equal to S+ and non-empty closed subsets of Pn. We then notice that I(∅) = S and Z(S) = ∅,
so this bijection extends to that as stated in the question.
b) Immediate from the fact that the bijection is order reversing.
c) I(Pn) = (0) which is prime.

2.5: a): Every descending chain of algebraic sets corresponds to an ascending chain of ideals of k[x0, ..., xn]
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which is Noetherian.

b) Follows from Proposition [1, §I Prop1.5]

2.6:
We will use the following lemma:

Lemma 1.2.1. If a ring map f : A −→ B is injective and extends to a map F : A[{xi}i∈I ] −→ B such that
the ideal generated by {xi}i∈I has empty intersection with kerF , then F is injective.

Proof. Clearly a non-zero element of A[{xi}i∈I ] maps to a non-zero element of B.

There is a map

S −→ S(xi)

f 7→ f(x0/xi, ..., xn/xi)

and thus a composite

ψi : A
βi−→ S −→ S(xi)

given by f 7→ xdeg f
i f(x0/xi, ..., xn/xi) 7→ f(x0/xi, ..., xn/xi) (with xi/xi omitted). This map is clearly an

isomorphism as it is just a relabelling of indeterminants. In fact, we have:

Lemma 1.2.2. Let Y ⊆ Pn be a projective variety, f ∈ I(Yi), and P ∈ Y ∩ Ui. Then

f(ϕi(P )) = 0⇐⇒ (βif)(P ) = 0

Moreover, if P 6∈ Ui then Pi = 0 and so (βif)(P ) = 0. Thus f ∈ I(Yi)⇒ βi(f) ∈ I(Y ).

Thus ψi(I(Yi)) = I(Y )S(xi), and so

ϕ∗i : A(Yi) −→ S(xi)/(I(Y )S(xi))
∼= S(Y )(xi)

is an isomorphism.
This extends naturally to a surjective map A(Yi)[xi] −→ S(Y )xi , the image of xi under which is a unit,

we thus have a map
δi :
(
A(Yi)[xi]

)
xi
−→ S(Y )xi

our next claim is that this is an isomorphism. This maps onto a set of generators and is thus surjective.
For injectivity, as A(Yi)[xi] is an integral domain, it suffices to show A(Yi)[xi] −→ S(Y )xi is injective, which
follows from Lemma 1.2.1.

We now show dimS(Y )xi = dimS(Y ) − 1. By (1.8A) this equality is equivalent to tr. degk S(Y )xi =
tr. degk S(Y )− 1. We have

FracS(Y ) ∼= FracS(Y )xi
∼= Frac

(
A(Yi)[xi]

)
xi
∼= Frac

(
A(Yi)[xi]

)
=
(
A(Yi)

)
(xi) ∼=

(
S(Y )xi

)
0
(xi)

thus
tr. degk S(Y ) = tr. degk

(
S(Y )xi

)
0
(xi) = tr. deg

(
S(Y )xi

)
0

+ 1

We also have that
dim

(
S(Y )xi

)
0

= dimA(Yi) = dim(Y ∩ Ui)
Thus dimS(Y ) = dim(Y ∩ Ui) + 1 for all i, notice this value is independent of i and so by exercise 1.10b)

we have dimS(Y ) = dimY + 1.

2.7:
a) Cover Pn by open affines {Ui}ni=0, by exercise 1.10 we have that dimPn = supi dimUi. For each Ui we have
dimUi = dimAn = n.
b) We make use of the following fact from topology:
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Fact 1. Let X, Y be topological spaces, Z ⊆ X a subset, and U ⊆ X, V ⊆ Y open subsets. If ϕ : U → V is a
homeomorphism then ϕ(U ∩ clX(Z)) = clV (ϕ(U ∩ Z)).

Y is an open subset of an affine space and so is irreducible. This in turn implies that Ȳ is irreducible
and thus affine. The previous exercise then applies, so we have dim Ȳ = dim(Ȳ )i, where we recall that
(Ȳ )i = ϕi(clPn(Y ) ∩ Ui). We have ϕi(clPn(Y ) ∩ Ui) = clϕi(Ui) ϕi(Y ∩ Ui) by Fact 1 and this in turn is

just clAn ϕi(Y ∩ Ui). In other notation, we have (Yi) = (Ȳ )i. It follows from Proposition [1, §1 1.10] that
dimYi = dim (Yi). It remains to show that dimYi = dimY . By exercise 1.10 it suffices to show for all i 6= j
such that neither Y ∩ Ui nor Y ∩ Uj are empty that dimYi = dimYj. We have:

dim (Yi) = dim(Ȳ )i = dim Ȳ

finishing the proof.

2.9:
a) First we claim I(Ȳ ) ⊆ βI(Y ). Let f = f(x0, ..., xn) ∈ I(Ȳ ) be homogeneous and consider f(1, x1, ..., xn).
This is such that βf(1, x1, ..., xn) = f and so lies in the image of β. Moreover, if P = (P1, ..., Pn) ∈ Y
then the element P̄ of Ȳ given by the set of homogeneous coordings (1, P1, ..., Pn) is such that f(P ) = 0, or
equivalently, f(1, P1, ..., Pn) = 0. That is, f ∈ βI(Y ). Since the homogeneous elements generate I(Ȳ ) and
βI(Y ) is an ideal, this establishes the claim.
Conversely, let f ∈ βI(Y ) and let g ∈ I(Y ) be such that xdeg g

0 g(x1/x0, ..., xn/x0) = f . For clarity, we
distinguish Y from ϕ0(Y ). Since g ∈ I(Y ) we have for any P = (P1, ..., Pn) ∈ Y that g(P ) = 0, in other
words, 1deg gg(P1/1, ..., Pn/1) = 0, and thus Z(f) ⊇ ϕ−1

0 Y . Since Z(f) is closed this implies Z(f) ⊇ Ȳ , that
is, f ∈ I(Ȳ ).

b) From the previous part, we have that I(Ȳ ) is equal to the ideal generated by βI(Y ), thus (βf1, ..., βfn) ⊆
I(Ȳ ). So the statement of the question is true if and only if the ideal generated by β(f1, ..., fr) is not contained
in (βf1, ..., βfr). Specialising now to the question at hand, we have I(Y ) = IZ(y−x2, z−x3) which is radical,
and so is equal to (y − x2, z − x3). We need an element of the ideal generated by β(y − x2, z − x3) which is
not in (wy− x2, w2z− x3). Consider x(y− x2)− (z− x3) = xy− z ∈ (y− x2, z− x3) so that xy−wz is in the
ideal generated by β(y− x2, z− x3). This element is not in (wy− x2, w2z− x3). It remains to find generators
for IȲ but I think IȲ = (wy − x2, xz − y2, xy − zw) works.

2.10:
a) Let S = k[x0, ..., xn]. First notice by Exercise 2.2 we have for any ideal a ⊆ S with IZPn(a) 6= ∅ that
IZPn(a) ∩ k = {0}. We therefore assume I(Y ) ∩ k = {0}. If I(Y ) = {0} then Y = Pn and so C(Y ) = An+1

which is algebraic. If I(Y ) ⊇ {0} then any non-zero f ∈ I(Y ) has strictly positive degree and so admits
(0, ..., 0) ∈ An+1 as a zero. Thus if Y = ZPn(T ) then C(Y ) = ZAn+1(T ). Moreoever, IC(Y ) = I(Y ).
b) Y is irreducible iff I(Y ) is prime iff IC(Y ) is prime iff C(Y ) is irreducible.
c) In the case where Y is a projective variety we have

dimC(Y ) = dimS(C(Y )) = dimS(Y ) = dimY + 1

For the general case, we use exercise 2.7.

2.11:
a) Say I(Y ) can be generated by linear polynomials. Since S is noetherian we can assume there are finitely
many such generators, f1, ..., fm. We have

Y = ZI(Y ) = Z(f1, ..., fm) = Z(f1) ∩ ... ∩ Z(fm)

where each Z(fi) is a hyperplane.
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Conversely, notice that since Pn is noetherian, we can assume Y can be written as the finite intersection
of hyperplanes Z(f1) ∩ ... ∩ Z(fm), the result follows from the same calculation as above.
b) We begin by establishing the following lemma:

Lemma 1.2.3. Let f1, ..., fm be a set of linear polynomials in S. Then dimS/(f1, ..., fm) = n+ 1−m.

Proof. Since S/(f1, ..., fm) ∼=
(
S/(f1, ..., fm−1)

)
/(fm) it suffices to prove the case when there is a single fi, say

f . Write f = α0x0 + . . .+αnxn and by reordering the variables if necessary assume α0 6= 0. Consider the map
k[x0, ..., xn]→ k[x1, ..., xn] which maps xi 7→ xi for i ≥ 1 and x0 7→ α−1

0 (−α1x2 − ...− αnxn). This induces an
isomorphism k[x0, ..., xn]/(f) ∼= k[x1, ..., xn] and the result follows.

Now proceeding with the question at hand. Let Y have dimension r and write Y = Z(f1) ∩ ... ∩
Z(fm) = Z(f1, ..., fm) where each Z(fi) is a hyperplane, and moreover assume m is minimal amongst such
decompositions. We have:

r + 1 = dimY + 1 = dimS(Y ) = n+ 1−m

and thus m = n− r.
c): The solution to this question essentially comes down to the following observation:

Lemma 1.2.4. A linear variety Y in Pn is a k-vector subspace of An+1 and the dimension of Y as a variety
is one less than its dimension as a vector space.

Proof. That Y is a k-vector subspace is obvious, we prove the second claim by induction on n − dimY . If
dimY = n then Y is the whole space and so as a subspace of An+1 has dimesion n + 1. For the inductive
step, assume dimY = k and that {y1, ..., yk+1} is a basis for Y as a subspace of An+1. For a linear polynomial
f such that Z(f) ∩ Y 6= Z(f) we have Y ∩ Z(f) = Span{y1, ..., yk+1} ∩ Z(f). Write f = α0x0 + ... + αnxn,
then Y ∩ Z(f) is the span of the vectors y1, ..., yk+1 subject to the condition y0

i = α−1
0 (−α1y

1
i − ... − αnyni ),

and so has dimension 1 less than that of Y . What we have shown is that as Y decreases by 1 in dimension
as a variety, so to does it decrease by 1 in dimension as a subspace.

The question at hand is now reduced to elementary linear algebra.

2.12:
a) We show that a =

∑
d≥0(Sd ∩ a). The ⊇ direction is obvious. For the reverse, let f ∈ a and write

f =
∑

j≥0 fj where all but finitely many fj = 0 and deg fj = j for all j. It suffices to show that θ(fj) = 0 for
all j, but this follows from θ(f) = 0 as i 6= j ⇒ deg θ(fi) 6= deg θ(fj). That a is prime follows from the fact
that θ is a ring homomorphism with codomain an integral domain.

b) Here we follow the convention that Mi = xdi for i = 0, ..., n. That im ρd ⊆ Z(α) is obvious. For the
converse we come up with a description for a: for every sequence (j0, ..., jn) of integers such that jk < d and∑n

k=0 jk = d we have that yj00 ...y
jn
n maps under θ to a degree d2 homogeneous element of k[x0, ..., xn]. Thus

there exists some m(j0,...,jn) > n such that yj00 ...y
jn
n − ydm(j0,...,jn)

maps to zero under θ. Thus if P ∈ PN is such

that P ∈ Z(ker θ) we have that P is a root of a polynomials of the form

yj00 ...y
jn
n − ydm(j0,...,jn)

(1)

First consider the case where d is even. The equations (1) show that for l > n the element al is determined by
a0, ..., an. Thus P = ρd([ d

√
a0 : ... : d

√
an]). Now consider the case when d is odd. Again we obtain a family of

equations which show that for l > n the element al is determined up to sign by a0, ..., an. Now, by considering
a0a

d−2
1 ai = adm1,d−2,0,...,1,...,0

we see that a0 and ai have the same sign. A similar argument shows a0 and a1

have the same sign. Thus by multiplying (a0, ..., aN) by −1 if necessary we again see P = ρd([ d
√
a0 : ... : d

√
an]).

c) In the case that d is odd the preimage of a point P ∈ im ρd can be recovered by the first n elements
of P and so ρd is injective. In the case when d is odd we can recover the preimage up to sign and then the
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argument given above shows the first n elements all have the same sign, thus ρd is injective.

If P ∈ Pn and f ∈ k[x0, ..., xN ] a polynomial such that f(ρd(P )) = 0 then the polynomial f(M0, ...,MN)
vanishes at P and conversely. So if we write mon f for f(M0, ...,MN) and mon I(Y ) for the ideal generated
by {mon f | f ∈ I} then it follows that for an algebraic set Z(b) we have ρ−1

d (Z(b)) = Z(mon b), thus ρd is
continuous.

Next we show this map is closed. Let Z(b) be an algebraic subset of Pn. Then ρd(Z(b)) = Z(θ−1(b))∩Z(ker θ).
This is true because for all g ∈ θ−1(b) and all P ∈ Z(b) we have θ(g)(P ) = 0 if and only if g(ρd(P )) = 0.

d) This amounts to calculating the kernel in this specific case which should be what is written in red in
2.9b.

2.13: Since Z is of dimension 1 which is 1 less than 2 = dimP2 we have that Z = Z(f) for some irreducible
f ∈ S2. Let M0, ...,M5 be the degree 2 homogeneous monomials of S2 and write f =

∑5
j=0 αjMj. Then let

g =
∑5

j=0 αjyj, we claim Z(g) ∩ Y = ρ2(Z(f)). By the solution to the previous question this amounts to

showing Z(g) ∩ im ρ2 = Z(θ−1(f)) ∩ Z(ker θ). For P ∈ P2 and h ∈ θ−1(f) we have

h(ρ2(P )) = 0⇐⇒ θ(h)(P ) = 0

⇐⇒ f(P ) = 0

⇐⇒ g(ρ2(P )) = 0

from which the result follows.

2.14:
Let θ : k[{zij}0≤i≤r,0≤j≤s] −→ k[x0, ..., xr, y0, ..., ys] be the ring homomorphism given by zij 7→ xiyj. Say
P ∈ Pr+s+rs is such that P ∈ Z(ker θ). Then in particular, P is a root of every polynomial of the form
zijzkl − zilzkj, where 0 ≤ i, k ≤ r and 0 ≤ j, l ≤ s. Let {Pij} be a set of homogeneous coordinates for
P and now fix a pair of integers (a, b) such that Pab 6= 0. For all 0 ≤ k ≤ r and all 0 ≤ j ≤ s we have
Paj/Pab = Pkj/Pkb which implies:

Paj
Pab

Pkb = Pkj

Thus we can recover all Pkj from the set {Pa0, ..., Pas, P0b, ..., Prb}. We write P as

P =
[Paj
Pab

Pkb

]
0≤k≤r,0≤j≤s

= ψ
([
P0b : ... : Prb

]
,
[Pa0

Pab
: ... :

Pas
Pab

])
which shows Z(ker θ) ⊆ imψ. The other direction is trivial.

We observe that the above also implies that ψ is injective: let (P,Q), (P ′, Q′) ∈ Pr×Ps whose image under
ψ are equal, for clarity we write

ψ(P,Q) = [P0Q0 : ... : P0Qs : ...... : PrQ0 : ... : PrQs] = [P ′0Q
′
0 : ... : P ′0Q

′
s : ...... : P ′rQ

′
0 : ... : P ′rQ

′
s] = ψ(P ′, Q′)

(2)
and let λ 6= 0 be such that

(P0Q0 : ... : P0Qs : ...... : PrQ0 : ... : PrQs) = λ(P ′0Q
′
0 : ... : P ′0Q

′
s : ...... : P ′rQ

′
0 : ... : P ′rQ

′
s) (3)

From the above, there exists pairs of integers (a, b), (a′, b′) such that

PaQj

PaQb

PkQb = PkQj and
P ′a′Q

′
j

P ′a′Q
′
b

P ′kQ
′
b = P ′kQ

′
j (4)
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Thus for all 0 ≤ k ≤ r, 0 ≤ j ≤ s:

PkQj =
PaQj

PaQb

PkQb by (4)

=
λP ′a′Q

′
j

PaQb

λP ′kQ
′
b′ by (3)

= λ2P
′
a′Q

′
b′

PaQb

( P ′a′Q′j
P ′a′Q

′
b′
P ′kQ

′
b′

)
= λ2P

′
a′Q

′
b′

PaQb

P ′kQ
′
j by (4)

proving (P,Q) = (P ′, Q′).

2.15:
a) Since imψ = Z(ker θ) (θ as in the previous question) it suffices to show ker θ = (z00z11 − z01z10). Let
f ∈ ker θ. We write f = (z00z11 − z01z10)mf1 + f2 for the largest possible integer m. Let αd1d2d3d4 be
the coefficient in front of f2 in front of zd100z

d2
01z

d3
10z

d4
11 and let βd1d2d3d4 be the coefficient of θ(f2) in front of

(x0y0)d1(x0y1)d2(x1y0)d3(x1y1)d4 . We have θ(f2) = 0 and so by linear independence βd1d2d3d4 = 0 for all
sequences d1d2d3d4. We have β1111 = α1001 + α0110 = 0 and so α1001 = −α0110 so either both are zero or
neither are. If neither are then f2 = (z00z11 − z01z10)f3 + f4 contradicting maximality of n. Thus both are
zero. The final claim is for all sequences d1d2d3d4 other than 1111 we have αd1d2d3d4 = βd1d2d3d4 which can be
proved by induction on such sequences in lexicographic order. Thus f2 = 0 and f ∈ (z00z11 − z01z10).

2.16:
a) We have

Q1 ∩Q2 = Z(x2 − yw) ∩ Z(xy − zw) = Z(x2 − yw, xy − zw)

Multiplying xy − zw = 0 by y we have xy2 − zyw = 0. Substituting x2 − yw = 0 into xy2 − zyw we get

xy2 − zx2 =⇒ x(y2 − zx)

which means either x = 0 or y2 − zx = 0, we will show that x = 0 corresponds to the line, and y2 − zx
corresponds to the twisted cubic curve.

Say x = 0. Then since x2 − yw = 0 we have that either y = 0 or w = 0. If y = 0 then since xy − zw = 0
we have either z = 0 or w = 0 with the other variable arbitrary, this corresponds to a line. If y 6= 0 then
multiplying xy − zw = 0 by x2 we have x3y − x2zw = 0 which by substituting yw for x2 gives

x3y − zyw2 = 0 =⇒ y(x3 − zw2) = 0

which since y 6= 0 implies zw2 = 0 so either z = 0 or w = 0 with the other arbitrary. This also corresponds
to a line.

Now say x 6= 0 so y2 − zx = 0. Then we have

Q1 ∩Q2 = Z(x2 − yw, xy − zw, y2 − zw)

which assuming the postulated solution of Exercise 2.9b is correct, gives the twisted cubic curve.

b) I(C) = (x2− yz), I(L) = (y), and I(C ∩L) = (x, y). Thus we need to show (x2− yz) + (y) 6= (x, y) which
is clear as x 6= (x2 − yz) + (y).
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1.3 §3

3.1
a) We saw in exercise 1.1 that there are two possibilities up to isomorphism for the affine coordinate rings,
and so there are two possibilities up to isomorphism of corresponding conics. Since A1 and A1 \ {(0, 0)} are
conics, we are done.

b) Any open subset of A1 is equal to A1 \ V where V is a finite set of points. Let v ∈ V , then 1/(x − v) is
an invertible element in O(A1 \ V ) and is not in k, thus O(A1 \ V ) 6∼= O(A1).

c) Let f ∈ k[x0, x1, x2] be homogeneous, irreducible and degree 2. Then f can be written as xTMx where
xT = (x0, x1, x2) and M is some symmetric matrix. Since M is symmetric and k is algebraically closed,
there exists an orthogonal matrix Q such that QTMQ is diagonal. The matrix Q corresponds to a linear
isomorphism ϕQ : P2 −→ P2 and so is an isomorphism of varieties such that the following diagram commutes:

P2 P2

Z(xTMx) Z(xTQTMQx)

ϕQ

ϕQ�
Z(xTMx)

Moreover, ϕQ(Z(xTMx)) = Z(xTQTMQx) because P ∈ z(xTQTMQx) if and only if QP ∈ Z(xTMx) (both
of these are the statement: P TQTMQP = 0). Thus ϕQ �Z(xTMx) is an isomorphism of varieties.

The upshot is that we may assume f = λ1x
2
0 + λ2x

2
1 + λ3x

2
2. There is another linear transformation given

by the diagonal matrix with ii entry equal to 1/λi which shows that in fact we can assume f = x2
0 + x2

1 + x2
2,

that is, all conics are isomorphic to one in particular, thus are all isomorphic to each other. To finish the
question, we can simply observe that P1 is isomorphic to its image under the 2-uple embedding and thus is
isomorphic to all conics.

e) Follows from Theorems 3.2 and 3.4.

3.2
a) This is clearly bijective. To show bicontinuity it suffices to show that every proper, closed subset of
Z(y2 − x3) is finite. Let T be such a closed set, then T = Z(y2 − x3) ∩ T ′ for some closed set T ′ which can
be written as a finite union of irreducible components, T ′ = T ′1 ∪ ... ∪ T ′n. Since this union is finite it suffices
to show Z(y2 − x3) ∩ T ′i is finite for each i. Fix an i. This set can itself be written as the finite union of
irreducible elements, Z(y2 − x3) ∩ T ′i = Y1 ∪ ... ∪ Ym say. We show dimYi = 0. Since T is a proper subset,
Yi ( Z(y2−x3) and so it is sufficient to show dimZ(y2−x3) ≤ 1. By considering the map k[x, y]→ k[t] such
that x 7→ t3 and y 7→ t2 we see that (y2 − x3) is prime, and thus Z(y2 − x3) is irreducible. This is a proper
subset of A2 which has dimension 2 and so dimZ(y2 − x3) ≤ 1.

Now, to see that this is not an isomorphism, we assume to the contrary that it is. The map A1 ϕ−→
Z(y2 − x3)

ϕ−1

−→ A1 is regular and so t = ϕ−1ϕ(t) = ϕ−1(t2, t3), where ϕ−1 must be a polynomial. No such
polynomial exists so this is a contradiction.

b) This is bijective and thus bicontinuous. That it is not an isomorphism follows from the fact that t 7→ t1/p

is not a polynomial.

3.3:
a) For every open set U ⊆ Y there is a map

ϕ̂ : OY (U) −→ OX(ϕ−1(U))

f 7→ f ◦ ϕ

9



and OX(ϕ−1(U)) maps to ColimU3p(ϕ
−1(U)) which by the universal property of this colimit maps to OX,P .

Similarly, OY (U) maps to OY,ϕ(P ) which by the universal property of this colimit maps into ColimU3p(ϕ
−1(U))

hence we get a map OY,ϕ(P ) −→ OX,P given by [f ] 7→ [f ◦ ϕ]. It remains to show this is a homomorphism of
local rings, but this is clear as if [f ] ∈ OY,ϕ(P ) is such that f(ϕ(P )) = 0 then (f ◦ ϕ)(P ) = 0.

b) First we show that ϕ is a morphism. Let U ⊆ Y be open, and f : U −→ A1 regular. We need to
show f ◦ ϕ is regular at every point. Let P ∈ ϕ−1(U) and consider [f ] ∈ OY,ϕ(P ). The image of [f ] under ϕ∗P
is represented by f ◦ ϕ suitably restricted, thus there is some open subset W ⊆ X containing P such that
(f ◦ ϕ) �W is regular, that is to say, f ◦ ϕ is regular at P .

Now we show ϕ−1 is a morphism. First notice that by uniqueness of inverses, ϕ−1 can be given explicity
by [f ] 7→ [f ◦ ϕ−1]. The argument is identical to above.

c) Let [f ] 6= [g] ∈ OY,ϕ(P ) be represented by f : U1 −→ A1 and g : U2 −→ A1 respectively. Since [f ] 6= [g] we
have that f and g are not equal on U1 ∩ U2 so we can assume U1 = U2, let U denote this set. We see that
since f, g are regular, the fact they’re unequal on U implies they’re unequal on U ∩ϕ(X). This holds true for
all U and so ϕ∗P [f ] 6= ϕ∗P [g], thus ϕ∗P maps distinct elements to distinct elements and so in injective.

3.4:
We will make use of the map θ : SN −→ Sn with kernel a given in the statement of Exercise 2.12. We have
already shown in exercise 2.12 that ρd is a homeomorphism, so by the previous exercise it suffices to show
ρ∗d : Oim ρd,ρd(P ) −→ OPn,P is an isomorphism for all P ∈ Pn. Let P ∈ Pn and write Q for ρd(P ). By Theorem
[1, §I 3.3 3.5] we have that Oim ρd,Q

∼= (SN/a)(mQ) and OPn,P
∼= Sn(mP ) where Sm = k[x0, ..., xm]. So the problem

is reduced to finding an isomorphism η : (SN/a)(mQ) −→ Sn(mP ) such that the following diagram commutes:

Oim ρd,Q OPn,P

(SN/a)(mQ) Sn(mP )

ρ∗d

η

(5)

There is an injective map θ̄ : SN/a −→ Sn such that θ̄(mQ) ⊆ mP , so this induces a map (SN/a)mQ
−→ (Sn)mP

which since SN/a and Sn are integral domains is also injective. Lastly, θ maps degree e elements to degree
de elements, thus the elements of degree 0 map injectively to those of degree 0, we thus have a map
(SN/a)(mQ) −→ (Sn)(mP ) which we take to be η. Notice that the collection of rational functions in (Sn)(mP )

are generated by the quotient of two degree d monomials of Sn, which lie in the image of η, thus this map is
surjective and thus an isomorphism.

It remains to show commutativity of (5). For any m ≥ 0 denote k[x1, ..., xm] by Am, and let pick i such
that P ∈ Ui, we have the following isomorphisms: Oim ρd,Q

∼−→ AN((im ρd)i)m′Q and OPn,P
∼−→ (An)m′P where

m′Q is the maximal ideal corresponding to Q and similarly for m′P . Now (5) can then be extended to the
following commuting diagram:

Oim ρd,Q OPn,P

AN((im ρd)i)m′Q (An)m′P

(SN/a)(mQ) Sn(mP )

ρ∗d

η

(6)

where the dashed arrow is induced by θ and the vertical arrows are isomorphism.

Remark 1.3.1. Commutativity of the top square of (6) (arguably) should be justified:
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Lemma 1.3.1. Let ϕ : X −→ Y be a morphism of varieties with X, Y affine, then for all P ∈ X the following
diagram commutes:

OY,ϕ(P ) OX,P

A(Y )mϕ(P )
A(X)mP

ϕ∗P

ϕ̂mP

(7)

Proof. The morphism A(Y )mϕ(P )
−→ OY,ϕ(P ) is given by [f ]/[g] 7→ [γf/g] where γf/g : Y −→ A1 is given by

y 7→ f(y)/g(y). The map ϕ̂mP
maps [f ]/[g] to [f ◦ ϕ]/[g ◦ ϕ]. Denote by γfϕ/gϕ : X −→ A1 the map given by

x 7→ (f ◦ ϕ)(x)/(g ◦ ϕ)(x). Then the image of [f ◦ ϕ]/[g ◦ ϕ] under the right, vertical map of (7) is [γfϕ/gϕ].
It remains to show [γf/g ◦ ϕ] = [γfϕ/gϕ] which is clear.

3.5:
Let f ∈ Sn be a homogeneous, irreducible polynomial such that H = Z(f). Write f =

∑N
j=0 αjMj. Then by

the solution to Exercise 2.12c) we have that ρd(Z(f)) = Z(θ−1(f)) ∩ ker θ so it remains to calculate θ−1(f).
This is just the ideal generated by

∑N
j=0 αjyj which is linear.

There exists a rotation matrix Rθ : PN −→ PN which maps the hyperplane to Z(xi) for some xi. Multiplication
by this matrix gives a family of polynomials and so zero sets are sent to zero sets and regular functions are
mapped to regular functions. Thus this is an isomorphism.

3.6:
First we show that O(X) ∼= k[x, y], this isomorphism might seem strange at first because surely 1/(x2 + y2)
is a unit in O(X) but not in k[x, y], however, 1/(x2 + y2) is not an element of O(X) as we are working with
an algebraically closed field k, and so in fact has infinitely many solutions, not just (0, 0).

First notice that if Y is an affine variety and Y ′ is an open subset then K(Y ) ∼= K(Y ′). Thus K(X) ∼=
K(A2) ∼= k(x, y), also, O(X) embedds into k(x, y). Now, let f/g ∈ O(X) be arbitrary. g can only be 0 when
f is which is finitely many times and so g is a constant this statement follows from Bezout’s Theorem. Thus
O(X) ∼= k[x, y].

To finish the question, we notice that the identity map k[x, y] −→ k[x, y] corresponds under the equivalnce
Hom(A2, X) ∼= Hom(k[x, y], k[x, y]) to the inclusion function X � A2 which is clearly not an isomorphism.

3.7:
b) (which implies a) we make use of the following lemma:

Lemma 1.3.2. If Y is an irreducible subset of a toplogical space X and Y ′ ⊆ Y is also an irreducible subset
of X then Y ′ is irreducible as a subset of Y .

Proof. Let Y ′ = U ∪ V where U = U ′ ∩ Y ′, V = V ′ ∩ Y ′ with U ′, V ′ ⊆ X closed. Then

Y = Y ′ ∪ Y =
(
(U ′ ∩ Y ′) ∪ (V ′ ∩ Y ′)

)
∪ Y = (U ′ ∩ Y ) ∪ (V ′ ∪ Y ) = U ′ ∪ V ′

which implies that U ′ = Y , say. Thus Y ′ = Y ′ ∩ U ′ = U which shows that Y ′ is irreducible.

Now onto the quesiton at hand. Say H ∩ Y = ∅. Then Y ⊆ Pn \H. By Lemma 1.3.2 we have that Y is
an irreducible, closed subset of Pn \H which by Exercise 3.5 is affine. Thus Y is both affine and projective
so by 3.1e it is thus a point. This means dimY = 0.

3.8:
We prove something more general, that if Y ⊆ Pn is an open set then the regular functions on Y are
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constants. First notice that in this setting, K(Y ) ∼= K(Pn). We also have that O(Y ) embeds into K(Y ), so
since K(Pn) ∼= Sn((0)), a regular function f : Y −→ A1 can be thought of as a fraction f1/f2 where f1, f2 ∈ Sn
and deg f1 = deg f2. Using that k is infinite and again using Bezout’s Theorem we have that f2 is a constant
which implies deg f1 = 0 and so is also a constant.

3.9:
S(X) ∼= S1 and S(Y ) ∼= S2/(x0x1 − x2

2), the former is a UFD and the latter is not, as x2
2 = x0x1.

3.10:
Let U ⊆ Y ′ be open and f : U −→ A1 regular. Write f = f1/f2 where f2 is nowhere zero on U , and U = U ′∩Y ′
where U ′ ⊆ Y is open. Then U ′ ∩Z(f2)c is an open subset which extends f , and so f ◦ϕ : U ′ ∩Z(f2)c −→ A1

is regular as ϕ is a morphism and thus so is its restriction to X ′.

Observation: The fact that X ′, Y ′ are locally closed is not integral to the restriction of ϕ respecting regular
functions, this assumption is here so that X ′, Y ′ are varieties in their own right.

3.11:
For each closed subvariety X ′ ⊆ X containing P define the set pX′ := {[(U, f)] ∈ OP | f �X′= 0}, we claim
the map given by X ′ −→ pX′ is a bijection.

We use the following Lemma:

Lemma 1.3.3. Let X be an affine variety and U ⊆ X a quasi-affine variety. Write U = Z(a)c There is a
bijection:

ψ : {Irreducible, closed subsets V ⊆ U} −→ {Irreducible closed subsets V ⊆ X such that V 6⊆ Z(a)}
V 7→ ClX(V )

Proof. First we show this map is well defined. Irreducibility is transitive (Lemma [2, §Irreducible sets]) so
since V is an irreducible subset of U it is also of X, moreover the closure of an irreducible space is irreducible,
thus V̄ is irreducible. It is clearly also closed and not contained in Z(a) otherwise it must have been the
empty set which is not irreducible.

There is an inverse ϕ to this function which maps V to V ∩U . This is also clearly well defined, where we
note that V ∩ U 6= ∅ as V 6⊆ Z(a).

Now we show this is in fact a bijection. ϕψ(V ) = ClX(V ) ∩ U . Since V ⊆ U is closed, write V = V ′ ∩ U
where V ′ ⊆ X is closed. We claim ClX(V ′ ∩ U) ∩ U = V . We have V ⊆ U and V = V ′ ∩ U so V ⊆
ClX(V ′∩U)∩U . We show the reverse inclusion. V ′ is a closed set containing V ′∩U and so ClX(V ′∩U) ⊆ V ′,
thus ClX(V ′ ∩ U) ∩ U ⊆ V ′ ∩ U = V . Thus ϕψ(V ) = V .

Conversely, we need to show ClX(W ∩ U) = W , but this is true as U is open and thus dense.

In particular, Lemma 1.3.3 implies that fpr any P ∈ U , there is a bijection between the irreducible, closed
neighbourhoods of P ∈ U and the irreducible, closed neighbourhoods of P ∈ X.

Now back to the question at hand. Assume X is affine. There is a bijection between the prime ideals of
A(X) containing mP and the irreducible, closed neighbourhoods of P in X, so the affine and quasi-affine cases
are solved.

In the projective case, for any Ui such that P ∈ Ui we have:

ψ′ : {Irreducible, closed nbhds V ⊆ Ui of P} → {Irreducible, closed nbhds V ⊆ X of P}
V 7→ ClX(V )

which is a bijection (proof left to reader). Since Ui is affine this reduces to the previous case.
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3.12:
There are three cases to consider. First assume X is a quasi-affine variety. Then dimX = dim X̄ by Prop
1.10 and dim X̄ = dimOX̄,P by 3.2c and stalks can be calculated locally so dimOX̄,P = dimOX,P .

Say X is a projective variety. Then cover X by affine Ui and note that from Exercise 2.6 we have
dimX = dimXi. We thus have by 3.2c that dimXi = dimOXi,ϕi(P ) and again stalks can be calculated locally
so dimOXi,ϕi(P ) = dimOX,P .

Lastly, say X is a quasi-projective variety. Then by Exercise 2.7b we have dimX = dim X̄ and so we have
reduced to the previous case.

3.13: Define mY := {[(U, f)] ∈ OY,X | f �Y = 0}. We claim this is the unique maximal ideal of OY,X .
Let [(U, f)] ∈ OY,X which is not an element of mY , then there exists some y ∈ Y such that f(y) 6= 0, let
Vy 3 y be an open neighbourhood of y such that f = f1/f2 in Vy. Then Vy ∩ Y ∩ Z(f2)c is an open set
containing y and so in particular is non-empty. Thus [(Vy ∩ Y ∩ Z(f2)c, f2/f1)] is inverse to [(U, f)].

There is a ring homomorphism OY,X −→ K(Y ) such that [(U, f)] 7→ [(U ∩ Y ), f �U∩Y ]. Say we have a
representative (U, f) of an element [(U, f)] ∈ K(Y ). There exists an open subset U ′ ⊆ U on which f = f1/f2

with f2 nowhere zero on U ′. U ′ = U ′′∩Y for some open subset U ′′ ⊆ Y and so f extends to a regular function
f̂ on the open subset U ′′ ∩ Z(f2)c of X. The element [(U ′′ ∩ Z(f2)c, f̂)] maps to [(U, f)] and so this map is
surjective. The kernel is mY and so we have OY,X/mY

∼= K(Y ).

For the dimension claim, we cover X with open affines and appeal to Exercise 2.6 and Proposition 1.10
to reduce to the case where X is affine. We use Proposition 1.10 again to replace Y with Ȳ which is to say
we can assume Y is also affine.

First notice that there is a projection map A(X) −→ A(Y ) with kernel mY and so A(X)/mY
∼= A(Y ),

so in particular dimA(X)/mY = dimY . Next we have ht.mY + dimA(X)/mY = dimA(X), and so
ht.mY = dimX − dimY . It remains to show ht.mY = dimOY,X but this follows from OY,X/mY

∼= K(Y ) just
established.

3.15:
a) Let X×Y = Z1∪Z2 with Zi closed. Write Zi = Z(ai) where the ai are ideals in k[x1, ..., xn] and k[x1, ..., xm]
respectively.

Consider Xi := {x ∈ X | {x} × Y ⊆ Zi}. First we show X1 ∪X2 = X. Let α ∈ X and consider the sets
Y α
i = {y ∈ Y | (α, y) ∈ Zi}. These are closed as Y α

i = Z(evα ai) where evα ai := {f(α, y) | f ∈ ai}. Since Y
is irreducible we have Y α

1 = Y say, and so α ∈ X1 ⊆ X1 ∪X2.
Now we show that Xi are closed. This is easy as Xi = Z(∪β∈Y evβ ai). Thus X1 = X say (as X is

irreducible) and so X × Y = Z1.
b) We show that A(X × Y ) along with the obvious projection maps satisfy the universal property of the
coproduct in the category of commutative k-algebras.

Assume given maps ϕ1 : A(X) −→ B and ϕ2 : A(Y ) −→ B where B is some k-algebra. Let ψ :
A(X × Y ) −→ B be the map satisfying [xi] 7→ ϕ1([xi]) for i ≤ n and [xi] 7→ ϕ2([xi]) if i > n. This is well
defined as if f ∈ I(X × Y ) then for each monomial [xj11 ...x

jn+m
nm

] we have

f([xj11 ...x
jn+m
nm

]) = f([x1])j1 ...f([xnm ])jn+m = ϕ1[x1]j1 ...ϕ2[xnm ]jn+m = 0

Uniqueness of this map follows from linearity and commutativity with the projection maps. Thus A(X×Y ) ∼=
A(X)⊗k A(Y ).
c) Follows from Proposition 3.5 and the previous part.

d) We need:

Lemma 1.3.4. Let A −→ B be integral where A,B are k-algebras. Then FracA −→ FracB is algebraic.
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Proof. Let a/b ∈ FracA and f = xn +
∑n−1

j=0 αjx
j ∈ k[x] such that f(a) = 0. Then

0 = (1/bn)(an/1) + (1/bn)
n−1∑
j=0

αj(a
j/1) = (a/b)n +

n−1∑
j=0

αj/b
n−j(a/b)j

This problem reduces to proving dim(A⊗kB) = dimA+ dimB for finiately generated k-integral domains
A,B. Notice that we have know A⊗kB is an integral domain by part b). Using Noether Normalisation there
exists sets of algebraically independent elements γ1, ..., γr ∈ A and δ1, ..., δs ∈ B with dimA = r and dimB = s
such that A is a finitely generated k[γ1, ..., γr]-module and B is a finitely generated k[δ1, ..., δs]-module. We
next claim the map determined by

k[x1, ..., xr, y1, ..., ys] −→ A⊗k B
xi 7→ γi ⊗k 1

yi 7→ 1⊗k δi

is injective. Say we have this. Thus we have an (r+ s)-variable polynomial subalgebra of A⊗k B. It remains
to show that tr. degk(A ⊗k B) = r + s. Since A ⊗k B is an integral domain (see the comment at the start
of this proof), we reduce to showing k[{γi ⊗k 1}, {1 ⊗k δi}] −→ A ⊗k B is an integral extension, in fact we
show it is a finite morphism. We know that all products of all powers of elements in {γi ⊗k 1} ∪ {1 ⊗k δi}
form a generating set for A⊗k B, it remains to show that a finite subset will do. The modules A and B over
k[γ1, ..., γr] and k[δ1, ..., δs] are finite, thus for all pairs (γi, δj) there exists a least integer nij such that γ

nij

i

and δ
nij

j can both be written as a linear combination of products of powers of the γi and δi respectively with
powers less than nij. Thus finitely many elements generate all elements of the form (γi ⊗k δj)n. Thus finitely
many elements generate all products of such elements. Thus finitely many elements generate all of A⊗k B.

3.16:
a), b) Both a) and b) follow from the following observation: let X = Z(a), Y = Z(b), (P1, P2) ∈
X × Y , (f1, f2) ∈ a × b. Then write f1(x0, ..., xn)f2(y0, ..., ym) as

∑n
i=0

∑m
j=0 αijxiyj. Define g({zij}) =∑n

i=0

∑m
j=0 αijzij. We have f1(P1)f2(P2) = 0 if and only if g(ψ(P1, P2)) = 0.

3.17:
a) By Exercise 3.3b) it suffices to consider an isomorphic variety. By Exercise 3.1c we know that every conic
in P2 is isomorphic to P1 so it suffices to show this is normal. Indeed OP1,P

∼= k[x0, x1](mP ) which is normal if
k[x0, x1] is. Indeed k[x0, x1] is normal as it is a UFD.

b) Attempt at a direct approach: First notice that (x0x1−x2x3) is prime and so S(Q1)(mp)
∼= k[x0, x1, x2, x3]/(x0x1−

x2x3)(mP ). Let f ∈ S(Q1)(mp)[X] by a monic polynomial and g ∈ S(Q1)(0) be such that f(g) = 0. We write
g = g1/g2 with g2 6= 0 so that:

f(g) = (g1/g2)n +
n−1∑
j=0

αj(g1/g2)j = 0

We clear denominators to obtain

−gn1 =
n−1∑
j=0

αjg
n−j
2 gj1 = g2

n−1∑
j=0

αjg
n−j−1
2 gj1

and so g2(P ) = 0 ⇒ g1(P ) = 0. It thus remains to show g1(P ) 6= 0 and to show this we claim g1(P ) = 0 ⇒
g1 = 0, that is g1 ∈ (x0x1 − x2x3) (by sloppy notation). Incomplete.
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c) We claim this variety is not normal at the point P = (0, 0). We need to come up with a monic polynomial
f ∈ A(y2−x3)mP

[X] and a ∈ FracA(y2−x3) such that f(a) = 0, with a 6∈ A(y2−x3)mP
[X]. Take f = X2−x2

and a = y/x, we have

f(a) = a2 − x2 = y2/x2 − x2 = y2/x2 − x3/x = (y2 − x3)/x = 0

3.21:
a) This reduces to showing that for polynomials f1, f2 ∈ k[x] we have f1(−x)/f2(−x) is a quotient of
polynomials.
b) This reduces to showing that for polynomials f1, f2 ∈ k[x] we have f1(x−1)/f2(x−1) is a quotient of
polynomials which is true as this equals xnf3(x)/f4(x) for polynomials f3, f4 ∈ k[x].
c) Given ϕ1, ϕ2 ∈ Hom(X,G) we define ϕ1 · ϕ2 : X → G to have action on x ∈ X given by ϕ1(x) · ϕ2(x).
d) We know Hom(X,A1) ∼= Hom(k[x],O(X)) ∼= O(X) so it remains to show this is a group homomorphism
which is an easy check.
e) Similar to d).

1.4 §4

4.1 Let h be the function described by the question. Let P ∈ U ∪ V and assume without loss of generality
that P ∈ U . Since f is regular on U there exists an open neighbourhood V ⊆ U of P for which f �V = f1/f2,
with f2 nowhere zero on V . This same neighbourhood V ⊆ U ⊆ U ∪V can be taken to show that h is regular
at P .

4.2 First we show the same claim for morphisms. Let X, Y be varieties, U1, U2 ⊆ X be open subsets of
X and let ϕi : Ui −→ Y , i = 1, 2, be morphisms of varieties which agree on U1∩U2. Let h denote the function
which is equal to ϕi on Ui. Say V ⊆ Y is an open subset and γ : V −→ k a regular function. We obtain
regular functions γ ◦ ϕi : Ui −→ k which glue to a regular function U1 ∪ U2 −→ k by the previous question.
Thus h is a morphism.

The question at hand reduces to this previous considering by picking representatives of the two rational
maps.

4.3:
a) This function is defined on U0 and the corresponding regular function is given by the same rule.

b) This extends to
P2 \ {[0 : 0 : 1]} −→ P1, [P0, P1, P2] 7−→ [P0, P1]

This cannot be extended further lest [0 : 0 : 1] 7→ [0 : 0] 6∈ P1.

4.4:
a) Recall that any conic is isomorphic to P1 and so in particular is birationally equivalent to it.

b) Define the map

Z(y2 − x3) \ {(0, 0)} −→ P1

(x, y) 7−→ [x : y]

This clearly pulls back regular maps. Define also isomorphism with inverse:

P1 \ Z(x) −→ Z(y2 − x3)

[x : y] 7−→
(
(y/x)2, (y/x)3

)
15



These maps induce birational maps.

c) This map can be given explicitly. If [P0 : P1 : P2] ∈ Y then its image is

1.5 §5

5.9: Using Exercise 2.5b we write Z(f) = Z(f1) ∪ . . . ∪ Z(fr) = Z(f1...fr), assume that r > 1. Now, using
exercise 3.7 we have that Z(f1) ∩ Z(f2) 6= ∅, so let P ∈ Z(f1) ∩ Z(f2). We have:

∂f

∂x
=
∂f1

∂x
(f2 . . . fr) + . . .+ (f1 . . . fr−1)

∂fr
∂x

(8)

Evaluating (8) at P yields the value 0. Likewise, ∂f
∂y

(P ) = ∂f
∂z

(P ) = 0, contradicting the hypothesis. Thus
r = 1.

2 Chapter 2

2.1 §1

The question labelling is taken from [1, II §1]
1.1:
We denote the constant presheaf associated to A by CA and the constant sheaf A . We construct a third sheaf
F and show C+

A
∼= F ∼= A .

For an open set U with connected components {Ui}i∈I define F (U) =
∐

i∈I A. Let V ⊇ U is an open
superset of U with connected components {Vj ∈ J}j∈J . There is a collection of maps ϕij : F (Vj) = A →
A = F (Ui) which is the identity if Ui ⊆ Vj and the zero map otherwise. Composing these with the inclusions
F (Ui) � F (U) induces a morphism F (V )→ F (U) which we take as the restriction map corresponding to
U ⊆ V . This is clearly a sheaf.

To see that F ∼= A , notice that a function s : U → A in A (U) is clearly equivalent to giving an element
of A for each connected component of U .

To see that C+
A
∼= F let U be a connected open subset and s an element of C+

A (U). There exists a cover
of opens {Ui}i∈I and elements ai ∈ A such that if u ∈ Ui then s(u) = (ai)u. For all Ui ∩ Uj 6= ∅ we have
ai = aj and U is connected, so the data of s amounts to a single element a ∈ A.
1.2a:
By essential uniquenes of colimits it suffices to show that imϕp is a colimit ColimU3p imϕ+(U). Let s ∈
imϕ+(U) and take V 3 p and t ∈ imϕ(U) to be such that for all v ∈ V we have s(v) = tv. Then the
equivalence class [(V, t)] gives an element of imϕp and so we have a collection of maps imϕ+(U) → imϕp.
Thus imϕp is a cocone. Now say that K were any abelian group and there was a collection of morphisms
ψU : (imϕ+)U → K coherent with the restriction morphisms. Coherency here ensures that the image of any
lift t ∈ imϕ(V ) of any [(V, t)] ∈ imϕp under imϕ(U) −→ imϕ+(U) −→ K is mapped to the same element.
That is, there is a well defined morphism imϕp → K, which indeed is unique.
1.2b
This follows easily from the definition of monomorphism/epimorphism combined with the fact that for any
pair of morphisms γ, γ′ : H →J subject to γp = γ′p for all p then γ = γ′.
1.2c
Essentially an application of the previous two parts. The forward direction is by 1.2a: taking stalks at p at
all parts of the diagram yields a sequence

. . . −→ F i−1
p

ϕi−1
p−→ F i

p

ϕi
p−→ F i+1

p −→ . . .
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Since kerϕi = imϕi−1 it follows that kerϕip
∼= (kerϕi)p = (imϕi−1)p ∼= imϕi−1

p .
The converse is by 1.2b: since (kerϕi)p ∼= (imϕi−1)p for all p, we have that kerϕi = imϕi−1.

2.2 §2

2.1
Let l : A→ Af be the localisation map, and l̂ : SpecAf → SpecA the induced map on spectrum. This map is

continuous and open, and thus is a homeomorphism onto its image, which is D(f), from now on, l̂ will refer
to this homeomorphism.

Since basic opens form a topology and OX �D(f) and OSpecAf
are both sheaves, it suffices to specify l̂# it

suffices to define l̂#D(gf) for each basic open D(gf) of D(f). To do this, we first observe that

OX �D(f) D(g) = OX(D(fg)) ∼= Afg

and
OSpecAf

l̂∗(D(g)) = OSpecAf
(l̂−1(D(g))) = O(D(g/1)) ∼= (Af )g/1

so it suffices to give a local ring isomorphism Afg → (Af )g/1. We define such a map a
fngm

7→ a
fn
/g

m

1
.

2.4
Let ϕ ∈ HomRing(A,Γ(X,OX)), we define a corresponding morphism of schemes β(ϕ) = (ψ, ψ#). Fix an
open affine cover {Ui = SpecAi} of X and for each pair (i, j) let {U ij

k = SpecAijk } be open affines covering
Ui ∩ Uj. By Proposition [1, 2.3] the ring homomorphisms

ϕi : A −→ Γ(X,OX)
ResXUi−→ Ai

give rise to a family of morphisms (γi, γ
#
i ) of schemes SpecAi → SpecA.

Since ResUi

U ij
k

ϕi = Res
Uj

U ij
k

ϕj and the U ij
k cover Ui ∩ Uj we have that γi �Ui∩Uj

= γj �Ui∩Uj
, thus we have a

well defined continuous function ψ : X → SpecA.
Now we define ψ# : OSpecA → ψ∗OX for which by the sheaf condition on OX it suffices to give a family

ψ#
i : OSpecA → ψ∗OX → ResXUi

ψ∗OX such that ResUi
Ui∩Uj

ψ#
i = Res

Uj

Ui∩Uj
ψ#
i . However this is exactly given by

the γ#
i .

2.7
Let (f, f#) : SpecK → X be a morphism of schemes. Write x := f((0)). We have a ring homomorphism

f#
x : OX,x −→ K(0)

∼= K. This is a local ring homomorphism and so
(
f#
x ((0))

)−1
= ker(f#

x ) = mx and so we
have a homomorphism k(x) −→ K which being a ring homomorphism with domain a field, is injective.

Conversely, a point x ∈ X is equivalent to a continuous function f : SpecK → X. Given an open subset
U ⊆ X which does not contain x the function f#

U : OX(U)→ f∗OSpecKU = OSpecK(∅) = 0 is the unique such.

If x ∈ U then we have the function f#
U : OX(U)→ OX,x → k(x)→ K ∼= OSpecK(SpecK) = OSpecK(f∗(U)).

2.16
a)
Let ϕ : U −→ SpecB be an isomorphism. For all x we have an isomorphism OX,x ∼= Bϕ(x). Thus
fx 6∈ mx ⇔ f̄ 6∈ ϕ(x) and so U ∩Xf

∼= D(f̄).

b)
Let {Ui = SpecAi}ni=1 be a finite open affine cover of X. From part (a) we know Xf ∩Ui = D(fi), where fi is

the image of f under A −→ Ai, thus a �D(fi)= 0 for all i, that is,
a�Ui

1
= 0 in (Ai)fi . Thus there exists ni > 0
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such that fni
i a �Ui

= 0. Since there are finitely many Ui we can set n = maxi ni so that for each i we have
fni a �Ui

= 0. We then have by the sheaf condition that fna = 0.

c)
We need to define an element a ∈ Γ(X,OX), we do this by defining an element of Ai for each i which
agree on the overlaps. Consider b �Xf∩Ui

for each i. We know that Xf ∩ Ui = D(f �Ui
) so we can write

b �Xf∩Ui
= ai

f�
ni
Ui

∈ (Ai)f�Ui
. Since there are finitely many Ui we can write n =

∑
i ni and let bi = f �n−ni

Ui
ai ∈ Ai.

Let Wij = Xf ∩ Ui ∩ Uj and notice that

(bi − bj) �Wij
= (fn−nifnib− fn−njfnjb) �Wij

= 0

So by part (b) there is dij > 0 such that fdij(bi − bj) �Ui∩Uj
= 0 as an element of Γ(Ui ∩ Uj,OUi∩Uj

). Letting
d = maxi,j{dij} we have fd(bi − bj) �Ui∩Uj

= 0, so by the sheaf condition there is an element a ∈ Γ(X,OX)
such that a �Ui

= fdbi and a �Xf
= b.

2.17
a)
The collection of continuous functions (f �Ui

)−1 : Ui −→ f−1(Ui) � X agree on overlaps as they are the
inverse of restrictions of a common function. Thus we obtain a continuous function Y → X which is locally
an inverse and thus an inverse to f .

Let gi denote the inverse of f# �Ui
: OY �Ui

−→ f∗OX �Ui
. We need to show that (gi)Ui∩Uj

= (gj)Ui∩Uj
.

Both of these maps are equal to (f# �Ui∩Uj
)−1 so we are done.

Notice that a corollary of the proof of this exercise is the following:

Lemma 2.2.1. Let {Ui} be an open cover of Y and fi : X �f−1(Ui)→ Y �Ui
a collection of scheme morphisms

such that (fi) �Ui∩Uj
= (fj) �Ui∩Uj

. Then there exists a morphism f : X → Y such that f �Ui
= fi. Moreover,

f is an isomorphism if and only if all the fi are.

b)
For any sheaf X there is the unit map X −→ Spec Γ(X,OX). This morphism is an isomorphism if X is affine,
thus we have a collection of isomorphisms Xfi −→ Spec Γ(Xfi ,OXfi

). Since f1, ..., fr generate 1 we have that
SpecXfi cover SpecX. The result then follows from part (a).

2.18b)
We let ϕ̂ : SpecB −→ SpecA denote the continuous map induced by ϕ : A −→ B. Assume that ϕ is injective.
As the collection {D(f)}f∈A form a base for the topology on SpecA, it suffices to show that for all f ∈ A,

the morphism ϕ̂#
D(f) : OSpecAD(f) −→ ϕ̂∗OSpecBD(f) = OSpecBD(ϕ(f)) is injective. Let f ∈ A. It’s easy to

show that since ϕ : A −→ B is injective, so is ϕf : Af −→ Bϕ(f). Thus it remains to show commutativity of
the following diagram:

OSpecAD(f) OSpecBD(ϕ(f))

Af Bϕ(f)

ϕ̂#
D(f)

ϕf

∼= ∼=

Which can be established by a direct calculation.

2.3 §3

Exercise 1. Hartshorne 3.1

Proof. We use the following fact from commutative algebra:
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Lemma 2.3.1. Let A,B be rings and f ∈ A an element of A. Then B is a finitely generated A-algebra if and
only if it is a finitely generated Af -algebra. (Note: we mean finitely generated as algebras, the corresponding
statement for modules is false)

Throughout, a cover of an open set U means a collection of open subsets {Ui ⊆ U}i∈I of U such that⋃
i∈I Ui = U. For an open affine subset U = SpecA of Y let P (U) be the proposition “there exists a cover
{SpecBi}i∈I of f−1(U) such that each Bi is a finitely generated A-algebra”. Let {Ui = SpecAi}i∈I be an
open affine cover of Y such that P (Ui) holds for each i, and let U = SpecA be an open affine subset of Y .
First we show that U can be covered by open affines {Ui}i∈I satisfying P (Ui) for each i.

Fix i ∈ I, let {SpecBij}j∈J be a cover of f−1(Ui) such that each Bij is a finitely generated Ai-algebra,
and let ai ∈ Ai be such that D(ai) ⊆ Ui. Let ϕij : Ai → Bij be the ring homomorphism corresponding to the
scheme morphism SpecBij → SpecAi. Bij is a finitely generated Ai-algebra, so by Lemma 2.3.1, Bij,ϕij(ai) is
a finitely generated Ai-algebra. The collection {SpecBij,ϕij(ai)} cover f−1(D(ai)) and so proposition P (D(ai))
holds.

We now have the following statement to prove: let U = SpecA ⊆ Y be an open affine subset of Y which
can be covered by open affines Ui = SpecAi such that P (Ui) holds for all i, then P (U) holds. But this follows
easily from Lemma 2.3.1.

Exercise 2 (Hartshorne 3.14). Let X be a scheme of finite type over a field k. Then the closed points of X
are dense.

Proof. We cover X by finitely many open affines {Ui = SpecAi}ni=1 where each Ai is a finitely generated
k-algebra. Notice that by Theorem ?? each Ai is jacobson. Fix an i and let f ∈ Ai be such that D(f) ⊆ Ui.
Assume that x is closed in D(f), that is, x is a maximal ideal of (Ai)f . We show first that x is closed in
X. The inclusion D(f) ⊆ SpecAi induces a ring homomorphism Ai → (Ai)f which in fact is a k-algebra
homomorphism as X is over k. Combining this with the fact that (Ai)f is a finitely generated k-algebra gives
that (Ai)f is a finitely generated Ai-algebra and so the preimage of x in Ai is maximal, by Theorem ??. This
holds for any i, and so x is closed in all Ui 3 x, and thus is closed in X (this step here doesn’t seem to require
that there were finitely many such Ui). It thus suffices to show that every D(f) contains a maximal ideal. If
f is contained in every maximal ideal then it is nilpotent (Lemma ??) and thus D(f) is empty.
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