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1 Introduction

The standard text to read before studying Algebraic Geometry is Hartshorne [1]. However, the chapter titled
Varieties leaves many important theorems unproved (although references are provided), many important
concepts arrive without motivation (eg, regular functions) and lots of crucial content is pushed into the
exercises. The present notes fill these blanks, and should be read alongside the notes Commutative Algebra
[3] and Hartshorne Exercise Solutions [2]. It is recommended that this is taken as the main resource, with
the others used for reference.

2 Affine Varieties

2.1 Algebraic sets and the ideal of a set

Loosely speaking, a zero a ∈ A in some k-algebra A of a polynomial p is a generalisation of an arithmetic
equation, for instance the equation 1 + 2 = 3 says “the pair (1, 2) ∈ C2 is a zero to the polynomial x+ y− 3 ∈
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C[x, y]”. Thus, to study zero sets of polynomials is to study the structure of algebraic equations. Furthermore,
polynomials as functions are themselves a primitive object of study as they approximate continuous functions
arbitrarily well, a statement made formal by the Stone-Weierstrass Theorem. Algebraic Geometry takes
polynomials along with the functions they induce as the fundamental object of study. Throughout, we work
with an algebraically closed field k.

Definition 2.1.1. Let a ⊆ k[x1, ..., xn] be an idea. Define the zero set of a:

Z(a) := {(p1, ..., pn) ∈ kn | ∀q ∈ a, q(p1, ..., pn) = 0} (1)

A subset T ⊆ kn for which there exists an ideal a ⊆ k[x1, ..., xn] so that T = Z(a) is an algebraic set.
Given an arbitrary set of points T ⊆ kn we define the ideal of T :

I(T ) := {q ∈ k[x1, ..., xn] | ∀p = (p1, ..., pn) ∈ T, q(p1, ..., pn) = 0} (2)

which is in fact an ideal.

Two non-equal ideals may have equal zero sets, for instance Z(x2) = Z(x). This particular equality is easy
to see because k being a field admits no nilpotent elements, so for any x ∈ k such that x2 = 0 is necessarily
such that x = 0. Our first goal is to answer the question:

Question 2.1.2. When do two ideals yield the same zero set?

This will be answered by Hilbert’s Nullstellensatz, which we state on the level of generality where k is not
necessarily algebraically closed.

Definition 2.1.3. Let F be a field (not necessarily algebraically closed). An algebraic zero of a subset
Φ ⊆ F [x1, ..., xn] is a sequence (α1, ..., αn) of elements in an algebraic closure F̄ such that f(α1, ..., αn) = 0
for all f ∈ Φ.

Notice that if a root exists in any algebraic closure it exists in them all, so it makes sense to talk about
an algebraic zero in absence of a particular algebraic closure.

Theorem 2.1.4. Let Φ ⊆ F [x1, ..., xn], and write (Φ) for the ideal generated by Φ,

1. if Φ admits no algebraic zeros, then (Φ) = F [x1, ..., xn].

2. let f ∈ F [x1, ..., xn] be such that f(α1, ..., αn) = 0 for all algebraic zeros (α1, ..., αn) of Φ, then there
exists r > 0 such that f r ∈ (Φ).

Proof. See [3].

Thus we have:

Lemma 2.1.5. Let a ⊆ k[x1, ..., xn] be an ideal. Then

IZ(a) =
√
a (3)

We thus have ZIZ(a) = Z(
√
a), our next goal is to show that ZIZ(a) = Z(a) provides an answer to

Question 2.1.2:

Lemma 2.1.6. Let a, b ⊆ k[x1, ..., xn] be ideals. Then

Z(a) = Z(b)⇐⇒
√
a =
√
b (4)

So we must establish ZIZ(a) = Z(a). We take this as an invitation to develop some more general theory.
First notice the algebraic sets form a topology on kn:
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Lemma 2.1.7. The algebraic sets form a collection of closed sets, in fact:

1. ∅ = Z(1), and kn = Z(0),

2. Z(a) ∪ Z(b) = Z(ab),

3.
⋂
i∈I Z(ai) = Z(b), where b is the ideal generated by

⋃
i∈I ai.

Proof. Simple calculations.

From now on, we consider kn as a topological space whose closed sets are given by the algebraic sets:

Definition 2.1.8. The topology on kn defined by taking all algebraic sets to be closed sets is the Zariski
topology. The set kn along with the Zariski topology is Affine n-space and is denoted An.

We now have the language required to state the key result:

Lemma 2.1.9. Let T ⊆ An be a subset, then

ZI(T ) = T (5)

Proof. We clearly have T ⊆ ZI(T ) and that ZI(T ) is closed so it remains to show that if W = Z(a) ⊇ T is
a closed set containing T then ZI(T ) ⊆ Z(a). Since T ⊆ Z(a) we have IZ(a) ⊆ I(T ). Also, a ⊆ IZ(a) and
so Z(a) ⊇ ZIZ(A) ⊇ ZI(T ). Thus T = ZI(T ).

We thus have ZIZ(a) = Z(a) = Z(a).
The central objects of study are the algebraic sets, these decompose uniquely (Proposition 2.1.14) into a

finite union of irreducible algebraic sets

Definition 2.1.10. A non-empty topological space X is irreducible if it cannot be written as the union of
two non-empty, proper, closed subsets. A subset Y ⊆ X is irreducible if it is an irreducible space when
endowed with the subspace topology.

So, we define:

Definition 2.1.11. An irreducible, algebraic set is an affine variety. An open subset of an affine variety is
a quasi-affine variety.

The theory of Algebraic Geometry is built so that both sides, the algebra and the geometry, complement
one another. As what we have seen so far suggests, the first example of this is the following connection
between the algebraic sets and radical ideals:

Proposition 2.1.12. There is an order reversing bijection

Φ : {Algebraic subsets of An} ∼−→ {Radical ideals of k[x1, ..., xn]} (6)

T 7−→ I(T ) (7)

with inverse given by Φ−1(a) = Z(a). An algebraic subset T ⊆ An is irreducible if and only if Φ(T ) is prime.

Proof. A matter of unwinding definitions, see [1, §I 1.4] for details.

We know by Hilbert’s Basis Theorem (see [3]) that k[x1, ..., xn] is a Noetherian ring. This along with
Proposition 2.1.12 motivate the following definition:

Definition 2.1.13. A topological space X is Noetherian if every strictly decreasing chain of closed subsets
is finite. In other words, for every strictly descending chain of closed sets:

X1 ) X2 ) . . . (8)

there exists N > 0 such that for all n > N we have Xn = Xn+1.
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Proposition 2.1.14. Let X be a Noetherian topological space. Every non-empty, closed subset Y can be
written as the union Y = Y1 ∪ . . . ∪ Yn of irreducible, closed subsets. Moreover, if for all i 6= j we have that
Xi is not contained in Xj then this sequence is unique.

Proof. Let X be the set of non-empty, closed subsets of X which cannot be written as the finite union of
irreducible closed subsets. Since X is Noetherian this set contains a minimal element, say Y . Then since Y is
not irreducible we have that Y = Y1 ∪ Y2 which are both closed and non-empty. By minimality of Y we have
that Y1, Y2 both can be written as a finite union of irreducible subsets and thus, so can Y , a contradiction.

For the uniqueness claim, see [1, §I 1.5]

2.2 Irreducible sets

In Section 2.3 the dimension of a vector space will be generalised to make sense for arbitrary affine varieties.
This will be done by looking at the irreducible subsets of an affine variety. This Section establishes some
elementary properties of such sets and is possibly better skipped and then referred back to as questions
naturally arise in the reader’s mind. The following provides an alternative check for irreducibility:

Lemma 2.2.1. A subsets Y ⊆ X of a topological space X, then the following are equivalent:

1. Y is irreducible,

2. every non-empty open subset U ⊆ Y of Y is dense,

3. every pair of non-empty open subsets U1, U2 ⊆ Y have non-empty intersection.

Proof. 1 ⇒ 2: Say U ⊆ Y is non-empty, open, and not dense. Then Y = U ∪ U c.
2 ⇒ 3: Say U1, U2 were non-empty, open, and had empty intersection. Then U c

2 is a closed set containing
U1 and so U c

2 ⊇ U1. It follows that U1 6= Y and so U1 is not dense.
2 ⇒ 1: Say Y = Y1 ∪ Y2 with Y1, Y2 ⊆ Y both non-empty, proper subsets of Y . Then Y c

1 ∩ Y and Y c
2 ∩ Y

are non-empty, open subsets of Y with emtpy intersection.

Given that a space X is irreducible if every open subset is dense, it may seem like every subset of an
irreducible set is irreducible, however this is not true:

Lemma 2.2.2. A closed subset of an irreducible set need not be irreducible.

Proof. The closed set {0, 1} ⊆ A1 provides an example of a closed subset of an irreducible space which is not
irreducible.

A helpful property of irreducibility is that it is transitive:

Lemma 2.2.3. If Y is an irreducible subset of a toplogical space X and Z ⊆ X is an irreducible subset of X,
then Z is irreducible as a subset of Y .

Proof. Let Z = U ∪ V where U = U ′ ∩ Z, V = V ′ ∩ Z with U ′, V ′ ⊆ X closed. Then

Y = Z ∪ Y =
(
(U ′ ∩ Z) ∪ (V ′ ∩ Z)

)
∪ Y = (U ′ ∩ Y ) ∪ (V ′ ∩ Y ) = U ′ ∪ V ′

which implies that U ′ = Y , say. Thus Z = Z ∩ U ′ = U which shows that Z is irreducible.

Irreducibility is preserved by closure, (a helpful corollary of this is: the closure of a quasi-affine variety is
an affine variety):

Lemma 2.2.4. The closure of an irreducible set is irreducible.

Proof. Let Y be an irreducible subset of a topological space X. Say Ȳ = U ∪ V with U, V ⊆ Ȳ closed. Then
Ȳ = (Ȳ ∩ U ′) ∪ (Ȳ ∩ V ′) so taking the intersection with Y we obtain Y = (Y ∩ U ′) ∪ (Y ∩ V ′) which by
irreducibility of Y implies Y = Y ∩ U ′, say. Taking the closure of both sides we obtain

Ȳ = Y ∩ U ′ = Ȳ ∩ Ū ′ = Ȳ ∩ U ′

where the last equality holds as U ′ is closed.
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2.3 Dimension

In linear algebra, dimension is defined to be the number of basis elements necessary to describe the space.
Due to the linearity of this setting, any choice of (ordered) basis establishes an isomorphism to Euclidean
space and so this definition fits an intuitive idea of what dimension ought to mean. Thinking of An as a
k-vector space with standard basis vectors e1, ..., en we can define the descending sequence of subspaces

An = Span(e1, ..., en) ) Span(e1, ..., en−1) ) . . . ) Span(e1) ) 0 (9)

using the language of varieties as:

An = Z(∅) ) Z(xn) ) . . . ) Z(x2, ..., xn) ) Z(x1, ..., xn) (10)

So we see the number of basis vectors is equal to the length of the chain (10), moreover, this chain is of
maximal length, a fact which will be proved later. The situation is the same for any linear affine variety :

Definition 2.3.1. An affine variety X ⊆ An is linear if it is equal to the zero set of a collection of linear
polynomials:

X = Z(f1, ..., fn) (11)

all fi linear.

Notice that since each fi is linear if P = (P1, ..., Pn) ∈ X is a point, then fi(P1, ..., Pn) = 0 for each i and
so fi(λP ) = λfi(P ) = 0. So P ∈ X =⇒ λP ∈ X for all λ ∈ k. Simiplarly, points of X are closed under
addition and so X is a vector space. There thus exists a basis P 1, ..., Pm and from these we can construct the
following strictly descending chain of irreducible, closed sets:

X ) X ∩ Z(x1 + . . .+ xn − P 1
1 + . . .+ P 1

n) (12)

) X ∩ Z(x1 + . . .+ xn − P 1
1 + . . .+ P 1

n , x1 + . . .+ xn − P 2
1 + . . .+ P 2

n) (13)

) . . . (14)

) Z({x1 + . . .+ xn − P i
1 + . . .+ P i

n}i=1,...,m) (15)

We can now make a general definition:

Definition 2.3.2. The dimension of a (quasi)-affine variety is the supremum (possibly infinite) of the lengths
of all strictly descending chains of irreducible, closed subsets.

With Definition 2.3.2 in mind, a corollary to Proposition 2.1.12 can now be given:

Corollary 2.3.3. Let X be an affine variety. Then

dimX = dimA(X) (16)

Proof. Immediate from Proposition 2.1.12 and the correspondence Theorem.

We can now set in stone a few loose claims made earlier

Corollary 2.3.4.
dimAn = n

Proof.
dimAn = dim k[x1, ..., xn] = n (17)

Thus the chain (10) is indeed maximal.
How can this theory be pushed to quasi-affine varieties?
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Question 2.3.5. How does the dimension of a quasi-affine variety relate to the affine variety it is a subset
of?

This has a satisfying answer (Corollary 2.3.9). We will use:

Lemma 2.3.6. Let X be any topological space and U ⊆ X any open subset. Then there is a bijection

Φ : {Irreducible, closed subsets C ⊆ X,C ∩ U 6= ∅} −→ {Irreducible, closed subsets D ⊆ U} (18)

C 7−→ C ∩ U (19)

with inverse given by Φ−1(D) = D. Moreover, this bijection preserves strict inclusion, that is,

C1 ( C2 ⇐⇒ Φ(C1) ( Φ(C2) (20)

Proof. The set C ∩ U is an open subset of irreducible C and thus is irreducible (Exercise 1.6 [2]). By the
same exercise, the closure of an irreducible set is irreducible, thus we have well defined maps.

We must show C ∩ U = C. Let W ⊆ X be closed and assume C ∩ U ⊆ W , we show C ⊆ W . Since
C ∩ U ⊆ W we have C ∩ U ⊆ C ∩W so taking closures (in C) we get C ∩ U ⊆ C ∩W . Since C ∩ U is an
open subset of irreducible C, it is thus dense. It follows that C ∩ U = C. Moreover, since C ∩W is closed,
we have C ∩W = W . Thus C ⊆ W .

Now we show D ∩ U = D (where D means the closure in X). Since D is closed in U there exists D′ ⊆ X
closed (in X) such that D = D′∩U . So we must show D′ ∩ U∩U = D′∩U . If x ∈ D′ ∩ U∩U then x ∈ D′∩U
and so x ∈ D′ but also x ∈ U , so x ∈ D′ ∩ U . Thus D′ ∩ U ∩ U ⊆ D′ ∩ U , the other inclusion is obvious.

For the final claim, say C1 ( C2 but C1 ∩U = C2 ∩U . Then C2 \C1 ∩U = ∅. Thus C2 = C1 ∪ (U c ∩C2),
contradicting irreducibility of C2.

Conversely, say D1 ( D2 but D1 = D2 (closure taken in X). Then D1 ∩ U = D2 ∩ U . For i = 1, 2 we
have Di = D′i ∩ U for some closed subsets D′i ⊆ X and so D′1 ∩ U ∩ U = D′2 ∩ U ∩ U and as already seen
D′i ∩ U ∩ U = D′i ∩ U and so D1 = D2.

An application of Lemma 2.3.6 is to relate the dimension of a space to its open subsets.

Corollary 2.3.7. Let X be any topological space which is covered by open subsets {Ui}i∈I . Then

dimX = sup dimUi (21)

Proof. The map Φ−1 of Lemma 2.3.6 can be used to relate strictly increasing sequences of irreducible, closed
subsets of Ui to such chains in X, thus dimUi ≤ dimX for all i. Furthermore, for any chain C0 ( . . . ( Cn
of irreducible, closed subsets of X there exists some Ui such that Ui ∩ C0 6= ∅, and so we get an associated
chain in Ui and so dimX ≤ sup dimUi.

We now begin answering Question 2.3.5, we need the following:

Theorem 2.3.8. Let A be a finitely generated k-integral domain, with k a field. Then

1. tr. degk A = dimA,

2. if p is any prime of A then ht. p + dimA/p = dimA

Proof. See [4]

Corollary 2.3.9. Let Y be a quasi-affine variety. Then

dimY = dimY (22)
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Proof. Since Y ⊆ Y we have dimY ≤ dimY (see the solution to Exercise 1.10a [2] for details), it remains
to show the reverse inclusion. Let C0 ( . . . ( Cn be a chain of irreducible, closed subsets of dimY , since
dimY ≤ dimY we know that dimY is finite, so assume this chain is of maximal length. By Lemma 2.3.6 we
have a corresponding chain

C0 ( . . . ( Cn (23)

in Y which is of maximal length. NB, we do not at this point know that dimY = n because what if there is
another chain in Y which has empty intersection with Y ? To proceed, we use Theorem 2.3.8 (part 2). Since
C0 is a singleton set {P} say, and C0 = C0 the chain (23) corresponds to a maximal length sequence of prime
ideals of A(Y ) contained in the maximal ideal mP corresponding to the point P . Thus, ht .mP = n. Applying
the Theorem we now have

n = htmp + dimA(Y )/mP = dimA(Y ) (24)

The proof will be complete once we have shown A(Y )/mP
∼= k. This can be seen by considering the map

ϕ : A(Y ) −→ k (25)

xi 7−→ Pi (26)

where xi is the image of xi under the map k[x1, ..., xn] −→ A(Y ). The map ϕ is surjective and so induces the
required isomorphism.

3 Projective varieties

Projective varieties kill two birds with one stone: any two distinct linear equations will have a point of
intersection (even parallel ones) and we can talk rigorously about a concept which is present in ambience
when dealing with affine varieties: the different directions toward infinity (which is much more sophisticated
than concepts such ±∞). Hence, projective space plays a roll in Algebraic Geometry similar to what the one
point compactification does in topology.

Definition 3.0.1. Consider the set An+1 \ {0} modded out by the equivalence relation x ∼ λx for any
λ ∈ k \ {0}. We denote this set Pn. This is endowed with a topological space but not the quotient space
topology, instead the closed sets are defined to be such zero sets of homogeneous polynomials (polynomials
where all monomials have the same degree). Projective n-space is Pn along with this topology. (See [1] for
more details).

Projective space is Noetherian (see solution to Exercise 2.5 [2]) so by Proposition 2.1.14 every closed set
is a union of irreducible closed sets, thus, just as we did for affine varieties, we define:

Definition 3.0.2. A Projective variety is an irreducible, closed subset of Pn. A quasi-projective variety
is an open subset of a projective variety.

Notation 3.0.3. If extra clarity is needed, given an ideal a ⊆ k[x0, ..., kn], the notation ZPn(a) will be used
for the zero set of a in Pn and ZAn+1(a) for the zero set Z(â) in An+1 where â ⊆ An+1 is defined by

f(x1, ..., xn+1) ∈ â ⊆ k[x1, ..., xn+1]⇐⇒ f(x0, ..., xn) ∈ a ⊆ k[x0, ..., xn] (27)

In practice, projective varieties are dealt with by considering a related affine variety, one way of doing
this is the following: given a a non-empty projective variety ∅ 6= ZPn(a) ⊆ Pn, consider ZAn+1(a) ⊆ An+1 (as
per Notation 3.0.3), which consists of all representations of equivalence classes in Z(a) ⊆ Pn along with, by
homogeneity of a, a new point 0. One then deals with these two situations separately. See the solution to
Exercise 2.1, 2.2, 2.3 [2] for two examples of this.

Another way of relating a projective variety to a related affine variety is by using the fact that projective
varieties are covered homeomorphically by affine varieties, a result the next Section 3.1 is dedicated to proving.
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3.1 Homogenisation and projection

Projective space is covered homeomorphically by affine varieties:

Theorem 3.1.1. Let Ul denote the Pn \ Z(xl). Then the map

ϕl : Ul → An

[(a1, ..., an+1)] 7→
(a1
ai
, ...,

âl
al
, ...,

an+1

ai

)
is a homeomorphism.

We delay the proof for now. Any non-homogeneous polynomial can be made so as we describe in Definition
??. This process has an inverse (as made precises by Lemma 3.1.6) called projection (Definition 3.1.2).
Theorem 3.1.1 can be thought of as the geometric repercussions of these transformations of polynomials.

Definition 3.1.2. Let f ∈ k[x1, ..., xn] be a polynomial. The ith projection of f , denoted Projl(f) is the
polynomial given by setting xi = 1 and substituting xj for xj−1 for each j > i.

For any ideal b ⊆ k[x1, ..., xn+1] let Projl(b) be the ideal of k[x1, ..., xn] be given by f ∈ b ⇔ Projl(f) ∈
Projl(b).

Example 3.1.3. The 2nd projection of x1x2 + 3x23 ∈ C[x1, x2, x3]:

Proj2(x1x2 + 3x23) = x1 + 3x22 (28)

Definition 3.1.4. Let f ∈ k[x1, ..., xn] be a polynomial of degree d. The ith homogenisation of f is the
polynoial in k[x0, ..., xn] given by

xdeg fi

(
f(x0/xi, ..., xn/xi)

)
(29)

where we leave out xi/xi.

Example 3.1.5. The 2nd homogenisation of x1 + 3x22 ∈ C[x1, x2]:

Hgn2(x1 + 3x22) = x22(x0/x2 + 3) = x0x2 + 3x22 (30)

Lemma 3.1.6. The 0th projection and the 0th homogenisation establish a bijection:

Φ : {Polynomials p ∈ k[x1, ..., xn]} ∼−→ {Homogeneous polynomials p ∈ k[x0, ..., xn]} (31)

f 7−→ Hgn0(f) (32)

with inverse given by Φ−1(f) = Proj0(f).

Clearly, the other projection and homogenisations also establish such a bijection, but for simplicity we
work with 0.

Lemma 3.1.7. Where ϕl is as in Theorem 3.1.1, we have for ideals a ⊆ k[x1, ..., xn] and b ⊆ k[x1, ..., xn+1]:

� ϕl(Z(b)) = Z(Projl(b))

� ϕ−1l (Z(a)) = Z(Hgnl(a))

Proof of Theorem 3.1.1. ϕ is clearly bijective, and by Lemma 3.1.7 is a closed map such that the inverse
image of every closed set is closed.

Notice that Proj0 and Hgn0 are respectively α and β in [1, §1 Prop 2.2]. In fact, more can be said, the
map ϕl of Theorem 3.1.1 is an isomorphism, however we have not defined a morphism of varieties yet. In
practice, only the fact that ϕl is a homeomorphism is needed, for examples, see the solutions to Exercises
2.6, 2.7 [2].
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3.2 Gröbner Basis

Given a set of polynomials f1, ..., fm ∈ k[x1, ..., xn], it was shown in Section 3.1 how to obtain a corresponding
set of homogeneous polynomials β(f1), ..., β(fm). There is a critical subtlety here: if I is the ideal generated
by f1, ..., fn and β(I) represents the set of polynomials

β(I) := {β(f) | f ∈ I} (33)

then the ideal generated by β(I) is not necessarily equal to (β(f1), ..., β(fm)):

Example 3.2.1. Let f1 = x2 − y and f2 = x3 − z. Then

− xf1 + f2 = z − xy (34)

and so β(z − xy) = zw − xy is in the ideal generated by β(I) but zw − xy is not in (β(f1), β(f2)) =
(x2 − wy, x3 − w2z).

In fact, this subtlety is an incarnation of a more general phenomenon (as shown in Definition 3.2) involving
monomial orders :

Definition 3.2.2. A monomial order is a total order > on Zn≥0 satisfying:

� if α, β, γ ∈ Zn≥0 and α > β then α + γ > β + γ,

� > is a well ordering, that is, every non-empty subset of Zn≥0 has a least element.

A monomial ordering induces a total order on the set of monomials of k[x1, ..., xn]. An example of a
monomial order is lexicographic order (see [6, §2]).

Definition 3.2.3. Fix a monomial order on k[x1, ..., xn]. Denote the leading term (with respect to this
monomial order) of a polynomial f ∈ k[x1, ..., xn] by LT(f).

Let f1, ..., fn ⊆ k[x1, ..., xn] be a set of polynomials and I the ideal generated by them. The ideal of
leading terms, denoted (LT(I)) is the ideal generated by the set

LT(I) := {LT(f) | f ∈ I} (35)

The key observation is if f1, ..., fn ∈ k[x1, ..., xn] are given and I is the ideal generated by f1, ..., fn, then
LT(I) and (LT(f1), ...,LT(fn)) need not be equal. The theory of Gröbner bases solves this subtlety.

It is suggested to the reader unfamiliar with Gröbner bases that [6, §2] is read from the start of the chapter
through to the end. Here, how this Chapter relates to the study of Varieties will be presented, as well as some
basic definition and results.

Definition 3.2.4. Let f1, ..., fm be a given set of polynomials in k[x1, ..., xn] and I the ideal they generate.
A Gröbner basis for I is a set of polynomials g1, ..., gr ∈ k[x1, ..., xn] such that, if J is the ideal generated
by g1, ..., gr:

(LT(J)) = (LT(g1), ...,LT(gr)) (36)

A question arises immediately: is a Gröbner basis for an ideal I necessarily a generating set of I? The
answer is yes (Lemma 3.2.5), the proof of which will use the division algorithm for polynomials of many
variables, see [6, §2. 3 Theorem 3].

Lemma 3.2.5. Let f1, ..., fm be a Gröbner basis for and ideal I ⊆ k[x1, ..., xn]. Then f1, ..., fm generated I.

Proof. By the division algorithm we can write any f ∈ I as
∑m

i=1 αifi + r for polynomails αi, r ∈ k[x1, ..., xn],
where f is a remainder. It follows that r = f−

∑m
i=1 αifi so in particular, r ∈ I. Thus, LT r ∈ (LT f1, ...,LT fm)

as f1, ..., fm form a Gröbner basis, so r 6= 0 contradicts the property of r being a remainder. Thus, r = 0.
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Lemma 3.2.8 will be used to prove that every ideal I ⊆ k[x1, ..., xn] admits a Gröbner basis.

Notation 3.2.6. A monomial in k[x1, ..., xn] will be denoted xα, xβ, . . . where α, β, . . . are elements of Zn≥0.

Definition 3.2.7. An ideal I ⊆ k[x1, ..., xn] is a monomial ideal if it is generated by monomials.

The ring k[x1, ..., xn] is Noetherian and so every ideal is finitely generated, Dickson’s Lemma states that
every monomial ideal is generated by finitely many monomials:

Lemma 3.2.8 (Dickson’s Lemma). For every monomial ideal I ⊆ k[x1, ..., xn], there exists finitely many
monomials xα1 , ..., xαn which generate I.

Proof. We proceed by induction on n. If n = 1 then k[x1] is a PID so I = (f) for some f which must be a
monomial as f divides each of the monomials which generate I and so f is a monomial itself.

Now say the result holds true for all k[x1, ..., xn−1] where n > 1. Let I be generated by a set of monomials
{xα | α ∈ A}. Consider the following collection of ideals indexed by the natural numbers m ≥ 0:

Jm := {f ∈ k[x1, ..., xn−1] | ∃α ∈ A, xαxmn = f} (37)

The ideals Jm are generated by the monomials xα for which xαxmn ∈ I and so are themselves monomial ideals.
By the inductive hypothesis, for each m there exists finitely many monomials xα

m
1 , ..., xα

m
r(m) ∈ k[x1, ..., xn−1]

which generate Jm. We finish the proof by showing that the ideal I is generated by the following finite set of
monomials:

S := {xαm
1 xmn , ..., x

αm
r(m)xmn | m ≥ 0} (38)

By construction, S ⊆ I. Conversely, every f ∈ I is a linear combination of monomials in {xα | α ∈ A}.
Each of the monomials in this linear combination must be divisible for some xα in some Jm by xαxmn , again
by construction of S .

Corollary 3.2.9. Every monomial ideal I admits a Gröbner basis.

Proof. The proof is simply the observation that (LT(I)) is a monomial ideal, now apply Dickson’s Lemma
3.2.8.

Question 3.2.10. Given a set of generators f1, ..., fm of an ideal I, how do we check if f1, ..., fm form a
Gröbner basis for I?

This question is answered by performing an analysis on the possible obstructions which cause a generating
set to not be a Gröbner basis. This analysis is written out very well in [6, §2] and so we do not repeat the
discussion here. The answer to Question 3.2.10 which uses polynomial long division of multiple variables
(with respect to a monomial ordering), see [6, §2.3] for details.

Definition 3.2.11. Fix a monomial ordering. Let f1, f2 ∈ k[x1, ..., xn] be two polynomials and let α =
(α1, ..., αn) and β = (β1, ..., βn) be their respective degrees. Let γ = (max{α1, α2}, . . . ,max{αn, βn}), the
least common multiple of f and g is xγ.

The S-polynomial of f, g is

S(f, g) = (xγ/LT(f))f − (xγ/LT(g))g (39)

Lemma 3.2.12. Let I ⊆ k[x1, ..., xn] be an ideal. A generating set f1, ..., fm of I is a Gröbner basis for I if
and only if for all pairs i 6= j, the remainder on division of S(fi, fj) by f1, ..., fm is zero.

Proof. See [6, §2.6 Theorem 6].

Corollary 3.2.9 is relevant to Example 3.2.1 by way of Corollary 3.2.14 to the following lemma:

Lemma 3.2.13. Let I ⊆ k[x1, ..., xn] be an ideal and f1, ..., fm a Gröbner basis for I. Then β(f1), ..., β(fm)
is a Gröbner basis for the ideal generated by β(f1), ..., β(fm) of (33).
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Proof. To avoid exploding parentheses we write βfi for β(fi) and LT f for LT(f). Claim: for any i 6= j there
exists r > 0

S(βfi, βfj) = xrnS(fi, fj) (40)

Write fi = LT fi + f ′i for i = 1, 2 and βfi = LT βfi + f ′′i . Then

S(βfi, βfj) = (xγ/LT βf1)βf1 − (xγ/LT βf2)βf2 (41)

= (xγ/LT f1)(LT f1 + f ′′1 )− (xγ/LT f2)(LT f2 + f ′′2 ) (42)

= xγ(f ′′1 − f ′′2 ) (43)

By definition of β there is r > 0 such that for each i = 1, 2, f ′′i = xrnf
′
i . Continuing calculation (43):

xγ(f ′′1 − f ′′2 ) = xrnx
γ(f ′1 − f ′2)

= xrn

(
(xγ/LT f1)(LT f1 + f ′1)− (xγ/LT f2)(LT f2 + f ′2)

)
= xrnS(fi, fj)

Thus if S(fi, fj) has remainder zero when divided by f1, ..., fm it follows that S(βfi, βfj) has remainder zero
when divided by βf1, ..., βfm. The result follows from Lemma 3.2.12.

Corollary 3.2.14. Let f1, ..., fm be generators of an ideal I ⊆ k[x1, ..., xn]. If f1, ..., fm is a Gröbner basis,
then βf1, ..., βfm generate the ideal generated by β(I).

Proof. By Lemma 3.2.13 and Lemma 3.2.5.

We conclude this Section with a important and disappointing Remark:

Remark 3.2.15. One might hope that the story would turn out to be “the projective closure of an affine
variety Y is given by finding a Gröbner basis f1, ..., fm of I(Y ) and then Y = Z(βf1, ..., βfm).” However, the
ideal I = (y−x2, z−x3) has Gröbner basis given by its {y−x2, z−x3}, and we know that {zy−x2, zy2−x3}
is not a Gröbner basis for βI (indeed, it is not even a generating set).

We need to know a priori that βf1, ..., βfm generate J (the ideal generated by βI), but if we knew this
then we would be done and the whole discussion of Gröbner bases would be irrelevant.

3.3 Segre embedding

We define the Segre embedding:

ψ : Pr × Ps −→ Pr+s+rs

(P,Q) 7−→ [P0Q0 : ... : P0Qs : ...... : PrQ0 : ... : PrQs]

Definition 3.3.1. We define a function θ : k[{zij}0≤i≤r,0≤j≤s] −→ k[x0, ..., xr, y0, ..., ys] which maps zij 7−→
xiyj

Lemma 3.3.2. Let R ∈ Pr+s+rs. Then

P ∈ Z(ker θ) =⇒ ∃!(Q,R) ∈ Pr × Ps st ψ(Q,R) = P (44)

Proof. First we show existence. In particular, P is a root of every polynomial of the form zijzkl−zilzkj, where
0 ≤ i, k ≤ r and 0 ≤ j, l ≤ s. Let {Pij} be a set of homogeneous coordinates for P and now fix a pair of
integers (a, b) such that Pab 6= 0. For all 0 ≤ k ≤ r and all 0 ≤ j ≤ s we have Paj/Pab = Pkj/Pkb which
implies:

Paj
Pab

Pkb = Pkj

11



Thus we can recover all Pkj from the set {Pa0, ..., Pas, P0b, ..., Prb}. We write P as

P =
[Paj
Pab

Pkb

]
0≤k≤r,0≤j≤s

= ψ
([
P0b : ... : Prb

]
,
[Pa0
Pab

: ... :
Pas
Pab

])
For uniqueness, say (P,Q), (P ′, Q′) ∈ Pr × Ps were such that ψ(P,Q) = ψ(P ′, Q′). Write

ψ(P,Q) = [P0Q0 : ... : P0Qs : ...... : PrQ0 : ... : PrQs]

= [P ′0Q
′
0 : ... : P ′0Q

′
s : ...... : P ′rQ

′
0 : ... : P ′rQ

′
s] = ψ(P ′, Q′)

and let λ 6= 0 be such that

(P0Q0 : ... : P0Qs : ...... : PrQ0 : ... : PrQs) = λ(P ′0Q
′
0 : ... : P ′0Q

′
s : ...... : P ′rQ

′
0 : ... : P ′rQ

′
s) (45)

From the above, there exists pairs of integers (a, b), (a′, b′) such that

PaQj

PaQb

PkQb = PkQj and
P ′a′Q

′
j

P ′a′Q
′
b

P ′kQ
′
b = P ′kQ

′
j (46)

Thus for all 0 ≤ k ≤ r, 0 ≤ j ≤ s:

PkQj =
PaQj

PaQb

PkQb by (46)

=
λP ′a′Q

′
j

PaQb

λP ′kQ
′
b′ by (45)

= λ2
P ′a′Q

′
b′

PaQb

( P ′a′Q′j
P ′a′Q

′
b′
P ′kQ

′
b′

)
= λ2

P ′a′Q
′
b′

PaQb

P ′kQ
′
j by (46)

proving (P,Q) = (P ′, Q′).

Corollary 3.3.3. imψ = Z(ker θ).

Proof. It remains to show Z(ker θ) ⊆ imψ which is trivial. Notice that this does not use the uniqueness claim
of Lemma 3.3.2.

Corollary 3.3.4. The Segre embedding ψ is injective.

Proof. By the uniqueness claim of Lemma 3.3.2 and Corollary 3.3.3.

Thus, for any R ∈ im(ψ) we can choose a lift (P,Q) ∈ Pr × Ps along ψ and integers (a, b) such that
PaQb 6= 0 such that

([P0Qb : ... : PrQb], [
PaQ0

PaQb

: ... :
PaQs

PaQb

]) = (P,Q) (47)

which by Lemma ?? defines a well defined function ψ−1 : imψ −→ Pr × Ps, which indeed is inverse to ψ.

Lemma 3.3.5. The Segre embedding is continuous and closed.

Proof. Since ψ is a bijection, we have that ψ(∩i∈IUi) = ∩i∈Iψ(Ui) for all collections of closed sets Ui ⊆ Pr×Ps,
thus to prove that the Segre embedding is closed it suffices to show that the image of closed sets in a basis of
closed sets for Pr × Ps are closed.

Towards this end, let Z(a) × Z(b) ⊆ Pr × Ps be closed. Write a = (f1, ..., fn), b = (g1, ..., gm) and
deg fi = di, deg gi = ei. Consider the following for i = 1, ..., r, j = 1, ...,m:

x
ej
i gj(y0, ..., ys) (48)
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which, since gj is homogeneous, can be written as

hij(x0y0, ..., xrys) (49)

for some homogeneous polynomial hij. Similarly, for i′ = 1, ...,m, j′ = 1, ..., n we write

y
e′j
i′ fj′(x0, ..., xr) = li′j′(x0y0, ..., xrys) (50)

for some homogeneous polynomial li′j′ . We now let

c :=
(
{hij(z00, ..., zrs)}i=1,...,r,j=1,...,m, {li′j′(z00, ..., zrs)}i′=1,...,n,j′=1,...,s

)
⊆ k[z00, ..., zrs] (51)

We claim:
ψ
(
Z(a)× Z(b)

)
= Z(c) ∩ imψ (52)

The inclusion ⊆ is clear. For the converse, if R ∈ Z(c) ∩ imψ then in particular, R ∈ imψ and so there
exists (P,Q) ∈ Pr × Ps such that ψ(P,Q) = R. Moreover, since R ∈ Z(c) we have that ψ(P,Q) satisfies the
polynomials (48), (50) and we cannot have that all xi = 0 nor that all yi′ = 0 which means all gj vanish on
Q and all fj′ vanish on P . Thus (P,Q) ∈ Z(a)× Z(b), which proves the Segre embedding is closed.

Remark 3.3.6. The main point in the proof of Lemma 3.3.5 is that we want to relate the relations on (P,Q)
to the relations of all products of the components of P and Q. It is a simple idea: if f(P ) = 0 for some
polynomial f , then (yjf)(P,Qj) = 0, now raise yj to an appropriate power so that yjf can be rewritten in
terms of zij.

Corollary 3.3.7. The Segre embedding is a homeomorphism onto its image.

Proof. By nature of being a continuous, closed, injective map.

Corollary 3.3.8. If X, Y are quasi-projective varieties then ψ(X, Y ) is quasi-projective.

Proof. By Corollary 3.3.7 the map ψ is injective, and by Lemma ?? the image of an open set is a subset of a
projective variety.

Definition 3.3.9. Let X be a topological space which is a topological product of two varieties, write X =
X1 × X2. Let V ⊆ X be an open subset and ϕ : V −→ k a function. The map ϕ is “regular” at a point
P ∈ V if there exists an open neighbourhood UP ⊆ V of P and polynomials fP , gP such that ϕ �UP

= fP/gP .
If Y is a variety and ψ : X −→ Y a continuous function, then ψ is a “morphism” if for every open subset

V ⊆ Y and “regular” function ϕ : V −→ k the function (ϕψ) �ψ−1(V ) is “regular”.

Lemma 3.3.10. The Segre embedding ψ is a “morphism”.

Proof. The key point is that the Segre embedding multiplies entries and so composes with a polynomial to
yield a polynomial.

4 Morphisms

To establish a category of varieties we need to define a morphism of varities. These will be continuous
functions which preserve regular functions.

13



4.1 Regular functions

Later, when we study singularity theory, the following definition will be central:

Definition 4.1.1. Let X = Z(f1, ..., fm) be an affine variety of dimension n and P ∈ X a point on X. Then
X is nonsingular at P if the jacobian matrix ||(∂fi/∂xj)P || has rank n−m, otherwise X is singular at P .
The affine variety X is nonsingular if it is nonsingular at all of its points, otherwise it is singular.

It will be shown later (Lemma ??) that this definition is independent of the choice of fi taken as generators
of X, however it is not clear that this definition is invariant under isomorphism. In fact, a notion of singularity
at a point P can (and will) be defined independent of the embedding of X, and in the special case of algebraic
curves a definition will be given in terms of the local ring OP . Thus the notion of regular functions defined
on quasi-affine varieties is central, so we need an appropriate definition.

Definition 4.1.2. Let X be a quasi-affine variety. Then a function f : X −→ A1 is regular at P ∈ X if
there exists an open neighbourhood U containing P and polynomials g, h with h nowhere zero on U such that
f �U= g/h. The function f is regular if it is regular at every point X.

Any two regular functions which are equal on an open subset of X are equal on all of X, however, it is not
the case that all regular functions are rational functions. Say f is regular and f �U= g1/h1 and f �V = g2/h2.
For f to be well defined it must be that f �U∩V = g1/h1 = g2/h2, but it may be the case that h1 is undefined
in V and h2 is undefined in U , and that there is no other rational function which is defined in both of U and
V which equals f on U ∩ V .

Remark 4.1.3. In fact it may be the case that one has a regular function f and rational functions gi/hi
(i = 1, 2) with gi/hi = f �Ui

for some open sets Ui, with h1 not defined on U2, h2 not defined on U1 but still
there is a global, rational representation of f . For example, consider the affine variety defined by x2 + y2 = 1.
We have that

x2 + y2 = 1 =⇒ x2 = 1− y2

=⇒ x2 = (1 + y)(1− y)

=⇒ x/(1− y) = (1 + y)/x

thus the function f given by x/(1− y) on y 6= 1 and (1 + y)/x on x 6= 0 is a well defined regular function, but
is so on an affine variety, which we will see later necessarily admits a polynomial representative. Notice this
shows something stronger than the claim, that not only can a global, rational representation of f be found,
but a polynomial representation may be.

Considering now an affine varietyX ⊆ An, the algebraic object A(X) consists of all polynomials k[x1, ..., xn]
modulo the equivalence relation ∼ which identifies polynomials whose induced functions on X are equal. Thus
we have an injective function:

α : A(X) −→ O(X) (53)

which in fact we will show is surjective, showing that all regular functions defined on affine varieties admit a
global, polynomial representative! First, notice that if f ∈ k[x1, ..., xn] is a polynomial, where we denote its
image in A(X) by f̄ , and P = (P1, ..., Pn) ∈ X is a point such that f̄(P ) 6= 0 then α(f̄) is a unit with inverse
1/(α(f̄) �Z(f)c). Thus, we obtain a map

A(X)(x1−P1,...,xn−Pn) −→ OP (54)

which, since α is injective and A(X) is an integral domain, is injective. Moreover, this is surjective by
definition of a regular function.

More can be said. For each P ∈ X let mP denote the maximal ideal of OP , which is consists of the germs
of regular functions which vanish at P . There is a family of homomorphisms

A(X)
α
� O(X) � OP → OP/mP
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which are injective as labelled. The kernel of this map is I := (x1 − P1, ..., xn − Pn). Thus

A(X)/I ∼= OP/mP (55)

Moreover, by considering the evaluation function OP −→ k it is easy to see that O/mP
∼= k. Combining this

and (55) we have:

dimOP = ht .mP

= ht .I

= ht .I + dim k

= ht .I + dim
(
A(X)/I

)
= dimA(X)

Now, any nonzero element f ∈ A(X) maps under α to a unit with inverse 1/f �Z(f)c . Thus we obtain an
injective map

FracA(X) � K(X)

In fact, this map is also surjective: for each nonzero [(U, f)] ∈ K(X) we have that [(U, f)] ∈ OP for some P .
This follows by the already established isomorphism (54) and the fact that the following diagram commutes:

A(X)I OP

FracA(X) K(X)

∼

Again, more can be said. We recall the general facts that if B is an integral domain which is also a k-algebra
then dimB and tr. degk B yield the same integer, and that dimX = dimA(X). Hence K(X) is an algebraic
extension of k with transcendence degree equal to dimX. Furthermore, A(X) is a finitely generated k-algebra,
and so the extension k/K(X) is finitely generated.

Finally, we show that α of (53) is surjective. We have that

A(X) ⊆ O(X) (56)

⊆
⋂
P∈X

OP (57)

⊆
⋂
m

A(X)m (58)

where the last subset inequality is ranging over all maximal ideals m of A(Y ) (here we have also used the fact
that points of X are in one to one correspondence with maximal ideals of A(X), this fact is easily proven and
shown explicitly in Hartshorne).

Surjectivity now follows from the general fact that for an integral domain B we have
⋂

mBm = B (where
both are considered inside the field of fractions). In summary:

Proposition 4.1.4. Let X be an affine variety, then

1. A(X) ∼= O(X),

2. for any point P = (P1, ..., Pn) ∈ X we have A(X)(x1−P1,...,xn−Pn)
∼= OP and dimOX = dimX,

3. FracA(X) ∼= K(X) and the transcendence degree of the finitely generated extension K(X)/k is equal to
dim(X).
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4.2 Morphisms

We now work in the generality of arbitrary varieties:

Definition 4.2.1. A variety is one of an affine variety, a quasi-affine variety, a projective variety, or a quasi-
projective variety. A morphism of varieties f : X −→ Y is a continuous function such that for all P ∈ X
there exists an open neighbourhood U of f(p) such that for all regular functions ϕ : U −→ k the function
ϕ ◦ f is regular. The category of varieties and morphisms of varieties is denoted Var.

Let f : X −→ Y be a morphism with X an arbitrary variety and Y an affine variety. Then there is an
induced map

f̂ : O(Y ) −→ O(X)

given by precomposing with f . We have also already seen that O(Y ) ∼= A(Y ) (Proposition 4.1.4), the resulting
map A(Y ) −→ O(Y ) is a k-algebra homomorphism, and so we have described a function

α : HomVar(X, Y ) −→ HomkAlg(A(Y ), X) (59)

We now describe an inverse to α. Let f : A(Y ) −→ X be a k-algebra homomorphism. Let x̄1, ..., x̄n denote
the image of x1, ..., xn ∈ k[x1, ..., xn] in A(Y ). Consider the images f(x̄1), ..., f(x̄n) of the elements x̄1, ..., x̄n ∈
A(Y ) under f (a step which could not have been done had we not assumed Y was affine). These are all
regular functions f(xi) : X −→ k and so for each P ∈ X we obtain an element (f(x̄1)(P ), ..., f(x̄n)(P )) ∈ An,
we now show that this is an element of Y . For any g ∈ I(Y ) the polynomial g(x̄1, ..., x̄n) is equal to zero in
A(Y ). Thus for any P ∈ X we have

f(g(x̄1, ..., x̄n))(P ) = 0

However, g is a polynomial and f is a k-algebra homomorphism, so

f(g(x̄1, ..., x̄n))(P ) = g
(
f(x̄1)(P ), ..., x̄n(P )

)
= 0

and so (f(x̄1)(P ), ..., f(x̄n)(P )) ∈ ZI(Y ) = Y . In fact, this is a morphism, this follows from Lemma ?? below.
We have described a function

β : HomkAlg(A(Y ),O(X)) −→ HomVar(X, Y ) (60)

Finally, we show that α and β are mutually inverse to each other. Let f : X −→ Y be a morphism of varieties
and let P ∈ X, we compute (βαf)(P ), where πi : Y −→ k is the ith projection map:

(βαf)(P ) =
(
(f̂ ◦ ϕ)(x̄1(P )), . . . , (f̂ ◦ ϕ)(x̄n(P ))

)
=
(
(π1 ◦ f)(P ), . . . , (πn ◦ f)(P )

)
= f(P1, ..., Pn)

= f(P )

Similarly, given f : A(Y ) −→ OX and q ∈ A(Y ) we compute (αβf)(P ), where ϕ : A(Y ) −→ OY is the
isomorphism (4.1.4), and h : X −→ Y is the function given by x 7→ f(x̄1)(x), ..., f(x̄n)(x):

(αβf)(q) = α(h)(q)

= ĥ(ϕ(q))

Let P ∈ X be arbitrary, we claim ĥ(ϕ(q))(P ) = f(q)(p):

ĥ(ϕ(q))(P ) = ϕ(q)(h(P ))

= q(h(P ))

= f(q(P ))

= f(q)(P )

where the penultimate equality follows from the definition of h, that f is a k-algebra homomorphism, and q
is a polynomial.
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Remark 4.2.2. The final calculation can be written in different notation:

(αβf)(q)(P ) = α(f(x̄1)( ), ..., f(x̄n)( ))(P )

= (f(x̄1), ..., f(x̄n))∧)(ϕ(q))(P )

= ϕ(q)
(
f(x̄1)(P ), ..., f(x̄n)(P )

)
= q
(
f(x̄1)(P ), ..., f(x̄n)(P )

)
= f(q(P ))

= f(q)(P )

Lemma 4.2.3. Let X be a variety, and let Y ⊆ An be an affine variety. A map of sets ψ : X −→ Y is
a morphism if and only if xi ◦ ψ is a regular function on X for each i, where x1, ..., xn are the coordinate
functions on An.

Proof. First, that ψ being a morphism implies xi ◦ ψ is regular follows from the definition of morphism.
Next, the key observation is that xi ◦ ψ being regular implies that f ◦ ψ is regular for any polynomial

f : Y −→ k. We then have for any zero set Z(f1, ..., fn) ⊆ Y that

ψ−1Z(f1, ..., fn) = ψ−1
(
Z(f1) ∩ ... ∩ Z(fn)

)
= ψ−1Z(f1) ∩ ... ∩ ψ−1Z(fn) (61)

and so we can assume n = 1.
We notice that ψ−1Z(f) = (f ◦ψ)−1{0} which is closed as f ◦ψ is regular (from the key observation) and

thus continuous.
Moreover, if g : Y −→ k is regular, then there exists open U ⊂ Y and polynomials g1, g2 such that

g �U= g1/g2. Thus, for any P ∈ X:

g �U (ψ(P )) = g1(ψ(P ))/g2(ψ(P )) (62)

and we know gi ◦ ψ is regular for i = 1, 2, thus there are open sets W1,W2 ⊆ Y both containing ψ(P ) such
that gi �Wi

is a quotient of polynomials, for i = 1, 2. It follows that g ◦ ψ is regular.

In summary:

Proposition 4.2.4. Let X be a variety and Y an affine variety. Then there is a natural bijection

α : HomVar(X, Y ) −→ HomkAlg(A(Y ),O(X))

Moreover, a morphism X −→ Y is dominant (that is, it has dense image) if and only if the corresponding
homomorphism A(Y ) −→ O(X) is injective.

Proof. We only need to prove the last claim. How do we get injective implies dominant?

4.3 Products

The category of Varieties Var admits products, and this product is not equal to the topological product. For
instance, we will see that A2 is a product of two copies of A1 but A2 6∼= A1 ×A1 (see solution to Sol. 1.4 [2]).
Arbitrary products will require some work, but the product of two affine varieties is simpler.

Proposition 4.3.1. Let X ⊆ An and Y ⊆ Am be affine varieties. Then the product X × Y ⊆ An+m is a
product in the category of varieties.

Proof. The main observation is that A(X × Y ) ∼= A(X) ⊗ A(Y ), then we use Proposition 4.2.4. For details
see Sol 3.15 [2].

For the projective case we need to use the Segre embedding :
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Lemma 4.3.2. Define the following function

Ψ : Pr × Ps −→ Prs+r+s (63)(
[P0 : . . . : Pr], [Q0 : . . . : Qs]

)
7−→

(
[. . . , PiQj, . . .]

)
(64)

where elements in the image appear in lexicographic order. This map is well defined, injective, the image is a
projective variety, and this map is an isomorphism onto its image.

Proof. See Sol 2.14 [2].

Proposition 4.3.3. Let X ⊆ Pn and Y ⊆ Pm be projective varieties. Then the image of X × Y ⊆ Pr × Ps
under the Segre embedding is a project in the category of varieties.

Proof. This is partly worked out in Sol 3.16 of [2]. However, there is a hole here, how do we know we have a
product?

4.4 Rational maps

In Algebraic Topology, the notion of homeomorphism is relaxed to homotopy equivalence which leads to
significant theorems (Whitehead’s Theorem, etc) relating topology to algebra. Similarly, rational maps are
a relaxation of morphisms of varieties and in this Section we explore how this relaxed notion interacts with
algebra.

Definition 4.4.1. A rational map of varieties X −→ Y is an equivalence class of pairs (U,ϕ) where U ⊆ X
is an open subset and ϕ : U −→ Y a morphism, where any two such pairs are equivalent if the morphisms
agree on their intersection. If the image of ϕ is dense then by Fact 4.4.2 all elements of the corresponding
rational map are, and so we say the rational map is dominant.

Fact 4.4.2. If one representative of a rational map is dominant, they all are.

We need:

Lemma 4.4.3. If f : X −→ Y is continuous and U ⊆ Y then f−1(U) ⊆ f−1(U).

Proof. Since f being continuous and f−1(U) ⊆ f−1(U).

Proof of Fact 4.4.2. Let U ⊆ V ⊆ X both be open (and hence dense) and assume the image of V is dense in
Y . We have

X = U ⊆ f−1(f(U)) ⊆ f−1(f(U))

using Lemma 4.4.3 for the second inclusion. Thus, im f ⊆ f(U), taking the closure of both sides gives
im f ⊆ f(U) the result then follows from im f ⊆ f(V ) = Y .

Thus if ϕU and ϕV are rational maps which agree on U ∩ V with ϕV dominant, we have that ϕV �U∩V =
ϕU �U∩V is dominant and thus ϕU is dominant.

For the next result, we need the following:

Proposition 4.4.4. The set of open, affine varieties forms a basis for the topology of any variety.

Proof. Let Y be a variety. We need to show that for any point P ∈ Y and open subset U containing P ,
there exists an open, affine variety Z such that P ∈ Z ⊆ U . We know that each variety can be covered by
quasi-affine varieties and so we can assume U = Y , and that Y is quasi-affine.

We consider the set Z := Y − Y which is closed and does not contain P . Thus there exists a polynomial
f such that f(P ) 6= 0 and f ∈ IZ. We let H be the hypersurface f = 0, and the proof will be complete once
we show Y − Y ∩H is an open, affine variety.

Openness is clear, so it remains to show that it is affine. For this we appeal to Lemma ?? below, which
states that An −G is affine for any hypersurface G.

Since Y −Y ∩H is an open subset of irreducible Y , we have that Y −Y ∩H is irreducible as a subspace of
Y . Since irreducible subspaces of irreducible subspaces remain irreducible (Lemma 2.2.3) the set Y − Y ∩H
is an irreducible subset of An −H, for some n. It now remains to prove the following claim:
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Claim 4.4.5. Let Y be a variety. Y − Y ∩H is a closed subset of An −H.

We show Y − Y ∩H = Y ∩ (An −H). First notice Y ∩ (An −H) = Y − Y ∩H. We have:

Y − Y ⊆ H =⇒ (Y − Y ) ∩ Y ⊆ H ∩ Y
=⇒ Y − Y ⊆ H ∩ Y
=⇒ Y − Y ∩H ⊆ Y − (Y − Y )

=⇒ Y − Y ∩H ⊆ Y

Subtracting Y ∩H from both sides and noting that Y ∩H ⊆ Y ∩H yields:

Y − Y ∩H ⊆ Y − Y ∩H (65)

For the reverse direction, we have that Y − Y ∩H ⊆ Y and Y ∩H ⊆ Y and so

(Y − Y ∩H) ∪ (Y ∩H) ⊆ Y

subtracting Y ∩H from both sides gives:(
(Y − Y ∩H) ∪ (Y ∩H)

)
− (Y ∩H) ⊆ Y − (Y ∩H)

=⇒ (Y − Y ∩H)− (Y ∩H) ⊆ Y − (Y ∩H)

so since (Y − Y ∩H)− (Y ∩H) = (Y − Y ∩H)− (Y ∩ Y ∩H) we have

(Y − Y ∩H)− (Y ∩ Y ∩H) ⊆ Y − (Y ∩H)

=⇒ (Y − Y ∩H)− (Y ∩H) ⊆ Y − (Y ∩H)

=⇒ Y − Y ∩H ⊆ Y − Y ∩H

proving the result.

Lemma 4.4.6. Let H be a hypersurface f(x1, ..., xn) = 0 and assume H ⊆ An. Then An −H is affine.

Proof. We consider the hypersurface J = Z(xn+1f − 1) ⊆ An+1. There is a map ϕ : J −→ An − H given
by the projection (P1, ..., Pn+1) 7−→ (P1, ..., Pn) (which, by the way, corresponds to the map A −→ Af where
A = k[x1, ..., xn]). This map is bijective with inverse given by (P1, ..., Pn) 7−→ (P1, ..., Pn, 1/f(P1, ..., Pn)).
That these are both morphisms is easy, for the inverse map use 4.2.3.

Example 4.4.7. As an easy example, A1 − Z(x) is isomorphic to the hypersurface x2 = 1/x1 in A2.

In light on Proposition 4.2.4 we ask “what relaxations are needed to turn the adjunction 4.2.4 into an
equivalence of �categories”? This is answered by the following:

Theorem 4.4.8. The category of varieties and dominant, rational maps is equivalent to the category of finitely
generated field extensions of k.

The proof will begin by consider two varieties X, Y and a k-algebra homomorphism K(Y ) −→ K(X).
Since Y is covered by affine varieties (Proposition 4.4.4) we take an affine variety Y ′ ⊆ Y which since
K(Y ) ∼= K(Y ′) means we have a k-algebra homomorphism K(Y ′) −→ K(X). We then use this to obtain an
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open subset U ⊆ X such that we have the following commutative diagram:

K(Y )

K(Y ′) K(X)

A(Y ′) O(U)

o (4.2.4)

U Y ′

X Y

∼=

where the dashed arrow is a rational map induced by the map U −→ Y ′.

Proof. Let X, Y be arbitrary varieties. Let DVar denote the category of varieties and dominant ration maps,
and let kalg the category of k-algebras. We will show that there is a natural bijection

α : DVar(X, Y ) −→ kalg(K(Y ), K(X)) (66)

Let (U,ϕ) be a representative of a rational map X −→ Y , and say we have an element [(V, ψ)] ∈ K(Y ).
Notice that V is non-empty (by definition of elements of the field of functions) and since the image of ϕ dense
that ϕ−1(V ) is non-empty. Moreover, since ϕ is a morphism, the pair (ϕ−1(V ), ϕ ◦ ψ �ϕ−1(V )) yields a well
defined element of K(X). This map is independent of the representative (U,ϕ) taken and so we have a well
defined map K(Y ) −→ K(X).

We now define an inverse to α. Let ϕ : K(Y ) −→ K(X) be an injective, there is an injective homomorphism
A(Y ) � K(Y ) so each x̄i ∈ A(Y ) maps under A(Y ) −→ K(Y ) −→ K(X) to some element [(Ui, ξi)]. So we
can pick open subsets U1, ..., Un so that their intersection U :=

⋂n
i=1 Ui fits into the following commutative

diagram:

K(Y ) K(X)

A(Y ) O(U)

ϕ

(67)

The map ϕ, having domain a field, is injective. Commutativity of (67) thus implies the homomorphism on the
bottom row. We thus by Proposition 4.2.4 obtain a dominant morphism U −→ Y , which yields a dominant,
rational map β(ϕ) : X −→ Y . By construction, for any rational map f we have βαf = f and for any k-alg
homomorphism f we have αβf = f .

It remains to show that the functor X −→ K(X) is well defined (more precisely, that K(X) is a finitely
generated field extension of k) and essential surjectivity (more precisely, that for every finitely generated field
extension K/k we have that K = K(X) for some variety X).

For the first claim, simply take an affine subset X ′ ⊆ X (which can be done by 4.4.4) so that K(X) =
K(X ′) and use Proposition 4.1.4.

For the second claim, letK/k be a finitely generated field extension and α1, ..., αn be such that k(α1, ..., αn) =
K and consider the subring k[α1, ..., αn] which, being a subring of a field, is an integral domain. We thus have
an isomorphism

k[x1, ..., xn]/I −→ k[α1, ..., αn]

for some prime ideal I and so K = K(Z(I)).
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Corollary 4.4.9. For two varieties X, Y , the following are equivalent:

1. X is birationally equivalent to Y ,

2. there is open sets U ⊆ X, V ⊆ Y such that U is isomorphic to V as varieties,

3. K(X) ∼= K(Y ).

Proof. (1) =⇒ (2): Let ϕ : X −→ Y be a rational map with inverse ψ : Y −→ X. Then say ϕ is represented
by (U,ϕ) and ψ by (V, ψ). We thus have that ϕψ is represented by (ϕ−1(V ), ϕψ), so since ϕψ = idY as
rational functions, we have that ϕψ �ϕ−1(U)= idϕ−1(U). Similarly, we have ψϕ �ϕ−1(V )= idψ−1(V ). We then take
our choice of open sets to be ϕ−1ψ−1(U) and ψ−1ϕ−1(V ) and we are done.

(2) =⇒ (3) follows from the definition of the field of functions.
(3) =⇒ (1) follows from Theorem (4.4.8).

Proposition 4.4.10. Every variety X of dimension r say, is birationally equivalent to a hypersurface in
Ar+1, and by taking the projective closure, to a hypersurface in Pr+1.

Proof. The field extension K(X)/k is finitely generated and, as k is perfect, separable. Hence there is a
transcendence basis x1, ..., xr ∈ k such that K(X)/k(x1, ..., xr) is a separable extension.

By the Theorem of a primitive element, there exists an element y ∈ k such that K(X) = k(x1, ..., xr, y).
Now, y is algebraic and so satisfies a polynomial equation which, after clearing denominators, yields an
irreducible polynomial f which y satisfies. The hypersurface f = 0 (which lies in Ar+1), we denote by H, and
claim is birationally equivalent to X. By Theorem 4.4.8 it suffices to show K(H) ∼= K(X), however this is
easy by the construction of H, the map

k[x1, ..., xr, y] −→ k(x1, ..., xr, y) (68)

induces an isomorphism
Frac

(
k[x1, ..., xn]/(f)

) ∼= k(x1, ..., xn, y) (69)

the result follows as K(H) ∼= Frac
(
k[x1, ..., xn]/(f)

)
and k(x1, ..., xn, y) = K.

5 Singularities

5.1 Singular points

Throughout, X is an affine variety of dimension r.

Definition 5.1.1. Given a point P ∈ X and generators f1, ..., fn for I(X). The point P is nonsingular if
the rank of the jacobian matrix ||(∂fi/∂xj)(P )|| = n− r. Otherwise the point is singular.

Remark 5.1.2. This definition is independent of the choice of generators of I(X) taken, we now show this.
In such a situation we have

(f1, ..., fn) = I(X) = (g1, ..., gm)

so for each i = 1, ..., n there exists polynomials hi1, ..., h
i
m such that

fi = hi1g1 + . . .+ himgm

and so for each j = 1, ...,m:

(∂fi/∂xj) = g1(∂h
i
1/∂xj) + hi1(∂g1/∂xj) + . . .+ gm(∂him/∂xj) + him(∂gm/∂xj)

so that if P ∈ X:
(∂fi/∂xj)(P ) = hi1(P )(∂g1/∂xj)(P ) + . . .+ him(P )(∂gm/∂xj)(P )
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Since this is true for all i, j we have:

||(∂fi/∂xj)(P )|| =

h
1
1(P ) . . . h1m(P )

...
. . .

...
hn1 (P ) . . . hnm(P )

 ||(∂gi/∂xj)(P )||

so that Rank ||(∂fi/∂xj)(P )|| ≤ Rank ||(∂gi/∂xj)(P )||. We can also describe each gi as a linear combination
of fj and perform the same argument to establish the reverse inequality. Thus these values are equal and
Definition 5.1.1 is independent of the choice of generators for I(X).

The definition of a singular point on an arbitrary variety is given by considering its local ring.

Definition 5.1.3. Let (A,m) be a Noetherian, local ring and let k denote the residue field A/m. The ring A
is regular if dimA = dimkm

2/m.

Definition 5.1.4. Let X be a variety and P ∈ X a point. Then X is nonsingular at P if OP is a regular
local ring. Otherwise X is singular at this point.

Before showing that Definitions 5.1.1 and 5.1.4 agree in the case where X is affine, we make a comment
that Definition 5.1.4 (along with Exercise 3.3b) makes it clear that a point being singular is invariant under
isomorphism. We use this to show:

Lemma 5.1.5. Let X = Z(f1, ..., fm) ⊆ Pn be a projective variety of dimension r and P ∈ X a point. If
Rank ||(∂fi/∂xj)(P )|| = n− r then X is singular at this point.

Proof. Write P = [P0 : ... : Pn] and for simplicity, assume P ∈ U0 and consider the isomorphism ϕ0 : U0 −→
An. We know that

ϕ0

(
Z(f1, ..., fm)

)
= Z

(
f1(1, x1, ..., xn), ..., fn(1, x1, ..., xn)

)
and ϕ0([P0 : ... : Pn]) = (P1/P0, ..., Pn/P0). It suffices to show where i = 1, ...,m, j = 1, ..., n (NB: we do not
consider j = 0) that:

Rank ||(∂fi(1, x1, ..., xn)/∂xj)(P1/P0, ..., Pn/P0)|| = n− r (70)

The significant observation is that the matrix, where i = 1, ...,m, j = 0, ..., n (NB: now we do consider j = 0)

||(∂fi/∂xj)(P0, ..., Pn)||

has left most column consisting of all zeros. Moreover, the number of columns is strictly greater than the
rank (which by assumption is n− r) and so deleting this left most column does not change the rank.

The proof is then finished when it has been shown that this rank is equal to left hand side of (70), which
follows from independence of representative chosen to calculate the rank (a calculation similar (but easier)
than that done in Remark 5.1.2).

Lemma 5.1.6. Let Y ⊆ An be an affine variety. Let P ∈ Y be a point. Then Y is nonsingular at P if and
only if the local ring OP is a regular local ring.

Proof. Let P be the point (P1, ..., Pn) in An and let aP := (x− P1, ..., x− Pn) be the corresponding maximal
ideal in A := k[x1, ..., xn]. We define a linear map θ : A −→ kn by

θ(f) :=
( ∂f
∂x1

(P ), ...,
∂f

∂xn
(P )
)

(71)

Now it is clear that θ(xi − Pi) for i = 1, ..., n from a basis of kn, and that θ(a2P ) = 0, so θ induces an
isomorphism θ′ : aP/a

2
P −→ kn.
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We now let b be the ideal of Y in A, and let f1, ..., ft be a set of generators of b. The proof essentially
follows from the following key observation:

dim ap/(a
2
P + b) + dim(a2P + b)/a2P = dim aP/a

2
P (72)

which is true just by counting dimensions of vector spaces. We now explain these components. First, by
definition of the map θ′ we have that rank ||(∂fi/∂xj)(P )|| is the dimension of the subspace (b + a2P )/a2P of
aP/a

2
P . Combining this with the fact that dim aP/a

2
P = dim kn, cf. the isomorphism θ′, our equation becomes

dim aP/(a
2
P + b) + rank ||(∂fi/∂xj)(P )|| = n (73)

On the other hand, let aP denote the image of aP under the projection k[x1, ..., xn] −→ A(Y ) and consider
the map ϕ : k[x1, ..., xn] −→ A(Y )aP which is the given by projecting to the quotient followed by localising.
If c denotes the maximal ideal of A(Y )aP , we have

ϕ−1(c) = a + b, and ϕ−1(c2) = a2 + b (74)

Now, we know that OP ∼= A(Y )aP , so if mP denotes the maximal ideal of OP , it follows from (74) that

mP/m
2
P
∼= (a + b)/(a2 + b) = a/(a2 + b) (75)

Thus, (73) becomes
dimmP/m

2
P + rank ||(∂fi/∂xj)(P )|| = n (76)

and we are done.

We now make the obvious definition:

Definition 5.1.7. Let Y be a variety. Y is nonsingular at a point P ∈ Y if the local ring OP,Y is a regular
local ring. Y is nonsingular if it is nonsingular at every point. If Y is not nonsingular, it is singular.

For the next result, we need the following algebraic Lemma:

Lemma 5.1.8. Let A be a Noetherian local ring with maximal ideal m. Then

dimkm/m
2 ≥ dimA (77)

Proof. For a full proof, see [3], here we satisfy ourselves with a sketch.
Krull’s Principal ideal Theorem states that in the context of the lemma, if p is prime, minimal amongst

those over a collection of elements a1, ..., ar ∈ A of A then ht .p ≤ r. Thus, if we pick elements a1, ..., ar ∈ A,
the image of which under A −→ Am form a basis for the vector space m/m2. There exists a prime p minimal
over those containing a1, ..., ar, the result follows.

We will make use of the following fact:

Fact 5.1.9. Let X be any topological space, Z ⊆ X a subset, and {Ui}i∈I an open cover of X. Then Z is a
closed subset of X if and only if X ∩ Ui is a closed subset of Ui for all i.

Proof. This fact is seen to be true easily when the complements are considered:

X \ Z = (X \ Z)
⋃
i∈I

Ui =
⋃
i∈I

(Ui \ Z) (78)

Theorem 5.1.10. Let Y be a variety. Then the set Sing Y of singular points of Y is a proper closed subset
of Y .
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Proof. First we show Sing Y is a closed subset. We make use of Fact 5.1.9 and Proposition 4.1.4 (that open
affines form a basis for the Zariski topology) to reduce to the case where Y is affine. By 5.1.8 and the proof
of (5.1.6) the set of singular points is the set of points where the rank of the Jacobian matrix is < n − r,
where r = dimY . Thus, Sing Y is the algebraic set defined by the ideal generated by I(Y ) together with all
determinants of (n− r)× (n− r) submatrices of the matrix ||∂fi/∂xj||. (see [5]) Hence Sing Y is closed.

We now show that Sing Y is a proper subset. By Proposition 4.4.10 we have that Y is birationally
equivalent to a hypersurface H in An. By Corollary 4.4.9, there exists open subsets U, V of Y,H respectively
which are isomorphic. Since V is open and SingH is closed, we have that SingH is a proper subset of H if
and only if SingH is a proper subset of V . Since U and V are isomorphic, we thus reduce to the case of a
hypersurface in An, assume Y = Z(f) with f irreducible.

Now, Sing Y is the set of points P ∈ Y such that (∂f/∂xi)(P ) = 0 for i = 1, ..., n. If Sing Y = Y , then the
functions ∂f/∂xi are zero on Y , and hence ∂f/∂xi ∈ IY for each i. But IY is the principal ideal generated
by f , and deg(∂f/∂xi) < deg f , so we must have ∂f/∂xi = 0 for all i.

In characteristic 0 this is already impossible as f being irreducible is non-constant, so ∂f/∂xi 6= 0 for
some i. Now say char k = p > 0. In this case, ∂f/∂xi = 0 implies that f is a polynomial in xpi . This is true
of all i, so taking the pth roots of the coefficients, which is possible as k is algebraically closed, we obtain a
polynomial g such that f = gp, contradicting irreducibility of f .

5.2 Blowups

Consider the set
X := {(x, y, z) | y = zx} = Z(y − zx) ⊆ A3

Let z0 ∈ k be arbitrary and consider the intersection of the induced plane z = z0 with X. We have that
y = z0x which is a straight line with gradient z0. Thus X is a long ribbon with a twist in it (this explains the
classic image associated to blowups, see [1, §I, 4]).

We claim that X is birationally equivalent to A2. Indeed we have a morphism

α : X \ Z(x) −→ A3

(x, y, z) 7−→ (x, y)

Also, there is the morphism

β : A3 \ Z(x) −→ X

(x, y) 7−→ (x, y, y/x)

The morphisms α and β induce rational maps which are mutual inverses to each other.
There is a natural map ϕ : X −→ A2 given by the mapping (x, y, z) 7−→ (x, y). Now we arrive at a

subtlety; given a plane curve Z(f) ⊆ A2, we do not simply take the blowup to be ϕ−1(Z(f)). This set is
equal to Z(f, y− zx) which contains the line Z(x, y). This line is called the exceptional curve and we wish to
omit it, lest singularities not be resolved. Thus, we define:

Definition 5.2.1. Let Y = Z(f) be a plane curve and P ∈ Y a point. Make a change of variables (xi 7→
xi − Pi) which translates P to the origin, denote by Y ′ the resulting curve. Denote the origin by O. The
blowup of Y is

Ỹ := ϕ−1(Y ′ \ O)

More generally:

Definition 5.2.2. Let Y ⊆ An be an affine variety. Define the set

X := {
(
(x1, ..., xn), [P0 : ... : Pn−1])

)
⊆ An × Pn−1 | xiPj−1 = xjPi−1, where i, j = 1, ..., n}
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and the map:

ϕ : X −→ Y(
(x1, ..., xn), [P0 : ... : Pn−1])

)
⊆ An × Pn−1 7−→ (x1, ..., xn)

Then the blowup of Y at O
Ỹ := ϕ−1(Y \ O)

A few comments are in order. First, when we write An×Pn−1 we do not mean the cartesian product, but
instead product of these two varieties, thus we are taking an arbitrary embedding An � Pn followed by the
Segre embedding, see Exercise I.3.16 and its solution [2] for an explanation on the product in the category of
varieties.

Also, Definitions 5.2.1 and 5.2.2 agree when Y ⊆ An is a plane curve. In this case, Definition 5.2.2 makes
use of

X := {
(
(x1, x2), (P0, P1)

)
| x1P1 = x2P0}

and
(
(x1, x2), [P0, P1]

)
∈ ϕ−1(Y ) is such that x1 6= −, x2 6= 0 and so P0 = 0 ⇒ P1 = 0, thus P0 6= 0 and we

may use the isomorphism
P1 \ Z(x0) ∼= A

Now we reach a subtlety, indeed this shows that P1 × A2 ∼= A × A2 but we must read × carefully here, this
is not the product of these two topological spaces but is the product of these two affine varieties, which by
Exercise I.3.5 is given by A3.

Example 5.2.3. Define
f = y2 − x2(x+ 1)

By observing the jacobian matrix: (
−3x2 − 2x 2y

)
which is the zero matrix when evaluated at 0, that is, f is singular at 0. Now consider ϕ−1(f) which is given
by Z(f, y − zx). By substituting y = zx into f we have:

z2x2 − x2(x+ 1) = 0

which factors:
x2
(
z2 − (x+ 1)

)
= 0

The algebraic set Z(x2
(
z2 − (x + 1)

)
) has two irreducible components, one corresponding to x = 0, y = 0,

and z arbitrary, this is the exceptional curve. The other, z2 = x + 1 and y = zx, this is Ỹ . Notice that the
jacobian matrix of Ỹ : (

−1 0 2z
−z 1 −x

)
always has full rank, and so Ỹ is nonsingular.

We can talk more generally.

Definition 5.2.4. Let Y = Z(f) be a plane curve and P ∈ Y a point (not necessarily a singular point). By
making a change of variables if necessary, assume P = O (the origin). Write f = f0 + . . . + fr where fi has
degree i, then the multiplicity of P is the least value i such that fi 6= 0. The linear factors of fi are the
tangent directions at P . A singular point of multiplicity 2 with distinct tangent directions is a node.

Example 5.2.5. The multiplicity of the singular point O of y2 − x2(x + 1) is 2 (clearly). The tangent
directions are y + x and y − x and so O is a node.
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Given a plane curve Z(f) we have that the blowup Ỹ along with the exceptional curve is given by
Z(f, y − zx). We can come up with an explicit description of the zero set which yields only the blowup.

Write f = f(x, y) and make the substitution y = zx to obtain f(x, zx) and now write f(x, zx) = xrf̄(x, z)
for some f̄ such that f̄(0, z) 6= 0. Then Ỹ = Z(f̄ , y− zx). To see this, if P = (P1, P2, P3) ∈ Z(f̄ , y− zx) then

0 = P r
2 f̄(P1, P3) = f(P1, P2)

so Z(f̄ , y − zx) ⊆ Ỹ . Conversely, we clearly have ϕ−1(Y \ O) ⊆ Z(f̄ , y − zx) and the latter set is closed. An
application of this is given in the solution to exercise I .5.6b in [2].

References

[1] Robin Hartshorne, Algebraic Geometry, Springer-Verlag New York 1977

[2] Hartshorne Solutions, W. Troiani.

[3] Notes on Commutative Algebra, W. Troiani

[4] Dimension Theory, W. Troiani

[5] Notes on linear algebra, W.Troiani

[6] Cox, Little, O-Shea, Ideal, Varieties, and Algorithms, Springer Cham Heidelberg New York Dordrecht
London 1998.

[7] Matsumura, Commutative ring theory, Cambridge University Press, New York 1989.

26


	Introduction
	Affine Varieties
	Algebraic sets and the ideal of a set
	Irreducible sets
	Dimension

	Projective varieties
	Homogenisation and projection
	Gröbner Basis
	Segre embedding

	Morphisms
	Regular functions
	Morphisms
	Products
	Rational maps

	Singularities
	Singular points
	Blowups


