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1 Resolutions

Throughout, A is a commutative ring with unit.

1.1 Short exact sequences

Definition 1.1.1. Given two short exact sequences

0 −→M −→ N −→ P −→ 0 (1)

and
0 −→M ′ −→ N ′ −→ P ′ −→ 0 (2)

which we denote by S1, S2 respectively, a morphism of short exact sequences f : S1 −→ S2 is a triple
of module homomorphisms f1 : M −→ M ′, f2 : N −→ N ′, f3 : P −→ P ′ which render the following diagram
commutative:

0 M N P 0

0 M ′ N ′ P ′ 0

f1 f2 f3 (3)

Definition 1.1.2. A short exact sequence of A-modules

0 −→M
f−→ N

g−→ P −→ 0 (4)

is split (or splits) if it is isomorphic to the short exact sequence

0 −→M −→M ⊕ P −→ P −→ 0 (5)

Lemma 1.1.3. Given a short exact sequence

0 −→M
f−→ N

g−→ P −→ 0 (6)

which we denote by S, the following are equivalent:
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1. S is split,

2. g admits a right inverse,

3. f admits a left inverse.

Proof. First assume S is split. Then we have an isomorphism

0 M N P 0

0 M M ⊕ P P 0

f1

f

f2

g

f3

f ′ g′

(7)

The functions f ′, g′ respectively admit left and right inverses given by m 7−→ (m, 0) and p 7−→ (0, p). Thus
(1) implies (3) and (2).

Now say g admits a right inverse, h : P −→ N . We have gh = idP and so h is injective. We thus have
P ∼= imh and similarly, M ∼= im f .

Moreover, there is a map l : N −→ im f ⊕ imh given by n 7−→ (n− hg(n), hg(n)) rendering the following
diagram commutative:

0 M N P 0

0 im f im f ⊕ imh imh 0

f

f

g

l h (8)

it then follows from the five Lemma that l is an isomorphism. The bottom row of (8) is clearly isomorphic to

0 −→M −→M ⊕N −→ N −→ 0 (9)

Lastly, assume that f admits a right inverse h : N −→ M . Since hf = idM we have that h is surjective.
Thus N/ kerh ∼= M and similarly, N/ ker g ∼= P . Now, there is a map l : N −→ N/ kerh⊕N/ ker g given by
the sum of the respective projection maps which fits into a commutative diagram similar to (8). The result
follows similarly to before.

1.2 The tensor product

The tensor product admits the following universal property:

Lemma 1.2.1. Let M,N,P be modules and denote the set of bilinear transformations M × N −→ P by
Bil(M ×N,P ). There is the following natural isomorphism

Bil(M ⊕N,P ) ∼= Hom(M ⊗N,P ) (10)

Proof. Easy.

The tensor product is distributive, that is:

Lemma 1.2.2. Let M,N,P be modules, then

M ⊗ (N ⊕ P ) ∼= (M ⊗N)⊕ (M ⊗ P ) (11)

Proof. We define an explicit map and an inverse. By Lemma 1.2.1 it suffices to define the following bilinear
map:

ϕ : M ⊕ (N ⊕ P ) −→ (M ⊗N)⊕ (M ⊗ P )

(m, (n, p)) 7−→ (m⊗ n,m⊗ p)
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Let ϕ map induced by applying Lemma 1.2.1, we define an explicit inverse to ϕ. Again, using Lemma 1.2.1
and the universal property of the direct sum, it suffices to define the following two maps

ψ1 : M ⊕N −→M ⊗ (N ⊕ P ) ψ2 : M ⊕ P −→M ⊗ (N ⊕ P )

(m,n) 7−→ m⊗ (n, 0) (m, p) 7−→ m⊗ (0, p)

Let ψ : (M ⊗N)⊕ (M ⊗ P ) −→M ⊗ (N ⊕ P ) denote the induced map. We see:

ψϕ(m⊗ (n, p)) = ψ(m⊗ n,m⊗ p)
= m⊗ (n, 0) +m⊗ (0, p)

= m⊗ (n, p)

and

ϕψ(m⊗ n,m′ ⊗ p) = ϕ(m⊗ (n, 0) +m′ ⊗ (0, p))

= (m⊗ n+m′ ⊗ 0,m⊗ 0 +m′ ⊗ p)
= (m⊗ n,m′ ⊗ p)

In fact, the proof of Lemma 1.2.2 generalises:

Lemma 1.2.3. The tensor product commutes with arbitrary direct sum, more precisely, if Mi∈I is is a
collection of modules and N is also a module, then

N ⊗
⊕
i∈I

Mi
∼=

⊕
i∈I

(N ⊗Mi) (12)

Proof. Following the proof of Lemma 1.2.2 we define

ϕ : N ⊕
⊕
i∈I

Mi −→
⊕
i∈I

(N ⊗Mi)

(n, (mi)i∈I) 7−→ (n⊗mi)i∈I

which is well defined as since (mi)i∈I satisfies mi = 0 for all but finitely many i, the same can be said of
(n⊗mi)i∈I . We also define an I-indexed family of maps

ψi : N ⊕Mi −→ N ⊕
⊕
i∈I

Mi

(n,m) 7−→ (n, ιim)

where
ιi : Mi −→

⊕
i∈I

Mi (13)

is the canonical inclusion map. It is then easy to see that the induced maps ϕ and ψ are mutual inverse to
each other.

1.3 Flat modules

Definition 1.3.1. A module M is flat if given any short exact sequence

0 −→ N1 −→ N2 −→ N3 −→ 0 (14)

the induced sequence:
0 −→ N1 ⊗M −→ N2 ⊗M −→ N3 ⊗M −→ 0 (15)

is also short exact.
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Below, Lemma 1.3.3 states that in the setting of Definition 1.3.1 the sequence

N1 ⊗M −→ N2 ⊗M −→ N3 ⊗M −→ 0 (16)

is always short exact.

Definition 1.3.2. Let ModA denote the category of (left) A-modules.
A functor F : ModA −→ ModA is right exact if given a short exact sequence

0 −→M1 −→M2 −→M3 −→ 0 (17)

the induced sequence
F (M1) −→ F (M2) −→ F (M3) −→ 0 (18)

is exact.

Clearly, Definition 1.3.2 need not be bound to the particular category chosen, but we worth in this restricted
setting for now.

Lemma 1.3.3. For any module M , the functor ⊗M is right exact.

Proof. Let

0 −→ N1
f−→ N2

g−→ N3 −→ 0 (19)

be an arbitrary short exact sequence and consider

N1 ⊗M
f⊗id−→ N2 ⊗M

g⊗id−→ N3 ⊗M −→ 0 (20)

It is clear that g surjective implies g ⊗ id is surjective. It is also clear that gf = 0 ⇒ (g ⊗ id)(f ⊗ id) = 0.
Thus, it remains to show:

im(f ⊗ id) ⊇ ker(g ⊗ id) (21)

We do this by showing there exists an isomorphism

(N2 ⊗M)/(im(f ⊗ id)) ∼= N3 ⊗M (22)

The map g ⊗ id induces a homomorphism g ⊗ id : (N2 ⊗M)/ im(f ⊗ id) −→ N3 ⊗M , we construct a right
inverse.

Let h : N3 ⊗M −→ (N2 ⊗M)/(im f ⊗ id) be such that h(n ⊗ m) = [n′ ⊗ m]im(f⊗id). where n′ is an
arbitrary element of N2 such that g(n′) = n. This is well defined, as if n′′ ∈ N2 is also such that g(n′′) = n,
then n′ − n′′ ∈ ker g = im f which means [n′ ⊗m]im(f⊗id) = [n′′ ⊗m]im(f⊗id). Notice that h is clearly a right

inverse to g ⊗ id.

Thus, we have the following definition of a flat module:

Corollary 1.3.4. A module M is flat if and only if it satisfies the following condition:
for any injective morphism f : N −→ N ′ the induced morphism f ⊗ id : N ⊗M −→ N ′ ⊗M is injective.

Example 1.3.5. A non-example of a flat module, ie, a module which is not flat, is given by Z/nZ, for any
n. Indeed, consider the following short exact sequence

0 −→ Z ×n−→ Z −→ Z/nZ −→ 0 (23)

which induces the following sequence

Z⊗ Z/nZ −→ Z⊗ Z/nZ −→ Z/nZ⊗ Z/nZ −→ 0 (24)

which is isomorphic to

Z/nZ ×n−→ Z/nZ −→ Z/nZ⊗ Z/nZ −→ 0 (25)

and the map Z/nZ ×n−→ Z/nZ is clearly not injective.
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Example 1.3.6. Free modules are flat. Indeed, if f : N −→ N ′ is injective, then since the tensor product
and direct sum commute (Lemma 1.2.3) we have the following commuting diagram where the vertical arrows
are isomorphisms:

N ⊗ AI N ′ ⊗ AI

(N ⊗ A)I (N ′ ⊗ A)I

N I N ′I

(26)

Example 1.3.7. If M is flat and M ∼= N ⊕ P then both N and P are flat. Indeed, assume f : O −→ O′ is
injective and denote the inclusion P �M by i. Consider the following commuting diagram

O ⊗ P O′ ⊗ P

O ⊗M O′ ⊗M

f⊗idP

idO ⊗i idO′ ⊗i

f⊗idM

(27)

We have by assumption that f ⊗ idM is injective, we finish the proof by showing idO′ ⊗i is injective.
We have the following commutative diagram:

O′ ⊗ P

O′ ⊗M O′ ⊗ (N ⊕ P ) (O′ ⊗N)⊕ (O′ ⊗ P )

idO′ ⊗i

∼ ∼

(28)

1.4 Projective modules

Definition 1.4.1. An A-module P is projective if every short exact sequence

0 −→M −→ N −→ P −→ 0 (29)

splits.

Example 1.4.2. Free modules are split. Indeed, consider an arbitrary short exact sequence

0 −→M −→ N
f−→ AS −→ 0 (30)

then we define a right inverse of f by mapping the unit of the sth copy of A to any lift along f of it. This
induces a well defined homomorphism as AS is free.

Example 1.4.3. If P is projective and P ∼= N ⊕O then both N and O are also projective.

Proof. Say we have the following short exact sequence

0 −→M1 −→M2 −→ N −→ 0 (31)

then the following sequence is also short exact

0 −→M1 ⊕O −→M2 ⊕O −→ N ⊕O −→ 0 (32)

which is split by hypothesis. There thus exists a right inverse to M2 ⊕ O −→ N ⊕ O from which one can
derive a right inverse to M2 −→ N .
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Lemma 1.4.4. Let P be an A-module, then the following are equivalent:

1. P is projective,

2. there exists an A-module M such that M ⊕ P is free,

3. given a surjective homomorphism f : M � P and an arbitrary homomorphism g : N −→ P , there exists
a homomorphism h : N −→M such that the following diagram commutes:

N

M P

h g

f

(33)

Proof. Say P is projective and let S be a set of generators for P . and let ϕ : AS −→ P be such that es 7−→ s
where es is the unit of the sth copy of A. Then there is the following short exact sequence

0 −→ kerϕ −→ AS ϕ−→ P −→ 0 (34)

which is split as P is projective. Thus AS ∼= kerϕ⊕ P . Thus (1) implies (2).
To see that (2) implies (1) we observe that free modules are projective (Example 1.4.2) and that summands

of projective modules are projective (1.4.3).
Next we prove (1) implies (3). This is done by considering the fibred product M ×P N . The converse is

obvious as this condition implies a lift of any short exact sequence whose final non-zero module is P .

Definition 1.4.5. A free resolution of a module M is an exact sequence

. . .
∂3−→M2

∂2−→M1
∂1−→M0

∂0−→M (35)

where each Mi for i ≥ 0 is free. We denote this ∂ : M• −→M .
One defines similarly a projective resolution (which we also denote by ∂ : M• −→M).
Given two resolutions (free or projective) ∂ : M• −→ M,∂′ : N• −→ N , there is an obvious notion of a

morphism of (free or projective, the definition is identical) resolutions which we denote f : ∂ −→ ∂′.

We write down some easy to prove facts:

Fact 1.4.6. Every module admits a free resolution.

and thus:

Fact 1.4.7. Every module admits a projective resolution.

Fact 1.4.8. If f : M −→ N is a homomorphism and say we have projective resolutions ∂ : M• −→ M and
∂′ : N• −→ N , then there exists a morphism of resolutions ∂ −→ ∂′.

1.5 Tor
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