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1 Resolutions

Throughout, A is a commutative ring with unit.

1.1 Short exact sequences

Definition 1.1.1. Given two short exact sequences
0— M -—N-—P—0 (1)

and
00— M — N —P —0 (2)

which we denote by Si, Sy respectively, a morphism of short exact sequences f : S; — S5 is a triple
of module homomorphisms f; : M — M’, fo : N — N’, f3 : P — P’ which render the following diagram
commutative:

0 > M > N > P > 0
lf1 lfQ lfiﬂ (3>
0 —— M N’ > P’ > 0
Definition 1.1.2. A short exact sequence of A-modules
0—M-L NP0 (4)
is split (or splits) if it is isomorphic to the short exact sequence
0O— M —Mo®&P—P—0 (5)
Lemma 1.1.3. Given a short exact sequence
0—M-LNLP 0 (6)

which we denote by S, the following are equivalent:



1. S s split,
2. g admits a right inverse,
3. f admits a left inverse.
Proof. First assume S is split. Then we have an isomorphism

f

0 » M »y N —L - p > 0
lfl lfz lfs (7>
0 > M f/>M69P g/>P > 0

The functions f’, ¢’ respectively admit left and right inverses given by m +—— (m,0) and p — (0,p). Thus
implies and .

Now say ¢g admits a right inverse, h : P — N. We have gh = idp and so h is injective. We thus have
P = im h and similarly, M = im f.

Moreover, there is a map [ : N — im f @ im h given by n —— (n — hg(n), hg(n)) rendering the following
diagram commutative:

/ > N g > P > 0

> M
Lk ©

0 — imf —— imf@&imh — imh —— 0

it then follows from the five Lemma that [ is an isomorphism. The bottom row of is clearly isomorphic to
0— M —>M&N—N-—70 9)

Lastly, assume that f admits a right inverse h : N — M. Since hf = idy; we have that h is surjective.
Thus N/ker h = M and similarly, N/ ker g = P. Now, there is a map [ : N — N/ker h & N/ ker g given by
the sum of the respective projection maps which fits into a commutative diagram similar to . The result
follows similarly to before. O

1.2 The tensor product

The tensor product admits the following universal property:

Lemma 1.2.1. Let M, N, P be modules and denote the set of bilinear transformations M x N — P by
Bil(M x N, P). There is the following natural isomorphism

Bil(M & N, P) =2 Hom(M ® N, P) (10)
Proof. Easy. O]

The tensor product is distributive, that is:

Lemma 1.2.2. Let M, N, P be modules, then
M@(N®P)Z(MN)D (M P) (11)

Proof. We define an explicit map and an inverse. By Lemma [1.2.1] it suffices to define the following bilinear
map:

o M®(N&P)— (MRN)® (M® P)
(m, (n,p)) — (M @n,m Q p)



Let » map induced by applying Lemma [I.2.1] we define an explicit inverse to p. Again, using Lemma [1.2.1
and the universal property of the direct sum, it suffices to define the following two maps
W M®N — M@ (NeP) Yy M®P — M ® (N & P)

Let ¥ : (M ® N)® (M ® P) — M ® (N @ P) denote the induced map. We see:

Pp(m @ (n,p)) = P(m @n,m p)
=m® (n,0) +m® (0,p)
=m® (n,p)

and

P(m@n,m'@p)=p(me (n,0) +m'® (0,p))
=(mOn+m0,me0+m Qp)
=(m®n,m' Qp)

In fact, the proof of Lemma [1.2.2] generalises:

Lemma 1.2.3. The tensor product commutes with arbitrary direct sum, more precisely, if Mc; is is a
collection of modules and N 1is also a module, then

N® @Mz = EB(N ® M;) (12)
iel iel
Proof. Following the proof of Lemma [1.2.2| we define
p:No@ M — PN e M)
i€l i€l
(n, (ma)ier) — (0 ® my)ier

which is well defined as since (m;);e; satisfies m; = 0 for all but finitely many ¢, the same can be said of
(n ®m;);er. We also define an [-indexed family of maps

vi: NeoM; — Ne @M,
el
(nv m) — (n7 Lim)

where

el
is the canonical inclusion map. It is then easy to see that the induced maps @ and 1) are mutual inverse to
each other. n

1.3 Flat modules
Definition 1.3.1. A module M is flat if given any short exact sequence
00— Ny — Ny — N3 — 0 (14)

the induced sequence:
00— N QM —No@M — N3s@M — 0 (15)

is also short exact.



Below, Lemma [1.3.3| states that in the setting of Definition the sequence
NiOM — No@M — N3 M — 0 (16)

is always short exact.

Definition 1.3.2. Let Mod 4 denote the category of (left) A-modules.
A functor F': Mod4 — Mod, is right exact if given a short exact sequence

00— My — My — M3 — 0 (17)
the induced sequence
F(My) — F(My) — F(M3) — 0 (18)
is exact.

Clearly, Definition need not be bound to the particular category chosen, but we worth in this restricted
setting for now.

Lemma 1.3.3. For any module M, the functor __ ® M s right exact.
Proof. Let

0—N LN, S Ny — 0 (19)
be an arbitrary short exact sequence and consider

NoMES Ny M ES Ny M — 0 (20)

It is clear that g surjective implies g ® id is surjective. It is also clear that gf = 0 = (¢ ® id)(f ® id) = 0.
Thus, it remains to show:

im(f ®id) D ker(g ® id) (21)
We do this by showing there exists an isomorphism
(No @ M)/(im(f ®1id)) = N3 @ M (22)

The map g ® id induces a homomorphism g ® id : (No ® M)/im(f ® id) — N3 ® M, we construct a right
mverse.

Let h : N3 ® M — (N ® M)/(im f ® id) be such that h(n ® m) = [n' ® M|im(fgia). where n’ is an
arbitrary element of Ny such that g(n') = n. This is well defined, as if n” € N is also such that g(n”) = n,
then n’ — n” € ker g = im f which means [n' ® Mm|im(fgia) = [ @ M]im(seia)- Notice that h is clearly a right

inverse to g ® id. ]
Thus, we have the following definition of a flat module:

Corollary 1.3.4. A module M is flat if and only if it satisfies the following condition:
for any injective morphism f : N — N’ the induced morphism f®id: N @ M — N’ ® M is injective.

Example 1.3.5. A non-ezample of a flat module, ie, a module which is not flat, is given by Z/nZ, for any
n. Indeed, consider the following short exact sequence

0—2Z%57 —7Z/nZ — 0 (23)
which induces the following sequence
ZRLINL — ZQZL/nZ — Z/nZ @ L/nZ — 0 (24)
which is isomorphic to
Z/n7 =2 7./nZ — L0 @ Z/nZ — 0 (25)

and the map Z/nZ = Z/nZ is clearly not injective.



Example 1.3.6. Free modules are flat. Indeed, if f : N — N’ is injective, then since the tensor product
and direct sum commute (Lemma |1.2.3]) we have the following commuting diagram where the vertical arrows
are isomorphisms:

NAl — N' @ Af

| |

(N® A —— (N'® A) (26)

| |

NI NII

Example 1.3.7. If M is flat and M =2 N & P then both N and P are flat. Indeed, assume f: O — O’ is
injective and denote the inclusion P »— M by 7. Consider the following commuting diagram

O®P f®idp O/®P

ido ®zi lidof ®i (27)

O®MMO’®M

We have by assumption that f ® id,, is injective, we finish the proof by showing idps ®¢ is injective.
We have the following commutative diagram:

O'®P
idoz®zl \ (28)
O9M —————— O0Ox(NeP) ————— (ON)® (0'® P)

1.4 Projective modules

Definition 1.4.1. An A-module P is projective if every short exact sequence
0—M-—N-—P—0 (29)

splits.

Example 1.4.2. Free modules are split. Indeed, consider an arbitrary short exact sequence
0—M-—N-Ls45 0 (30)

then we define a right inverse of f by mapping the unit of the s copy of A to any lift along f of it. This
induces a well defined homomorphism as A? is free.

Example 1.4.3. If P is projective and P = N @& O then both N and O are also projective.

Proof. Say we have the following short exact sequence
00— My — My — N —0 (31)
then the following sequence is also short exact
0— MO —>MPO—NBO —0 (32)

which is split by hypothesis. There thus exists a right inverse to My & O — N @& O from which one can
derive a right inverse to My — N. O]



Lemma 1.4.4. Let P be an A-module, then the following are equivalent:
1. P 1s projective,
2. there exists an A-module M such that M @& P is free,

3. given a surjective homomorphism f : M — P and an arbitrary homomorphism g : N — P, there exists
a homomorphism h : N — M such that the following diagram commutes:

hoo lg (33)
k/

M—1sp

Proof. Say P is projective and let S be a set of generators for P. and let ¢ : A — P be such that e, — s
where e, is the unit of the st copy of A. Then there is the following short exact sequence

0 — kerp — A 25 P — 0 (34)

which is split as P is projective. Thus A% = ker ¢ @ P. Thus implies ([2)).

To see that implies ({1|) we observe that free modules are projective (Example and that summands
of projective modules are projective (|1.4.3).

Next we prove implies . This is done by considering the fibred product M xp N. The converse is
obvious as this condition implies a lift of any short exact sequence whose final non-zero module is P. O

Definition 1.4.5. A free resolution of a module M is an exact sequence
2 My 2 My 2 My 2 M (35)

where each M; for ¢ > 0 is free. We denote this 9 : M, — M.

One defines similarly a projective resolution (which we also denote by 0 : M, — M).

Given two resolutions (free or projective) 0 : My — M, : N, — N, there is an obvious notion of a
morphism of (free or projective, the definition is identical) resolutions which we denote f : 0 — 0.

We write down some easy to prove facts:
Fact 1.4.6. Every module admits a free resolution.
and thus:
Fact 1.4.7. Fvery module admits a projective resolution.

Fact 1.4.8. If f : M — N is a homomorphism and say we have projective resolutions 0 : My — M and
d : Ny — N, then there exists a morphism of resolutions 0 — 0.

1.5 Tor
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