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What is space? A naive answer could be “the empty area around us”. Pressing on the word “empty”,
it becomes apparent that this answer is deeper than it first appears. Is space a stage? If so, a stage for
what? Objects? Things? What about more sophisticated notions? Is space a stage for movement? A stage
for interaction? Conceptualising space as a stage for physical phenomena has lead mathematicians through
many theories: calculus, euclidean geometry, differential topology, to name only a few. However, a deeper
point remains: interaction with a space is an exchange of information. Put another way: how does one read
a space? Be the space completely filled, or completely empty, the exact same amount of information is able
to be transmitted: none. It is precisely the space between objects which allow for the flow of information,
and thus, space becomes a stage for communication.

Enclosed space is of particular interest, or to a mathematician, genus. Roughly speaking, the genus of a
geometric figure is the number of holes it encapsulates, for instance, an infinite line has genus 0, whereas a
circle has genus 1. This is a fascinating concept right from the start as how would one even define a rigorous
notion of genus? We are trying to describe a “thing” whose defining property is its absence! Again, this
reflects our opinion that space is a stage for communication, as one could comprehend whether they are
inside a space, or outside a space. Or, as is relevant to the current pieces in question, whether the borders of
an object are made strict or loose.

We introduce two algorithms (2.1.1,2.2.1) which methodically sketch the trajectory implied by Figure 1.
A brief expository concerning the symmetries and asymmetries of these algorithms is given in Section 3. The
reader is encouraged to begin at Section 2 and then refer back to Section 1 as further detail on the notation
and terminology is needed.

1 Notation

First, the mathematical notation used in Section 2 is defined. For those comfortable with mathematical
functions, this section may be skipped.

What can be said of disconnected objects which occupy a disjointed universe? Surely nothing, as meaning
and knowledge only become palpable once relationships between the objects are formed. 1 One of the basic
mathematical objects used to studying relationships between objects is that of a function, which make rigorous
the concept of assigning to every element of a set, an element of another set:

Definition 1.0.1. A function is a triple (D,C, f) consisting of:

1. a set D, the domain

2. another set C, the codomain,

3. a third set f consisting of chosen pairs (d, c) where d ∈ D and c ∈ C

subject to the following conditions

1In fact, the author argues that if one scrutinises any fact of any object one believes in, then it will become apparent that
this is indeed a statement of this object’s relationship with another object, and not a statement about the object in isolation.

1



1. for every element d ∈ D there exists an element c ∈ C such that (d, c) ∈ f ,

2. if (d1, c1), (d2, c2) ∈ f are two elements of f with d1 = d2 then c1 = c2.

A function (D,C, f) can be thought of as an assignment of an element c ∈ C to every element d ∈ D,
where c is associated to d if (c, d) ∈ f , to emphasise this perspective we write f(c) = d for (d, c) ∈ f . Axiom
1 states that to every element in the domain there is an associated element in the codomain, and Axiom 2
states that we associate only one element in the codomain to each element in the domain.

A function (D,C, f) is more commonly notated as:

f : C −→ D (1)

c 7−→ f(c) (2)

to emphasise the intuition that “f maps elements of C to elements of D”.

Remark 1.0.2. Notice that functions are uni-directional: every element of the domain has an associated
element in the codomain, but it is not necessary that every element of the codomain is associated to some
element of the domain.

Example 1.0.3. Consider the elementary trigonometric functions, f(t) = cos t, g(t) = sin t. In accordance
with Definition 1.0.1 and the notation established thereafter, we write these as

f : R −→ R g : R −→ R (3)

t 7−→ cos t t 7−→ sin t (4)

where we have notated the real numbers by R. Importantly, two distinct functions may have the same rule,
but different domain and/or codomain, for instance, the following function:

f̂ : [0, π] −→ R (5)

t 7−→ cos t (6)

is distinct from the function f as can be seen by the fact that f(3π/2) = 0 but f̂(3π/2) does not hold any
value as 3π/2 is not an element of the domain [0, π] of f̂ .

A helpful feature of functions is they allow complicated relationships to be broken down into sequences of
smaller ones. For instance, given real numbers a, b ∈ R, the function which translates the plane R2 a units in
the positive x-direction and b units in the positive y-direction and then reflects the plane about the x axis is
given explicitly by:

f : R2 −→ R2 (7)

(x, y) 7−→ (x+ a,−y − b) (8)

but this can also be written as the composition of two functions:

f1 : R2 −→ R2 f2 : R2 −→ R2 (9)

(x, y) 7−→ (x+ a, y + b) (x, y) 7−→ (x,−y) (10)

as can be checked by a direct calculation:

(f2 ◦ f1)(x, y) = f2(f1(x, y)) = f2(x+ a, y + b) = (x+ a,−y − b) = f(x, y) (11)

This is the formal way of stating that the function f of (7) is equal to the composition f2 ◦ f1 of f1 followed
by f2, notice that function composition is read from right-to-left, f2 ◦ f1 means perform f1 and then f2.
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Remark 1.0.4. There is a subtle point involving function composition. The definition of a function (Definition
1.0.1) involved axioms which were to be adhered to. So just because two functions f1, f2 adhere to these
axioms, is it necessarily the case that f2 ◦ f1 will? In fact the answer is no. For example, consider the
following functions, where R≥0 denotes the non-negative real numbers,

f1 : R −→ R f2 : R≥0 −→ R (12)

x 7−→ −x x 7−→
√
x (13)

then these are both well defined functions, but their composition f2◦f1 is not ! Indeed, (f2◦f1)(9) = f2(−9) =√
−9 which has no real solution. Of course, there are many fixes to this particular situation, the astute reader

may suggest extending the codomain of f2 to the complex numbers, but strictly speaking, f2 has codomain
R and so we must respect this. Exploring exactly when the composition of two functions yields a third well
defined function indeed has an answer, but it is beside the current point and so is omitted from our discussion.
The reader may safely assume that the details have been checked and all compositions in what follows yield
well defined functions.

Also, intervals of the real numbers will be denoted [a, b] and represents the set of all real numbers between
a and b (where we assume a ≤ b) including a and b. In Section 2 we will often restrict the real numbers to
closed intervals involving ratios of π in order to sketch portions of circles rather than the entire circle, see
(23) for an example.

Lastly, the image of a function f : D −→ C is the subset im f ⊆ C consisting of elements which are
mapped to by f , more precisely,

im f := {c ∈ C | there exists d ∈ D such that f(d) = c} (14)

Remark 1.0.5. It is not necessarily the case that im f is equal to C, (although im f is always a subset of
C). For instance, the function f2 of (12) has a codomain R but im f2 = R≥0.

1.1 Reversing a trajectory

A function f : D −→ C prescribes a point in the codomain C to every point in the domain D, and sometimes
the structure of the domain D describes further detail about this prescription. For instance, an interval [a, b],
a < b, is ordered, so a continuous function f : [a, b] −→ R2 (where R2 denotes the plane) describes not just a
set of points in R2, but also a trajectory.

Example 1.1.1. Consider the continuous function

c : [0, 1] −→ R2 (15)

t 7−→ (t, t) (16)

The image of c consists of the straight line connecting the points (0, 0) and (1, 1). Moreover, as t ranges from
0 to 1 the image of c ranges from (0, 0) to (1, 1) along this straight line. Thus, not only have we described a
set of points, but also a directed path.

Continuing with c as defined in Example 1.1.1, we could ask: “how do we traverse the path c backwards”?
A clever trick gives an easy answer here, we define:

ĉ : [0, 1] −→ R (17)

t 7−→ c(1− t) (18)

which sketches the straight line uniquely defined by the points (0, 0) and (1, 1), but this time starting at the
point (1, 1) and finishing at the point (0, 0). To see this, simply perform the calculation:

ĉ(0) = c(1− 0) = c(1) = (1, 1) (19)

ĉ(1) = c(1− 1) = c(0) = (0, 0) (20)

More generally, we have:
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Lemma 1.1.2. Let a < b ∈ R be real numbers, and c : [a, b] −→ R2 a path. Then the function

crev : [a, b] −→ R2 (21)

t 7−→ c(a+ b− t) (22)

has the same image as c but traversed in the reverse direction.

Definition 1.1.3. In the notation of Lemma 1.1.2, the function crev is the reverse of c.

2 The algorithm

We describe an algorithm which parametrically constructs the shape shown in Figure 1.

Figure 1: The work

First we define a function

c1 : [π/4, 3π/4] −→ R2 (23)

t 7−→
(
−
√

2

2
cos t,

√
2

2
sin t

)
(24)

which is a parametrisation of a quarter of a circle (of radius
√

2/2), traversed clockwise, see Figure 2.
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Figure 2: Quarter of a circle

We also define a second function

c2 : [−π/4, π/4] −→ R2 (25)

t 7−→
(

3/2−
√

2

2
cos t,

√
2

2
sin t

)
(26)

which is a parametrisation of an off centred, quarter of a circle (of radius
√

2/2), traversed counterclockwise,
see Figure 3. To centre this arc in the correct spot, we compose the parametrisation with another one which
translates the origin to the point (1/2, 5/2). In fact, we will use several similar translations so we make a
general definition here:

Definition 2.0.1. Let (a, b) ∈ R2. Define

Ta,b : R2 −→ R2

(x, y) 7−→ (x+ a, y + b)
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Figure 3: Second portion of circle

We define the following rotation transformation along with its inverse, and then describe an algorithmic
construction of Figure 4:

Definition 2.0.2. First, we define rotation by an angle of π/2 clockwise about the origin:

θ0,0 : R2 −→ R2 (27)

(x, y) 7−→ (y,−x) (28)

There is also rotation by an angle π/2 counter-clockwise about the origin, which we denote by θ−10,0:

θ−10,0 : R2 −→ R2 (29)

(x, y) 7−→ (−y, x) (30)

Define the following transformation which is a rotation of the plane by an angle of π/2 clockwise about the
point arbitrary (a, b):

θa,b : R2 −→ R2 (31)

(x, y) 7−→
(
a+ (y − b), b− (x− a)

)
(32)

which is equal to the composition given by the translation T(−a,−b) (which translated (a, b) to the origin)
followed by a rotation of the plan about the origin an angle of π/2 followed by another translation T(a,b) which
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maps the origin back to (a, b), written out using mathemtaical notation this is:

R2 R2 R2 R2

(x, y) (x− a, y − b) (y − b, a− x)
(
a+ (y − b), (b+ (a− x)

)
T−a,−b θ0,0 Ta,b

(33)

In a similar way, we obtain the following trasnformation which is a rotation of the plane by an angle of π/2
counter-clockwise about the point arbitrary (a, b):

R2 R2 R2 R2

(x, y) (x− a, y − b) (−(y − b), x− a)
(
a− (y − b), b+ (x− a)

)
T−a,−b θ−1

0,0 Ta,b

(34)

or, more succinctly,

θ−1a,b : R2 −→ R2 (35)

(x, y) 7−→
(
a− (y − b), b+ (x− a)

)
(36)

2.1 First quadrant

Figure 4: First quadrant

Algorithm 2.1.1 (below) is responsible for drawing the first quadrant (Figure 4) as well as the third quadrant
(the bottom left portion) of Figure 1. The algorithm proceeds by first defining a function f whose image is the
quarter-circle shown in Figure 2 but centred at the point (1/2, 5/2). Then we translate 1 unit in the positive
x direction, and perform a clockwise rotation about the point (3/2, 5/2). The result of this is sketched, and
then a counter-clockwise rotation is performed, followed by a translation by 1 unit in the negative y direction.
This process of
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1. sketch,

2. translating to the right by 1 unit,

3. rotating on the spot counter-clockwise by π/2,

4. sketch,

5. rotating on the spot clockwise by π/2,

6. translating down by 1 unit

is performed 3 times. Notice that if f̂(t) represents the function whose image is given by translating the
image of f by 1 unit in the positive x direction, and rotating it about the point (3/2, 5/2) counter-clockwise
an angle of π/2, we will obtain the next piece of Figure 1, but the direction will be the opposite to what we
want! So we sketch the reverse (Definition 1.1.3) which is done by sketching f̂ rev(t) = f̂(π− t) (using Lemma
1.1.2) for t ∈ [π/4, 3π/4].

Algorithm 2.1.1. Set i, j = 0. Define:

f : [π/4, 3π/4] −→ R (37)

t 7−→ (T1/2,5/2 ◦ c1)(t) (38)

1. If j < 3 go to step 2. If j = 3 then terminate the algorithm.

2. Sketch f(t). Go to step 3.

3. Define:

f̂ : [π/4, 3π/4] −→ R (39)

t 7−→ (θ−11/2+i+1,5/2−i ◦ T1,0 ◦ f)(t) (40)

and sketch the reverse of f̂ , that is, sketch f̂ rev(t) = f̂(π − t). Go to step 4.

4. Define:

f : [π/4, 3π/4] −→ R (41)

t 7−→ (T0,−1 ◦ θ1/2+i+1,5/2−i ◦ f̂)(t) (42)

Also, set i = i+ 1 and j = j + 1. Go to step 1.
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2.2 Second quadrant

Figure 5: Second quadrant

If the sketch created by Algorithm 2.1.1 is reflected in the x-axis, then the orientation of the resulting trajectory
will be counter-clockwise, contrary to that of the first quadrant. We fix this by constructing Algorithm 2.2.1
which will be used to sketch the second and fourth quadrant of 1. Roughly speaking, the process is to begin
with the figure shown in 3 and centre it at the point (5/2,−1/2) via the translation T(5/2,−1/2). The process
of

1. sketch,

2. translating down by 1 unit,

3. rotating counter-clockwise by π/2,

4. sketch,

5. rotating clockwise by π/2,

6. translate 1 unit to the left,

is repeated three times. More precisely, we have the following algorithm, recall the reverse of a function
(Definition 1.1.3):

Algorithm 2.2.1. Set i, j = 0. Define:

f : [−π/4, π/4] −→ R (43)

t 7−→ (T5/2,−1/2 ◦ c2)(t) (44)

1. If j < 3 go to step 2. If j = 3 then terminate the algorithm.

2. Sketch the reverse of f , that is, sketch f rev(t) = f(−t). Go to step 3.
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3. Define

f̂ : [−π/4, π/4] −→ R (45)

t 7−→ (θ−15/2−i,−1/2−i−1 ◦ T0,−1 ◦ f)(t) (46)

and sketch f̂(t). Go to step 4

4. Define

f : [−π/4, π/4] −→ R (47)

t 7−→ (T−1,0 ◦ θ5/2−i,−1/2−i−1 ◦ f̂)(t) (48)

Also, set i = i+ 1, j = j + 1. Go to step 1.

2.3 Third quadrant

Figure 6: Third quadrant

We run Algorithm 2.1.1 and compose the result with the rotation θ0,0 ◦ θ0,0.
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2.4 Fourth quadrant

Figure 7: Fourth quadrant

We run Algorithm 2.2.1 and compose the result with the rotation θ0,0 ◦ θ0,0.

3 (A)symmetry

The most interesting part of Algorithms 2.1.1, 2.2.1 is the comparison between the two of them, paying
particular attention to the symmetries and asymmetries.

• The Algorithms “mirror” the following aspect: in (38) we used the translation T1/2,5/2 but in (44) we
used T5/2,−1/2.

• Loosely speaking, the Algorithms are symmetric in that the body of the computation was performed by
the following sequence: translation, rotation counter-clockwise, rotation clockwise, then translation, as
seen in Algorithm (2.1.1) where (40), (42) made use of θ′ ◦ T and T ◦ θ respectively, as did (48), (46) of
Algorithm (2.2.1) respectively.

• The Algorithms are asymmetric in that we sketch f and the reverse of f̂ in Algorithm (2.1.1) but we
sketch the reverse of f but do not reverse f̂ in Algorithm (2.2.1).

• The Algorithms are symmetric in that we perform the same rotation, θ0,0 ◦θ0,0 to each in order to obtain
the third and fourth quadrant respectively.

Conceptualising our interaction of space as an exchange of information brings forward questions concerning
computation. What fundamental physical laws dictate the evolution of an algorithm? Which properties of the
evaluation of a computation are dependent upon the space within which the computation exists? These are
deep mathematical questions currently being analysed by some modern mathematicians; studying symmetries
of computations provides a potential doorway to resolution. The quality of these questions will no doubt be
emphasised by the beautiful mathematics the pursuit of their answers will inevitably generate. In fact, our
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treatment here may itself be seen as initial footsteps in this direction, after all, there are now two more
algorithms which lie within our universe, namely Algorithms 2.1.1, 2.2.1, who owe their existence to our
humble opening question: what is space?
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